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Abstract Astrocytes are an abundant subgroup of cells in the central nervous system (CNS) that play a critical
role in controlling neuronal circuits involved in emotion, learning, and memory. In clinical cases, multiple chronic
brain diseases may cause psychosocial and cognitive impairment, such as depression and Alzheimer’s disease
(AD). For years, complex pathological conditions driven by depression and AD have been widely perceived to
contribute to a high risk of disability, resulting in gradual loss of self-care ability, lower life qualities, and vast
burden on human society. Interestingly, correlational research on depression and AD has shown that depression
might be a prodrome of progressive degenerative neurological disease. As a kind of multifunctional glial cell in the
CNS, astrocytes maintain physiological function via supporting neuronal cells, modulating pathologic niche, and
regulating energy metabolism. Mounting evidence has shown that astrocytic dysfunction is involved in the
progression of depression and AD. We herein review the current findings on the roles and mechanisms of
astrocytes in the development of depression and AD, with an implication of potential therapeutic avenue for these
diseases by targeting astrocytes.
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Introduction

Astrocytes are identified as versatile glial cells and closely
associated with other cell types in the brain. The
conventional wisdom of astrocytes is “brain glue,” which
means that astrocytes were thought to function as a
neuronal supporting matrix [1,2]. However, emerging
evidence suggested that the function of astrocytes is far
from supporting cells. They can interact with neurons and
form tripartite synapses, playing a crucial role in main-
taining stable neuronal function, including the regulation
of extracellular fluid, ion homeostasis, ion transportation,
cerebral blood flow, synaptic remodeling, and energy
supply [3–6]. In addition, the endfeet of astrocytes together
with vascular endothelial cells maintains the integrity of
the brain–blood barrier (BBB) and provides a homeostatic
environment for the brain [7]. Moreover, astrocytes can
interact with microglia to respond to brain injury, bacterial
infection, and other insults in the brain. The interplay

between astrocytes and microglia always couples in many
neuroinflammatory diseases, including depression and
Alzheimer’s disease (AD) [8].
As a common chronic disease, depression is character-

ized by specific symptoms in human mental, emotional,
and physical health such as sadness, low self-esteem or
guilt, sleep disturbance, tiredness, attention deficit, and
anhedonia [9–11]. Generally, symptoms of depression
develop gradually, and patients frequently have an
intention to self-injure or even commit suicide. Epidemio-
logical studies have indicated that the prevalence of
depression has increased over the past decades; depression
has been estimated to affect more than 300 million people
globally, nearly 4.4% of the world’s population [12,13].
According to the World Health Organization reports,
depression was ranked as the third cause of the global
burden of disease and was expected to rank first by 2030
[14]. Unfortunately, the pathogenesis of depression is still
unclear. Several hypotheses have been proposed to explain
its pathogenesis. Among them, the monoamine neuro-
transmitter serotonin (5-hydroxytryptamine (5-HT))
hypothesis is the most widely investigated and appreciated
[15]. 5-HT is synthesized from the essential amino acid
tryptophan and produces physiologic effects by binding
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with seven broad families (5-HT1, 5-HT2, 5-HT3, 5-HT4,
5-HT5, 5-HT6, 5-HT7 receptor families) [16]. The 5-HT
hypothesis affirmed that imbalance of 5-HT levels and
dysfunction of 5-HT receptor families are involved in
depression [17,18]. The significant functions of 5-HT in
modulating normal neuronal development and excitability
have already been proved [19,20]. Nevertheless, these
speculations remain controversial. The diagnosis and
treatment of depression are still a challenge to clinicians
due to the uncertain pathogenesis.
AD is the most common degenerative disease in the

elderly and is characterized by progressive cognitive
impairment [21]. With the acceleration of the global
aging population, the number of patients with AD is
rapidly increasing. More than 100 million people world-
wide are predicted to suffer from AD by 2050 [22–25].
However, the pathogenesis of AD remains unclear. The
primary hypotheses of AD are the amyloid-β (Aβ) cascade
hypothesis and tau protein hypothesis. The Aβ cascade
hypothesis proposes that the accumulation of Aβ results
from the imbalance of Aβ production and clearance.
Subsequently, Aβ accumulation caused by either Aβ
overproduction or Aβ clearance impairment would finally
rise to neurotoxicity [26–28]. The tau protein hypothesis
postulates that tau protein hyperphosphorylation leads to
neurofibrillary tangles (NFTs) and subsequent neuron loss
[29,30].
Although the pathogenesis of depression and AD is

mainly based on hypotheses, both diseases have many
similarities. Interestingly, mounting evidence suggested
that depression may be a risk factor or even a prodrome of
AD [31–33]. Postmortem studies and other medical
investigations showed that abnormal morphological and
functional astrocytes appear in the development of
depression and AD [34–37]. Therefore, we propose that
astrocytes may be involved in the pathogenesis of these
two diseases, and restoring astrocytic homeostasis would
be a new avenue for treating them.

Astrocytes in depression

Astrocytes regulate energy metabolism in the
development of depression

Normal energy metabolism is essential for neuron network
homeostasis. Generally, neurons consume 80%–90% of
total energy in the central nervous system (CNS) [38]. The
neuronal energetic substrates, glucose and lactate, mainly
stem from capillaries and astrocytes and are delivered
through glucose transporters (GLUTs) and monocarbox-
ylate transporters (MCTs), respectively [39–41]. Precisely,
lactate produced in astrocytes can instantly deliver
abundant energy to satisfy the neuronal requirements

[40,42]. Astrocytes take up glucose from surrounding
capillaries via GLUT1 and store it in the form of glycogen.
By contrast, neurons are weak in energy storage [43]. They
release glutamate during neuronal transmission to stimu-
late glycogen catabolism, aerobic glycolysis, and lactate
production in nearby astrocytes, and then astrocytes release
lactate via MCT1 or MCT4 [44,45]. This process is named
astrocyte–neuron lactate shuttle (ANLS) and is posited to
support neuronal plasticity and excitability [43,46–50].
Emerging evidence demonstrated that metabolism dis-

order is involved in the pathogenesis of depression [51].
Experiments conducted in mice exhibited temporary
increases in extracellular lactate in the brain when mice
were exposed to the forced swimming test. These lactates
were found to be derived from astrocytes and involved in
neuronal excitability and synaptic plasticity [52]. We can
regard this phenomenon as an instant energy compensation
to neuronal stress, which verifies the function of rapid
energy supply about lactate [53]. Carrard et al. have
increased hippocampal lactate levels through peripheral
administration of lactate, which induced antidepressant-
like effects. The injection of lactate downregulates
glycogen synthase kinase-3β (GSK-3β) and cAMP
response element binding protein (CREB) phosphoryla-
tion, which is akin to the effect of certain antidepressant
drugs such as lithium [54]. Lactate upregulates synaptic
plasticity-related genes such as activity-regulated cytoske-
letal protein (Arc), c-fos, and Zif268 [55] (Fig. 1). Lactate
administration also amplifies 5-HT signaling by increasing
p11 (a binding protein for a 5-HT receptor) and increases
the expression of astrocyte marker S100β [54]. These
results indicate that astrocytes may be a mediator of the
antidepressant-like effects of lactate by regulating 5-HT
receptor trafficking [54,56]. Subsequently, experiments
carried out by Karnib et al. also verified the antidepressive
effects of lactate. Similar to Carrard et al., they applied
peripheral injection of lactate to mice susceptible to
chronic social defeat stress (CSDS), strengthening resi-
lience and rescuing social avoidance behavior and anxiety
in mice [57].
There are still controversial opinions on the ANLS

hypothesis because it lacks direct evidence of lactate
transportation from astrocytes to neurons. For example, the
cellular location of lactate consumption in the brain
remains unclear, and neurons also use other approaches
to obtain energy besides MCTs, such as glucose transport
systems [58,59]. Notwithstanding, astrocyte-derived lac-
tate is indispensable for neuronal energy consumption and
plasticity [43]. Even though neurons can use glucose as a
direct energy source, astrocyte-derived lactate is predomi-
nantly required to maintain normal physiologic activities
[40]. Together, as an energy substrate, astrocyte-derived
lactate is a significant mediator and potential target for
treating depression.
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Astrocyte-derived adenosine 5′-triphosphate (ATP) is
associated with depression

ATP, a multifunctional molecule, was initially recognized
as an energy transfer medium [60]. However, recent
studies revealed that ATP plays vital roles not only in
neuronal energy metabolism but also in neuronal plasticity.
Notably, ATP serves as a gliotransmitter or neuromodu-
lator to modulate functional neuronal homeostasis when
the extracellular concentration of ATP is low in normal
conditions. P2XR-mediated ATP energetic transmission
has been found in CNS synapses [61,62]. Correspondingly,
insufficient ATP results in impaired synaptic plasticity in
the progression of depression [63–67]. Vesicular ATP
released from astrocytes is a significant source of
extracellular ATP in the brain to maintain neuronal
function [63,68]. Cao et al. found that the ATP level was
remarkably decreased in the prefrontal cortex (PFC) in
CSDS model mice. Accordingly, the regional injection of
ATP into the medial PFC (mPFC) produced an antide-
pressant-like effect without impacting murine locomotor
activity. Moreover, Cao et al. concluded that ATP binding
with P2X2R in the mPFC is required for the antidepressant
role of ATP [63]. Astrocytic exocytosis of ATP can also
govern neuronal dopamine (DA) release in developing
depression-like syndrome [69]. Taken together, astrocyte-
derived ATP acts as a neuromodulator to modulate
depressive-like behaviors.
In addition to the vesicular ATP-releasing mechanism,

researchers are eager to search the specific ATP-releasing
channel proteins. CALHM1/2, two calcium homeostasis
modulator (CALHM) family proteins, contain four-pass
transmembrane domains and recently have been identified
as an ATP-releasing channel [70–74]. Ma et al. found an
apparent reduction of astrocytic ATP release in CALHM2
knockout mouse [72]. Deficiency of ATP release alters
spine morphology and plasticity, which induces depres-
sive-like syndrome in mice [72,75]. Furthermore, similar
phenotypes were observed in the astrocyte-specific
CALHM2 deficiency mice, further supporting that
CALHM2 regulates depression-like behaviors as an
astrocytic ATP-releasing channel [72].
However, an apparent increase in extracellular ATP in

the brain, mainly derived from dead cells and reactive
astrocytes, is associated with pathological changes (such as
stress and cellular injury) [76,77]. Moreover, these ATPs
non-selectively bond with microglial P2X7 receptor
(P2X7R), which leads to the efflux of K+, thereby
inducing NLRP3 inflammasome assembly, caspase-1
stimulation, and cytokine interleukin-1 (IL-1β) maturation
and release [78,79]. Therefore, treatment with P2X7R
antagonists, elimination of NLRP3, or blockade of
peripheral IL-1β could rescue depression caused by
chronic stress [78,80,81]. Furthermore, ATP has been
reported as a “danger signal” or a “warning molecule” in
the brain, which interacts with purinergic receptors such as
P2X7R, P2Y1R, and A2AR in brain disorders [82,83].
Overall, astrocytic ATP plays important roles in

Fig. 1 Diagram of ANLS in depression. Astrocytes take up glucose from the capillary via GLUT1, store it by converting it into glycogen, or
catabolize it into pyruvate by glycolysis. Pyruvate can be converted into lactate, which is then delivered into neurons through MCTs. The uptake of
astrocyte-derived lactate by neurons is converted to pyruvate. Glucose from the capillary can also be absorbed in neurons via GLUTs and is then
catabolized into pyruvate, which is fed into the TCA cycle for energy production and participates in synaptic plasticity and depression development.
MCTs, monocarboxylate transporters; GLUT, glucose transporter; TCA, tricarboxylic acid cycle.
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neuronal function, which might be involved in depression
(Fig. 2). On the one hand, homeostatic astrocytes maintain
physiologic levels of extracellular ATP, which supports
neuronal viability and synaptic plasticity. On the other
hand, reactive astrocytes release excessive ATP into the
extracellular matrix and subsequently activate nearby
microglia through the P2X7 receptor, resulting in the
activation of the NRLP3 inflammation and thus neuro-
toxicity. Therefore, ATP is an important mediator that
connects astrocytes and depression. Although the mechan-
isms of ATP involvement in the development of depression
remain to be explored, we can conclude that astrocyte-
derived ATP in low level and physiologic dose is
fundamental for maintaining normal physiologic function.

Astrocyte-mediated neuroinflammation modulates
depressive-like syndrome

Brain immunity depends on astrocytes and microglia due
to the BBB. Astrocytes, together with microglia, regulate
the immune system in the brain and escort BBB function.
Neuroinflammation is usually regarded as the activation of
astrocytes and microglia, both of which switch to a state of
pro-inflammation to release a vast number of pro-
inflammatory cytokines [84,85]. In addition to ATP-
mediated neuroinflammation that has been described
above, astrocytes participate in regulating various inflam-
matory signal transductions. There are several signaling

pathways of astrocyte-mediated neuroinflammation, such
as gp130, TGFβR, IFNγR, ERα, A20, STAT3, FasL, and
BDNF; the upregulation of these signaling pathways in
astrocyte is usually recognized as an anti-inflammatory
response; on the contrary, the activation of Act1, S1P1,
B4GALT6, TrκB, NF-κB, SOCS3, CCL2, CXCL10, or
VEGF signaling pathways is a pro-inflammatory effect
[86]. Therefore, astrocytes are a “double-edged sword” in
the case of neuroinflammation, performing detrimental and
protective functions. Astrocyte ablation has been shown to
cause severe neuroinflammation in experimental autoim-
mune encephalomyelitis (EAE) or brain injury in mice
[87–89]. However, another study showed that astrocyte
depletion improved neuroinflammation in the chronic
phase of EAE [90]. Whether astrocytes play a beneficial
or a detrimental role depends on their state. Astrocyte
activation is the main cause of neuroinflammation.
Depression is commonly accompanied by neuroinflam-

mation, which causes the activation of microglia and
astrocytes, lessens brain serotonin, activates the
hypothalamic–pituitary–adrenal axis, and impairs synaptic
plasticity and neurotransmission [91–94]. In rodent
models, lipopolysaccharide (LPS) is frequently adopted
to induce depression-like behaviors by producing severe
neuroinflammation [95–98]. Specifically, Leng et al.
discovered that the expression of multiple endocrine
neoplasia type 1 (Men1; protein: menin) is decreased in
the brain of mice subject to chronic unpredictable mild

Fig. 2 Astrocyte-derived ATP plays a dual role in neuronal function. Due to the significantly different receptor affinities in normal circumstances
(P2X2 is100-fold > P2X7), ATP released from homeostatic astrocytes serves as a neurotransmitter or neuromodulator, which binds with P2X2R in
neurons, maintaining neuronal morphology, excitability, and plasticity. By contrast, when astrocytes are activated under pathological conditions, they
produce excessive ATP, binding with P2X7 in microglia, followed in sequence by the upregulation of NLRP3 and caspase-1, release of IL-1β, and
finally neuroinflammation and neurotoxicity.

832 Astrocytes in depression and Alzheimer’s disease



stress and LPS-induced neuroinflammation. Moreover,
they found that astrocyte-specific menin deficits promote
NF-κB-induced IL-1β upregulation, resulting in morpho-
logical abnormalities and synaptic deficits in neurons and
depression-like behaviors in mice. Interestingly, they
found an association between MEN1 mutations and
major depressive disorder risk in humans [99]. Other
studies also supported the view that astrocyte-mediated
neuroinflammation is involved in depression pathology.
LPS-induced astrocyte activation can cause depression-
like behaviors, which can be alleviated by inhibiting
astrocyte reaction [100–102].
Taken together, neuroinflammation is a crucial link or

even a prerequisite in the progression of depression. Thus,
neuroinflammation can be regarded as a standing point to
seek antidepression strategies. Specifically, reducing
astrocyte activation might be a considerable approach.

Astrocytes in AD

Astrocytes are closely involved in amyloid pathology

Being abundant in the CNS, the role of astrocytes in AD
has received less attention and appreciation compared with
microglia [103]. However, along with the recognition of
the connection between astrocytes and AD, astrocytic roles
in the development and progression of AD are attracting
more attention.
During the progression of AD, Aβ originates from

amyloid precursor protein (APP) and plays a central role in
AD pathogenesis. APP is cleaved by beta-site APP
cleaving enzyme 1 (BACE1), which yields sAPPβ and a
cell-membrane-bound fragment (C99). Then, C99 is
cleaved by γ-secretase, which releases Aβ and amyloid
intracellular domain. Aβ aggregation was thought to be the
significant event that drives the progression of AD
pathology, which mainly exists in the extracellular matrix
in the brain, followed by glial reaction, neuroinflammation,
neurotoxicity, neuronal cell death in the hippocampus and
gray matter, and eventually memory impairment and
dementia [104–106].
Post-mortem AD brain tissue analysis has shown that

reactive astrocytes are accumulated around Aβ deposits
[107–109]. After exposure to Aβ, similar to microglia,
astrocytes are polarized to the A1 status and subsequently
release cytokines (such as IL-1β or IL-6), nitric oxide,
reactive oxygen species, and excessive glutamate [110–
113]. The series of neurotoxicity or excitotoxicity
eventually evolves into neuron loss and neurodegenera-
tion. Furthermore, the expression of BACE1 was found in
astrocytes, which indicates that astrocytes may be involved
in Aβ aggregation [114]. To identify the astrocytic source
of Aβ, Veeraraghavalu et al. dissociated primary astrocytes
from the brains of newborn PS1ΔE9flox or APPswe mice

and 8-week-old APPswe/PS1ΔE9flox mice. They detected
the expression of Aβ secreted by astrocyte in a culture
medium, which could be prevented by the treatment of γ-
secretase inhibitor [115]. Taken together, it would be a
vicious cycle accelerating disease progression: Aβ induces
reactive astrocytes, and then reactive astrocytes, in turn,
promote Aβ aggregation and AD pathogenesis.

Astrocytes influence tau protein accumulation in AD
progression

Microtubule has been verified to be a vital component of
neuronal cytoskeleton protein, involved in nutritional
support of neuronal bodies and axons. As an effective
form of microtubule-associated proteins, tau is a critical
component of a microtubule. Moreover, tau has crucial
physiologic functions in modulating microtubule, includ-
ing microtubule polymerization and stabilization and its
normal structural function. However, hyperphosphorylated
tau aggregates can cause NFT generation, microtubule
dysfunction, and finally neuronal death, which are the
significant pathologies of AD [116–118].
In addition to neuronal tau accumulation, astrocytic tau

accumulation also exists and plays a pivotal role in AD
pathology [119,120]. Current evidence indicated that 3R
isoforms of tau rather than 4R tau are responsible for tau
aggregation [121,122]. Specifically, Richetin et al. have
proved that the accumulation of 3R tau in hilar
hippocampal astrocytes is related to AD severity in
individuals [123]. Astrocyte-specific overexpression of
3R tau impairs normal mitochondrial distribution and
functions in hilar astrocytes and disturbs the hippocampal
neuronal network in vivo, which in turn damage hippo-
campal function. Correspondingly, mice with astrocytic 3R
tau accumulation exhibit a spatial memory deficit [123].
Moreover, hyperphosphorylated tau aggregates are pro-
moted by senescent cell accumulation, which drives
neurodegenerative disease, while removing senescent
glial cells, including astrocytes and microglia, could
attenuate tau phosphorylation [124]. Therefore, astrocytic
tau protein or astrocyte-promoting tau accumulation plays
an essential role in tau pathology during the development
of AD, indicating that astrocytes could be a crucial target in
AD treatment. Hence, the underlying mechanism of
astrocytes in tau pathogenesis needs to be systematically
studied.

Astrocytes impact AD progression via regulating
energy metabolism, extracellular ATP release, and
neuroinflammation

Akin to depression, ANLS impairment can also be
observed in the progression of AD [56,125]. A recent
study demonstrated that expressions of MCTs (MCT1,
MCT2, and MCT4) and lactate-relevant enzymes (lactate
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dehydrogenase A) are decreased in the cortex and
hippocampus of APP/PS1 mice [126]. Suzuki et al. also
reported that disruption of MCT1, MCT2, or MCT4
expression impairs synaptic plasticity and long-term
memory, while recovery of lactate transport between
astrocytes and neurons can rescue these defects [49].
Intriguingly, ATP has been shown to control Aβ aggrega-
tion in AD progression [127]. Jung et al. showed that
astrocyte-derived ATP might prevent neuronal plasticity
impairment and dendritic spine loss in the pathology of Aβ
[128].
In addition, astrocyte-mediated neuroinflammation is

involved in AD [129–133]. Alleviation of astrocytic
reaction driven by adeno-associated virus ameliorates Aβ
pathology, modulates synaptic plasticity, and improves
cognition in AD model mice [134]. Interestingly, Katsouri
et al. demonstrated that ablation of astrocytes increases Aβ
levels, affects synaptic and neuronal density, and induces
memory deficits in mice [135]. These studies indicated the
crucial role of astrocytes in inflammation-related diseases,
including AD. Maintaining normal astrocytic function and
decreasing its activation might prevent the occurrence of
AD.

Astrocytes, a promising therapeutical
target for depression and AD

Antidepressant drugs such as selective serotonin reuptake
inhibitors (SSRIs) and DA agonists might exert neuropro-
tective effects through astrocytes [136–138], given that
astrocytes express 5-HT receptors (e.g., 5-HT1A and 5-
HT7), glial serotonin transporter (SERT), and dopaminer-
gic receptors (e.g., D1R and D2R) [139–142]. For
example, SSRIs and tricyclic antidepressants can down-
regulate the expression of astrocytic neurotransmitter
transporters, such as SERT, leading to the increased level
of 5-HT [143,144]. Interestingly, fluoxetine (a typical
SSRI) can target astrocytes and increase the release of
BDNF in hippocampal astrocytes and extracellular ATP
level in vivo [145]. Other antidepressants such as
imipramine and paroxetine can also upregulate BDNF
mRNA expression in a primary culture of hippocampal
astrocytes [145]. Moreover, treatment with antidepressants
can significantly change the BDNF and glial cell line-
derived neurotrophic factor (GDNF) level in patients with
depression [146]. BDNF and GDNF are two nutritional
factors mainly derived from glial cells, which play an
important role in the survival and function of midbrain DA
neurons, and might be involved in the progression of
depression [147,148]. In addition, DA can bind with
astrocytic D1, mediating excitatory synaptic regulation
[142]. The activation of the astrocytic dopamine 2 receptor
can suppress neuroinflammation in the CNS [139].
Altogether, these findings indicated that antidepressant

drugs could execute their pharmacological effects not only
directly on neurons but through regulating astrocytes.
Interestingly, these mentioned drugs or molecules might
have effects on depression and AD.
SSRIs, which are typically administered as antidepres-

sant drugs, have been shown to reduce Aβ deposition in
AD mice and patients [149]. Specifically, fluoxetine
administration can improve spatial learning and memory
functions in AD mice by mitigating hippocampal neuron
loss, decreasing Aβ level, inhibiting GSK-3β activity, and
upregulating the level of β-catenin [150,151].
DA, an excitability-related neurotransmitter, is down-

regulated or dysfunctional in depression [152,153]. DA
receptor agonists such as aripiprazole and cariprazine can
effectively alleviate depressive symptoms [154]. Interest-
ingly, DA receptor expression is lower in AD individuals
[155,156]. Accordingly, DA agonists could restore synap-
tic plasticity in AD patients [157]. Similar to SSRIs, a
dopaminergic system-relevant therapeutic strategy has
been proposed as a potentially effective treatment for AD
[157–159].
Taken together, numerous pathophysiological mechan-

isms mediated by astrocytes are involved in depression and
AD; in other words, astrocytes are a potential linker
between depression and AD as they are involved in the
development of both diseases, indicating that astrocytes
might be a potential therapeutic target for the treatment of
depression and AD.

Conclusions and perspectives

This review collected and summarized evidence to show
how astrocytes participate in the development of depres-
sion and AD (Fig. 3). On the one hand, as a kind of
multifunctional glial cells, homeostatic astrocytes secrete a
range of factors, including ATP, BDNF, and growth
factors, maintaining neuronal viability and synaptic
plasticity. On the other hand, pathogenic astrocytes release
toxic factors that promote cell death or cytokines and
chemokines that cause neuroinflammation [160,161].
Mounting evidence has suggested that astrocytes are
actively involved in various neuropathological processes,
including depression and AD.
We herein conclude that astrocytes modulate energy

metabolism, extracellular ATP, and neuroinflammation in
the progression of depression. Concurrently, astrocytes
also govern the above processes and Aβ aggregation and
tau protein accumulation in the pathology of AD. The
dysfunction of astrocytes in depression and AD implies a
correlation between depression and AD. Interestingly, both
diseases share numerous similar epidemiological charac-
teristics in addition to similar molecular and pathological
changes. For example, depression is regarded as a risk
factor or even a prodrome for AD [31,162,163].
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Furthermore, depression increases the risk of heart disease,
stroke, and neuroinflammation, all of which are regarded
as high-risk factors of AD [164–166]. Although mounting
evidence has presented both relationships in a clinical
setting and basic research, direct evidence showing that
early depression causes AD is still lacking. Therefore, the
relationship between depression and AD remains to be
further investigated.
Importantly, the diagnosis and treatment of depression

and AD remain challenging. The current drugs are
insufficient to cure both diseases because of inadequate
treatment outcomes and unpredictable side effects [167].
We herein propose a possible treatment of these two
diseases by targeting astrocytes. For example, focal
transplantation of healthy astrocytes in the brain has been
proposed to be a promising therapeutic method for
depression [168]. The engraftment of astrocytes producing
a neuroprotective effect and cognitive enhancement has
been verified in a rodent model [169,170]. Recently, Zhou

et al. and Qian et al. found that efficient astrocyte–neuron
conversion by genome editing to generate new neurons in
the mouse brain can replenish the lost neuron in
neurodegenerative disease. This method was demonstrated
to alleviate motor dysfunctions in mice with Parkinson’s
disease [171,172]. Thus, genome editing-induced astro-
cyte–neuron conversion might also be a promising
therapeutic method for neurodegenerative disease, includ-
ing AD. Taken together, given the multiple functions of
astrocytes in depression and AD that have been reviewed
above, we argue that targeting astrocytes to maintain their
functional homeostasis would be a potential strategy for
treating these diseases.
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