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Abstract Chimeric antigen receptor T cell (CAR T) therapies have achieved unprecedented efficacy in B-cell
tumors, prompting scientists and doctors to exploit this strategy to treat other tumor types. Acute myeloid
leukemia (AML) is a group of heterogeneous myeloid malignancies. Relapse remains the main cause of treatment
failure, especially for patients with intermediate or high risk stratification. Allogeneic hematopoietic stem cell
transplantation could be an effective therapy because of the graft-versus-leukemia effect, which unfortunately puts
the patient at risk of serious complications, such as graft-versus-host disease. Although the identification of an
ideal target antigen for AML is challenging, CAR T therapy remains a highly promising strategy for AML
patients, particularly for those who are ineligible to receive a transplantation or have positive minimal residual
disease. In this review, we focus on the most recent and promising advances in CAR T therapies for AML.
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Introduction

Acute myeloid leukemia (AML) is the most common type
of leukemia showing heterogeneity behavior and is
characterized by the clonal expansion of myeloid blasts.
Despite recent improvements in treatment, the complete
remission (CR) rates for AML are approximately 70% in
younger adults and only 40%–60% in older patients (more
than 60 years old) [1,2]. Disease recurrence remains the
most common cause of treatment failure, and the 5-year
survival of AML patients with intermediate and high risk
cytogenetics was no more than 41% [3–5].
Allogeneic hematopoietic stem cell transplantation

(Allo-HSCT) could be an effective therapy for AML
patients through the graft-versus-leukemia effect mediated
by donor T lymphocytes. However, it is often accompanied
with the risk of life-threatening graft-versus-host disease
[6]. The physiological mechanism responsible for the
killing effect of cytotoxic T lymphocytes has been well
studied. A recognition signal from T cell receptors (TCRs)
is the first step; this is complemented by a costimulatory
signal to further augment the activation of cytotoxic T

lymphocytes (Fig. 1). ATCR could recognize an antigen in
the context of major histocompatibility complex (MHC)
presentation. In stark contrast, chimeric antigen receptor
(CAR) is an MHC-independent model that is commonly
composed of an extracellular domain with a single-chain
variable fragment (scFv) from a monoclonal antibody, a
hinge region, a transmembrane domain, and a TCR-
derived CD3z domain with or without one or more
intracellular costimulatory domains. The design of CAR
has developed over the years to boost efficacy and safety in
detailed immunological structures (Fig. 2).
One of the most important prerequisites for successful

CAR T therapy is the identification of the suitable target
antigens [7,8]. Theoretically, an ideal target antigen should
be immunogenic and should play a crucial role in the
differentiation, survival, and expansion of malignant cells.
The antigen expression should be restricted to all
malignant cells with high antigen densities [9,10], even
including malignant stem cells. A large fraction of patients
should be positive for the antigen, which should be on the
surface of malignant cells. CD19, which is ubiquitously
expressed on the surface of B cell, is a satisfying target for
B cell malignancies. Infusion with anti-CD19 CAR T
resulted in an unheard-of antitumor effect and long-term
remissions in chronic lymphocytic and acute lymphocytic
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leukemia [11–13]. Unlike B cell malignancies, different
antigens are expressed on distinct subtype AML cells,
which means that we cannot treat all AML patients with
CAR T targeting the same antigen. In the following
paragraphs we will focus on CAR T therapies in AML.

CAR T therapies for AML

As of this writing, there is no licensing authority approving
CART therapy for AML in contrast to B cell malignancies,
but several antigens have been proposed as potential CAR
T targets against AML (Table 1). The greatest challenge for
the successful application of CART for patients with AML
is the selection of effective and safe antigen targets. AML
is a heterogeneous clonal malignancy, and the subclones
may evolve over time, thereby possibly leading to the
genetic and phenotypic heterogeneity of the leukemia cells
in one patient [14]. Phenotypic heterogeneity is character-
ized by differential antigen expression on the leukemia cell
surface, especially in patients suffering from leukemia
relapse. During the relapse stage, for B-ALL, leukemia
cells lose the target antigen, generate antigen-negative
blast cells, or exhaust CAR T persistence [15–19].
However, the study on anti-LeY CAR T for five AML
patients showed that the AML blasts of three patients
present at relapse continued to express the LeY antigen,
indicating that progression was not due to the antigenic
change in these AML cases [20]. It might be necessary to
target more than one antigen to optimize the anti-leukemia
effect of CAR T. Perna et al. developed the combinatorial

Fig. 1 Endogenous T cell receptor (TCR) is comprised of paired
α and β chains associated with d, ε, and g chains, and z chains. The
antigen is presented by either major histocompatibility complex
(MHC) class I or MHC class II. The specificity signal delivered by
the TCR is commonly defined as signal 1, which is the recognition
signal. T cell activation also requires a co-stimulatory signal,
referred to as signal 2. Activating co-stimulatory receptors include
CD28, 4-1BB, and others.

Fig. 2 Basic structures of chimeric antigen receptors. Chimeric antigen receptors (CARs) recognize cell-surface antigens in a major
histocompatibility complex-independent manner and are composed of an extracellular binding domain, a hinge, a transmembrane domain,
and intracellular signal domains. The first-generation CAR has a single T cell receptor signal domain comprising a CD3z chain. The
second-generation CARs incorporating CD28/4-1BB as a co-stimulatory domain are developed. CARs incorporating three or more signal
domains, the so-called third- and fourth-generation CARs, have also been developed and have started to be tested in clinical trials.
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Table 1 Chimeric antigen receptor (CAR) T cell therapy trails for acute myeloid leukemia (AML)

Antigen target Trail number Trail phase Disease First posted Recruitment status Country Sponsor

CD33 NCT03126864 I RR-AML April 24, 2017 Recruiting USA M.D. Anderson
Cancer Center

CD33 NCT02799680 I RR-AML June 15, 2016 Unknown China The Affiliated
Hospital of the
Chinese Academy
of Military
Medical Sciences

CD33 NCT01864902 I/II RR-AML May 30, 2013 Unknown China Chinese PLA
General Hospital

CD33, CD38, CD56,
CD117, CD123,
CD34, and Muc1

NCT03291444 I RR-AML and MDS September 25,
2017

Recruiting China Zhujiang Hospital

CD33, CD38, CD56,
CD123, CD117,
CD133, CD34 or
Mucl

NCT03473457 Not applicable RR-AML March 22, 2018 Recruiting China Zhujiang Hospital

CD33, CD38, CD123,
CD56, Muc1, and
CLL1

NCT03222674 I/II AML July 19, 2017 Recruiting China Shenzhen
Geno-Immune
Medical Institute

CD123 NCT03585517 I AML July 13, 2018 Recruiting China Beijing
Immunochina
Medical Science &
Technology Co.,
Ltd.

CD123 NCT03114670 I Relapse AML after
Allo-HSCT

April 14, 2017 Recruiting China Affiliated Hospital
to Academy of
Military Medical
Sciences

CD123 NCT03556982 I RR-AML June 14, 2018 Recruiting China The Affiliated
Hospital of the
Chinese Academy
of Military
Medical Sciences

CD123 NCT02159495 I RR-AML and
persistent/recurrent
blastic plasmacytoid
dendritic cell
neoplasm

June 10, 2014 Recruiting USA City of Hope
Medical Center

CD123 NCT03672851 I RR-AML September 17,
2018

Enrolling by
invitation

China Second Affiliated
Hospital of Xi’an
Jiaotong University

CD123 NCT03766126 I RR-AML December 5,
2018

Recruiting USA University of
Pennsylvania

CD123 NCT03190278 I RR-AML June 16, 2017 Recruiting USA Cellectis S.A.

CD123/CLL1 NCT03631576 II/III RR-AML August 15, 2018 Recruiting China Fujian Medical
University

CD123 NCT03796390 I AML January 8, 2019 Recruiting China Hebei Senlang
Biotechnology
Inc., Ltd.

CD123 NCT02937103 I Myeloid
malignancies

October 18, 2016 Recruiting China Southwest Hospital,
China

CD123 NCT02623582 I AML December 7, 2015 Terminated USA University of
Pennsylvania

NKG2D NCT02203825 I AML, MM July 30, 2014 Completed USA Celyad

NKG2D NCT03018405 I/II AML, MM January 12, 2017 Recruiting USA Celyad

Lewis Y NCT01716364 I AML October 29, 2012 Active, not
recruiting

Australia Peter MacCallum
Cancer Centre
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CAR therapy for AML with the aid of high-throughput
surfaceome expression data. The ideal antigen pair should
be at a very low level of expression in normal tissues and
CD34+CD38– hematopoietic stem cells to minimize the
toxic side effect; the combination expressions need to be in
all tumor cells (including leukemia stem cells) to overcome
clonal heterogeneity and minimize the risk of antigen
escape [21] (Fig. 3A and 3B).

Anti-CD33 CAR T

CD33 is a transmembrane receptor that binds to sialic acid
and is expressed on about 85%–90% of AML blast cells. It
is also present in early multilineage hematopoietic
progenitors, bone marrow mononuclear cell precursors,
and hepatocytes, thereby possibly causing the toxicity of
veno-occlusive liver disease and limiting the use of CD33-
directed immunotherapies [22]. Preclinical studies provide
data on the effectiveness of an anti-CD33 CAR T therapy
for AML in mice and support its development as a clinical
therapeutic approach [23,24]. Considering the potential
toxicity associated with targeting CD33 in patients, Rafiq
et al. created the EGFRt/HuM195-28z/IL-12 CAR T, in
which an elimination gene was included to allow CAR T
clearance after disease remission (Fig. 3C), and tested anti-
tumor efficacy in two preclinical mouse models of AML
in vivo [25]. Wang et al. reported that a 41-year-old male
patient with AML was administered a total of 1.12 � 109

autologous anti-CD33 CAR T, of which ~38% were
transduced with CAR. After 2 weeks of tolerable side
effects, including fever and jaundice, the patient had a

dramatic decrease of blasts in the bone marrow, but the
leukemia cells gradually increased 9 weeks after therapy
[26]. Based on these inspiring preliminary results, some
ongoing clinical trials on anti-CD33 CAR T therapy were
conducted (Table 1). To accurately target AML cells
without affecting normal hematopoiesis, Kim et al.
produced CD33 knockout human hematopoietic stem
cells and progenitor cells (HSPCs) and demonstrated
normal implantation and differentiation in immunodefi-
cient mice. Human HSPCs lacking CD33 could obviate the
attack of anti-CD33 CAR T, which would efficaciously
eliminate leukemia cells without marrow toxicity [27]. To
achieve this same goal, Humbert et al. definitively
eliminated CD33 exon2 by CRISPR/Cas9 technology,
thereby expressing a shorter isoform of CD33 but not the
full-type CD33. They also evaluated the genome-edited
HSPCs in vitro and in immunodeficient mice to reserve the
function of engraftment and avoid the non-leukemic
cytotoxicity [28]. Borot et al. also used CRISPR/Cas9 to
ablate CD33 antigen in HSPCs and demonstrated that the
infusion of CD33-deleted HSPCs and anti-CD33 CAR T
accomplished the clearance of blast cells without myelo-
suppression [29].

Anti-CD123 CAR T

CD123, a transmembrane α subunit of the IL-3 receptor,
which is highly expressed on AML blasts and leukemia
stem cells, represents another attractive target for immu-
notherapy [30–32]. Du et al. demonstrated the role of
CD123 epitope selection in immunotoxin action and

Fig. 3 (A) Dual-targeting CARs express two different antigen-specific CARs. (B) Bispecific CARs combine two linked scFV within one
CAR construct. (C) Suicide CARs were designed to contain the suicide gene to serve as control mechanisms for toxicity management. One
example is the inducible caspase 9 (iCasp9). When the small molecule AP1903 is administered, iCasp9 domains dimerize and activate
apoptosis independent of CAR activation.
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further found that 26292(Fv)-PE38-KDEL has good
cytotoxic activity against CD123 positive cell lines [33].
The use of CD123-targeted T cells could be an encoura-
ging strategy for the potential clearance of AML cells
[34,35]. Gills et al. showed that the donor-derived anti-
CD123-41BB CAR T had graft-versus-leukemia (GVL)
effect after infusion in an acute myeloid leukemia
xenograft model with NSG mice [35], as well as also
other CD123 positive malignancies [36]. Based on those
preclinical results, many clinical trials have been launched
to evaluate the therapeutic efficacy of anti-CD123 CAR T
in AML patients (Table 1). Meanwhile, CD123 is
infrequently expressed on HSPCs [37]. The potential
influence on hematopoiesis that anti-CD123 CAR T may
induce needs to be recognized. For purpose of controlling
harmful off-target toxicities, Wang et al. had included
EGFRt in their lentiviral construct to provide a target for
the elimination of CAR T in vivo [38]. Straathof et al.
showed a late-stage apoptosis pathway molecule, caspase-
9, which can be stably expressed in T lymphocytes while
retaining their phenotype and function to regulate CAR T
abilities through inducible caspase-9 apoptosis switch [39].

Anti-NKG2D CAR T

NKG2D, which is an activating receptor on NK cells,
invariant NKT cells, gd T cells, CD8+ T cells, and a small
fraction of CD4+ Tcells, provides a costimulatory signal to
T cells in its native form. NKG2D ligands are expressed on
some solid tumors and hematologic malignancies, includ-
ing AML and MM, but are generally not on healthy tissues
[40]. NKG2D ligand recognition by the anti-NKG2D CAR
T mediates T cell activation. Therefore, anti-NKG2D CAR
T has the potential to treat these malignancies. Hilpert et al.
demonstrated that anti-NKG2D CAR T was effective in
eradicating established multiple myeloma (MM), lym-
phoma, and ovarian cancers in murine studies, and it can
induce autologous immunity against tumor even when
anti-NKG2D CAR T can no longer be detected [41].
Human anti-NKG2D CAR T does not attack autologous
peripheral blood mononuclear cells or bone marrow cells
from healthy donors in vitro. Baumeister et al. conducted a
phase I dose-escalation study to evaluate the safety and
feasibility of anti-NKG2D CAR T for AML/myelodys-
plastic syndrome and relapsed/refractory MM. Twelve
patients (including 7 AML, 5 MM) were infused with anti-
NKG2D CAR T, and the dosages were evaluated in four
levels (1 � 106–3 � 107 total viable T cells) [42]. There
were no adverse events more than grade 3 or significant
autoimmune reactions attributable to anti-NKG2D CAR T
infusion, although no clinical leukemic responses were
obtained up to 28 days after infusion. Further studies
investigating the efficacy of multiple anti-NKG2D CAR T
infusions are currently underway.

Anti-Lewis Y CAR T

Lewis Y (LeY) is a difucosylated carbohydrate antigen
expressed on many malignancies including AML, but it is
limited to normal tissue [43–45]. Peinert et al. demon-
strated that anti-LeY CAR T produced varying amounts of
IFN-g on exposure to AML cells and displayed apparent
cytolytic activity in a preclinical study [45]. Ritchie et al.
examined the safety and efficacy of second generation
CAR T against the LeY antigen in AML in a phase I study
[20]. Out of four evaluated patients, one achieved
cytogenetic remission for 5 months, whereas another
with active leukemia showed a decrease in peripheral
blood blasts, and another showed stable disease for 23
months. No grade 3 or 4 adverse events or CRS were
observed. Although all the patients eventually relapsed,
serial PCR for detection of the LeY transgene demon-
strated that infused CAR T could persist for up to 10
months.

Anti-CD19 CAR T

A fraction of AML patients could relatively highly express
the antigen of CD19, which can be marked with the anti-
CD19 CAR T regardless of cell origin. Ma et al. identified
527 AML cases from 1/1/2012 to 10/20/2017 at Stony
Brook University Hospital and found that 17 out of 527
(3.2%) AML patients expressed CD19 [46]. Even at a low
effector:target cell ratio of 2:1, anti-CD19 CARTwas able
to effectively extinguish AML blast cells expressing CD19
within 6 h, suggesting that anti-CD19 CAR T therapy may
be potentially applied for CD19+ AML. These CD19+

AML patients are distinguished from mixed phenotype
acute leukemia according to the World Health Organiza-
tion classification [47].

Promising target antigens for AML

FMS-like tyrosine kinase 3 (FLT3), also known as CD135,
is a transmembrane protein expressed on malignant blasts
in AML and retained on normal hematopoietic stem and
progenitor cells. In the preclinical research, Jetani et al.
reported that anti-FLT3 CAR T demonstrated potent
reactivity against AML cell lines and primary AML blasts,
which expressed either wild-type FLT3 or FLT3 with
internal tandem duplication (FLT3-ITD) [48]. In addition,
they showed that the FLT3-inhibitor Crenolanib could
further increase the expression of FLT3 particularly on
FLT3-ITD+ AML blast cells, which rendered the AML
cells more susceptible to attack by anti-FLT3 CAR T
in vitro and in vivo. Unfortunately, anti-FLT3 CARTcould
also recognize normal hematopoietic stem cells and impair
normal hematopoiesis in vitro and in vivo, indicating that

Bin Gu et al. 705



anti-FLT3 CAR T therapy will require subsequent CAR T
depletion and Allo-HSCT to reconstitute the hematopoietic
system. Notably, the specific cytotoxicity of anti-FLT3
CAR T against FLT3+ leukemia cell lines and primary
AML cells was also demonstrated in vitro and in xenograft
mouse models in other studies [49,50].
CD7 is expressed in more than 90% of lymphoblastic T

cell leukemia and lymphoma and in approximately 30% of
AML patients [51–54], but it is absent in normal erythroid
and myeloid cells. CD7 expression of AML blasts is
associated with poor prognosis. Thus, targeting CD7 could
be beneficial for these AML patients. Gomes-Silva et al.
showed that CD7-directed CART from CD7 gene-edited
(CD7KO) T cells was capable of decimating CD7+ AML
cell lines while sparing myeloid and erythroid progenitor
cells [55], thereby supporting the feasibility of using anti-
CD7 CAR T for the treatment of CD7+ AML.
C-type lectin-like molecule 1 (CLL1), also known as

CD371, is a type II transmembrane glycoprotein highly
expressed on the blast cells of AML, but it is also on
normal myeloid cells. CLL1 is lowly expressed on normal
hematopoietic stem cells [56]. CLL1 is considered as a
promising CAR T target. There are several preclinical
studies on anti-CLL1 CAR T. Wang et al. generated CLL-
1-redirected CAR T carrying a CAR composed of a CLL1
specific single chain variable fragment in combination with
CD28/4-1BB costimulatory domains, and CD3z signaling
domain [57]; this CAR T specifically lysed CLL-1+ cell
lines and patient-derived AML cells in vitro and showed
strong anti-leukemic activity in the xenograft model of
disseminated AML. In agreement with this finding, several
other groups also demonstrated the potent activity of anti-
CLL-1 CAR T against CLL1+ AML cell lines in vitro and
in xenograft mouse models [58–60].
CD44v6, the isoform variant 6 of the hyaluronic acid

receptor CD44, is a class I membrane glycoprotein and is
expressed in hematologic malignancies such as AML [61].
CD44v6 is absent on hematopoietic stem cells and only
shows a low level of expression on normal cells, including
monocytes, activated T cells, and keratinocytes [61,62].
Casucci et al. constructed a second generation anti-
CD44v6 CART targeting AML cells while sparing normal
HSPCs [62], and they also demonstrated the feasibility of
incorporation of a suicide gene in the CAR structure to
improve the safety of anti-CD44v6 CAR T given that anti-
CD44v6 CAR T could potentially damage normal mono-
cytes and keratinocytes.
Folate receptor β (FRβ) is expressed on ~70% of primary

AML patient tumors, and its expression can be raised on
AML blasts by all-trans retinoic acid (ATRA) [63,64]. In
preclinical models, the effect of folate-conjugated drug
therapy against FRβ-positive AML was improved when
combined with ATRA [64]. Lynn et al. displayed the
efficacy of anti-FRβ CART and the better efficacy of high-
affinity anti-FRβ CART against AML cells in vitro and

in vivowithout toxicity on normal hematopoietic stem cells
[65,66].
The main challenge in CAR T therapy for AML is the

discovery of targets as favorable as CD19 for ALL. Perna
et al. outlined a framework describing the ideal character-
istics of CAR targets and established a methodological
analysis for mining composite high-throughput surfa-
ceome expression data [21]. They optimized combinative
target selection based on expression profiles in malignant
and normal tissues. This approach provided the foundation
for intellectual design of CAR therapies for AML and a
guide for combinatorial targeting, and they screened out
four promising targets, namely, ADGRE2, CCR1, CD70,
and LILRB2. To enhance the efficiency of targeting
antigens while mitigating toxicity, the combinatorial
strategy of dual CAR was projected.

CAR T therapy plus Allo-HSCT

Historically, Allo-HSCT is recommended for patients with
refractory/relapsed acute leukemia during the CR period,
and the minimal residual disease (MRD) level before
transplantation was considered as an independent prog-
nostic factor. Recently, the encouraging efficacy of CD19-
targeted CAR T therapy has begun to challenge this
algorithm for B cell malignancies. However, up to this
date, no available clinical trial data on AML can be used to
make a definitive Allo-HSCT recommendation. It remains
uncertain whether patients in remission post-CAR T
therapy should be administered with Allo-HSCT and
whether CAR T therapy is sufficient for AML patients.
According to these unsatisfactory long-term data on CD19
CART therapy for relapsed/refractory B-ALL [67–70] and
the results of early clinical studies on anti-LeY CAR T for
patients with relapsed AML [20], we speculate that CART
therapy for AML should be considered as a “bridge” to
Allo-HSCT rather than a replacement. CAR T therapy
could strive for an opportunity for disease remission and
induce a deeper MRD-level prior to Allo-HSCT. However,
CAR T therapy could be used as a regimen for patients
with relapsed disease post-transplantation. We believe that
the consolidative Allo-HSCT following CAR T therapy in
eligible AML patients could represent a very promising
therapeutic strategy that has the potential to decrease the
risk of relapse, although this idea warrants further
investigation.

Summary and perspective

The value of CAR T therapy for AML remains to be
determined. As the general background of CAR T
technology evolves, CAR T therapies for AML will
improve. The design of CAR with optimized antigen
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recognition, different costimulatory, hinge, and transmem-
brane domains will improve the affinity of the CAR T and
minimize toxicity. Further studies involving the optimiza-
tion of ex vivo culture conditions and genetic manipulation
of CAR structure are needed. Combination therapies may
be necessary to achieve a better outcome.
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