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Abstract The cure rate of childhood acute lymphoblastic leukemia (ALL) has exceeded 90% in some
contemporary clinical trials. However, the dose intensity of conventional chemotherapy has been pushed to its
limit. Further improvement in outcome will need to rely more heavily on molecular therapeutic as well as immuno-
and cellular-therapy approaches together with precise risk stratification. Children with ETV6-RUNX1 or
hyperdiploid > 50 ALL who achieve negative minimal residual disease during early remission induction are
suitable candidates for reduction in treatment. Patients with Philadelphia chromosome (Ph)-positive or Ph-like
ALL with ABL-class fusion should be treated with dasatinib. BH3 profiling and other preclinical methods have
identified several high-risk subtypes, such as hypodiplod, early T-cell precursor, immature T-cell, KMT2A-
rearranged, Ph-positive and TCF-HLF-positive ALL, that may respond to BCL-2 inhibitor venetoclax. There are
other fusions or mutations that may serve as putative targets, but effective targeted therapy has yet to be
established. For other high-risk patients or poor early treatment responders who do not have targetable genetic
lesions, current approaches that offer hope include blinatumomab, inotuzumab and CAR-T cell therapy for
B-ALL, and daratumumab and nelarabine for T-ALL. With the expanding therapeutic armamentarium, we
should start focus on rational combinations of targeted therapy with non-overlapping toxicities.
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Introduction

Contemporary risk-directed treatment has improved 5-year
event-free survival and overall survival rates in childhood
acute lymphoblastic leukemia (ALL) to over 80% and
90%, respectively, and has decreased the cumulative risk
of relapse to less than 10% in many clinical trials (Table 1)
[1–11]. In a recently completed St. Jude Total Therapy
Study 16, the 5-year event-free survival rate was 88.2%
and the 5-year cumulative risk of any relapse 6.6% among
598 evaluable patients [9] (Fig. 1). Despite the significant
reduction of cumulative risk for a CNS relapse or any
relapse and a corresponding increase in event-free survival,
the overall survival rate (94.1%) in the Study 16 was
similar to that (93.5%) in the Study 15 [11]. This outcome
suggests that the intensity of conventional chemotherapy
has reached its limit of tolerance and can no longer be
“pushed” to obtain improved results. Thus, if we intend to

boost cure rates and the quality of life of children with ALL
in the coming decade, it will be important to replace toxic
chemotherapy with carefully selected components of
molecular therapeutics and cellular- and immunotherapy,
preferably those that lack overlapping toxicity with
chemotherapy [12]. This review will focus on the
molecular genetic features of the major subtypes of ALL
and describe recent advances in targeted therapy that
promise to secure improved clinical outcomes.

Genomic landscape of acute lymphoblastic
leukemia

Recent studies have refined the classification of B- and T-
lineage ALL into gene expression-based subgroups, and
the comprehensive integration of specific mutated genes
and pathways for each subgroup has significantly
improved our understanding of the disease biology.
Cases can be classified based on whole transcriptome
sequencing (RNA-seq); aneuploidy or other chromosomal
abnormality; deregulation of known transcription factors
by mutations or rearrangement; or activation of kinase
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alterations into at least 23 subtypes of B-ALL and 9
subtypes of T-ALL, many of which have prognostic or
therapeutic implications [13–15]. However, heterogeneity

still exists in treatment response among patients with the
same genetic subtypes due to cooperative mutations,
germline genetic variants, and other host or environmental

Fig. 1 Kaplan–Meier and Kalbfleisch and Prentice analyses of outcomes in 598 children with acute lymphoblastic leukemia. The 5-year
and 10-year results are shown on the curves.

Table 1 Treatment results from selected clinical trials

Study group Years of study
No. of
patients

Age range
(year)

T cell ALL
(%)

5-year cumulative
rate of any
relapse (%)

5-year EFS (%)
5-year
survival (%)

Data source

AIEOP-BFM
2000

2000 – 2006 4839 1–17 13.2 13.2 81.4�0.6 91.9�0.4 Möricke
et al. (2016) [1]

CoALL-07-03 2003 – 2010 743 1–18 12.9 NA 83�0.3 NA Escherich
et al. (2013) [2]

COG 2000 – 2005 7153 0–22 7 7.2 NA 90.4�0.5 Hunger et al.
(2012) [3]

DCOG-10 2004 – 2011 778 1–18 14.2 8.3 87.0�1.2 91.9�1.0 Pieters et al.
(2016) [4]

DFCI 05-001* 2005 – 2010 697 1–18 0 9.0 86�3 92�2 Vrooman et al.
(2018) [5]

EORTC 58951 1998 – 2008 1947 1–18 15.2 14.7 82.6�0.9 89.7�0.7 Domenech et al.
(2014) [6]

MRC UKALL
2003

2003 – 2011 3126 1–25 12 8.8 87.3�1.4 91.6�1.2 Vora et al.
(2014) [7]

NOPHO-2008 2008 – 2014 1022 1–9 9.1 13 89�1 94�1 Toft et al.
(2018) [8]

NOPHO-2008 2008 – 2014 266 10–17 25.2 7.0 80�3 87�2 Toft et al.
(2018) [8]

SJCRH 16 2000 – 2017 598 0–18 17.4 6.6 88.2�3.3 94.1�2.4 Jeha et al.
(2019) [9]

TPOG 1999 – 2010 152 0–18 7.2 NA 84.2�3.0 90.2�2.4 Liu et al.
(2014) [10]

Abbreviations: ALL, acute lymphoblastic leukemia; AIEOP, Associazione Italiana di Ematologia Pediatrica Group; BFM, Berlin-Frankfurt-Münster; CoALL,
Cooperative ALL Study Group; COG, Children’s Oncology Group; DCOG, Dutch Children’s Oncology Group; DFCI, Dana-Farber Cancer Institute
consortium; EFS, event-free survival; EORTC–CLG, European Organisation for Research and Treatment of Cancer–Children Leukemia Group; MRCUKALL,
Medical Research Council UK acute lymphoblastic leukemia; NA, not available; NOPHO, Nordic Society of Pediatric Hematology and Oncology; SJCRH, St.
Jude Children’s Research Hospital; TPOG, Taiwan Pediatric Oncology Group.
*T-ALL patients not included.
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factors [16]. Thus, key genetic alterations will need to be
combined with clinical variables and response to therapy
(as determined by minimal residual disease (MRD)
measurements) to avoid over- or under-treatment. In this
regard, the prognostic and therapeutic relevance of current
approaches to genetic classification of T-ALL remains
tenuous, even in the context of MRD-stratified therapy, so
that most T-ALL patients still require intensive chemother-
apy for cure [12].

Reduced dose intensity of treatment for
patients with favorable genotypes and
excellent early treatment responses

Contemporary protocols allow the reduction of treatment
dose intensity to improve the quality of life for low-risk
patients while maintaining their cure high rates. In the
Associazione Italiana di Ematologia e Oncologia Pedia-
trica (AIEOP) and Berlin-Frankfurt-Münster (BFM) ALL
2000 protocol, patients 1 to 17 years old with standard-risk
B-ALL, defined by the absence of high-risk genetic
features (BCR-ABL1, KMT2A-AFF1) and the lack MRD
disease (i.e., level < 1 � 10–4) on days 33 and 78 from the
start of remission induction treatment, were randomized to
receive standard or reduced delayed intensification
treatment [17]. This modification resulted in a poorer
overall 8-year disease-free survival (89.2% � 1.3% vs.
92.3% � 1.2%) and overall survival (96.1% � 0.8% and
98.0% � 0.6%) except for the patients with ETV6-
RUNX1-positive ALL or ages of 1 to 6 years who fared
equally well in both treatment arms. This study shows that
treatment reduction in this context is only feasible in
specific subgroups of patients with standard-risk ALL.
In St. Jude Total Therapy Study 15, only low-risk B-

ALL patients with ETV6-RUNX1-postive or hyperdi-
ploid > 50 ALL and negative MRD ( < 1 � 10–4) on
day 19 of remission induction had a low cumulative risk of
relapse (1.9% and 3.8%, respectively) as compared to an
unacceptably high cumulative risk of relapse (9.5%) in
low-risk (i.e., NCI standard-risk B-ALL) patients with
other genotypes and negative MRD on day 19 [18]. In a
Children’s Oncology Group study, the 56 patients with
NCI standard-risk B-ALL and undetectable MRD by high-
throughput sequencing ( < 10–5) on day 29 of remission
induction had an excellent 5-year event-free survival of
98.1% and an overall survival of 100% [19]. Hence, only
two subgroups appear to be suitable candidates for reduced
treatment: (1) B-ALL patients with a favorable genotype
(ETV6-RUNX1 positivity or hyperdiploidy > 50) who
achieve an early negative MRD status (10–4) by conven-
tional methods or (2) other NCI standard-risk B-ALL
patients with negative MRD by high-throughput sequen-
cing ( < 10–5) at the end of remission induction.
Two other newly identified genotypes of B-ALL,

DUX4-rearranged (with overexpression of DUX4 and
transcriptional deregulation of ERG) and ETV6-RUNX1-
like (with gene expression profile similar to that of ETV6-
RUNX1-positive ALL and coexisting ETV6 and IKZF1
alterations), appeared to have favorable prognosis in
retrospect studies [14,20,21]. However, because small
numbers of patients were studied, their favorable prognosis
required confirmation. At present, there are no reliable
biomarkers that could be used to identify subsets of T-ALL
patients who might benefit reduced-intensity chemother-
apy [9,12,22].

High-risk genetic subtypes that benefit
from targeted therapy

Philadelphia chromosome-positive ALL

Although addition of imatinib, the first-generation ABL1
tyrosine kinase inhibitor, to conventional treatment has
improved outcome in children with Philadelphia chromo-
some (BCR-ABL1)-positive ALL [23–25], refractory or
relapsed disease remains a difficult problem in these cases.
To overcome resistance-inducing ABL1 kinase domain
mutations, dasatinib and nilotinib, two second-generation
tyrosine kinase inhibitors, were developed [26]. Dasatinib,
the more commonly used dual ABL and SRC kinase
inhibitor, can cross the blood-brain barrier [27].
Two nonrandomized clinical trials suggested that

dasatinib (at 60 mg/m2 per day) can secure results
comparable to those achieved with imatinib, with a lower
proportion of dasatinib-treated patients undergoing allo-
geneic hematopoietic cell transplantation or cranial
irradiation than imatinib-treated patients [28,29]. However,
because of the use of historical controls and the differences
in the proportion of patients undergoing transplantation
and cranial irradiation in imatinib- vs. dasatinib-treated
patients, the relative efficacy of these two agents remains
uncertain. Moreover, despite transplantation in 32% and
14% of the patients and prophylactic cranial irradiation for
patients with a CNS3 status, 4 of 60 and 4 of 106 dasatinib-
treated patients developed CNS relapse in the two studies,
respectively [28,29].
In St. Jude Total Therapy Study 16, the 15 Philadelphia

chromosome-positive ALL patients treated with dasatinib
(80 mg/m2 per day) had an excellent 5-year event-free
survival rate of 71% and none developed CNS relapse,
despite total omission of cranial irradiation and transplan-
tation limited to 1 patient [9]. The Chinese Children’s
Cancer Group recently conducted the first randomized
study comparing the efficacy of imatinib (300 mg/m2 per
day) with that of dasatinib (80 mg/m2 per day) in children
with Philadelphia chromosome-positive ALL [30]. By the
study design, no patients received prophylactic cranial
irradiation and only 2% of the patients with MRD ≥ 1%
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after remission induction received allogeneic transplanta-
tion. The dasatinib-treated patients had a significantly
better event-free survival and overall survival than the
imatinib-treated patients and only one of 92 dasatinib-
treated patients developed CNS relapse. These findings
suggest that dasatinib administered at 80 mg/m2 per day
improved outcome by achieving optimal therapeutic level
both systemically and in the CNS.
Ponatinib is the most potent third-generation of ABL1

class tyrosine kinase inhibitors and is active against cases
with mutated ABL1, including Thr315Ile [26]. A recent
adult study incorporating this drug achieved an excellent 3-
year event-free survival of 70%, with only 20% of the
patients undergoing allogeneic transplantation [31]. Inves-
tigation of this drug in the pediatric population is
warranted.

Philadelphia chromosome-like ALL

Philadelphia chromosome-like B-ALL, characterized by
an activated kinase gene expression profile resembling that
of Philadelphia chromosome-positive ALL with a high
frequency of IKZF1 alterations but lacking BCR-ABL1
fusion, occurs in approximately 12% of childhood B-ALL
cases [32]. However, this genotype is heterogeneous and
has a wide range of genetic alterations, many of which
respond to different tyrosine kinase or signal pathway
inhibitors [32–34]. Approximately half of these patients
have CRLF2 (cytokine receptor-like factor 2) rearrange-
ments, leading to activation of PI3K/AKT/mTOR and
JAK-STAT signaling, especially in older patients and in
Native American and Hispanic or Latino populations [35].
Among childhood and adolescent patients with CRLF2
rearrangement, approximately half have concomitant JAK2
or JAK1 mutations, which may respond to JAK-STAT
inhibitors such as ruxolitinib [32–35].
Among the other half of patients with Philadelphia

chromosome-like ALL lacking CRLF2 rearrangements,
15%–20% have rearrangements in ABL1, ABL2, CSF1R,
or platelet-derived growth factor receptor (PDGFR) α or β
and would likely respond to ABL-class tyrosine kinase
inhibitors. Another 10%–15% of patients have lesions that
activate JAK–STAT signaling, including JAK2 fusions or
truncating rearrangements in erythropoietin receptor [32–
35]. There are other uncommon kinase fusion events
involving NTRK3, PTK2B, TYK2, FLT3, FGFR1, and
BLNK, which have been responsive to TRK inhibitor, FAK
inhibitor, TYK2 inhibitor, FLT3 inhibitor, sorafenib/
dasatinib, and SYK/MEKi, respectively, in preclinical
settings [32,33].
Although a high proportion of Philadelphia chromo-

some-like ALL cases have an unfavorable outcome,
approximately 40% of the childhood cases are highly
curable even with low-intensity chemotherapy. This
subgroup can be readily identified with negative MRD

status upon completion of remission induction [36].
Hence, it is mandatory to measure MRD levels to avoid
overtreatment of these cases.

Hypodiploid ALL

Hypodiploid ALL, found in 2% to 3% of childhood ALL
cases, is also a heterogeneous disease, comprising several
subgroups with different biologic and prognostic features
[37]. Near-haploid ALL (25–29 chromosomes) is char-
acterized by genetic alterations affecting RAS signaling and
receptor tyrosine kinase signaling, and a high frequency of
IKZF3 alterations [37]. Low-hypodiploid cases (33–39
chromosomes) often have alterations in TP53, IKZF2, and
RB1. Alterations in TP53 have been identified in as many
as 90% of patients with low hypodiploid ALL, with
approximately 50% of these cases having germline TP53
alterations [37], which are associated with inferior event-
free survival and overall survival as well as an increased
risk of developing secondary cancer [38], regardless of
ploidy status. Thus, all patients with low hypodiploid ALL
should be tested for a germline TP53 pathogenic variant
(e.g., Li-Fraumeni syndrome, a well-known hereditary
cancer predisposition syndrome [39]).
A recent multinational study of 306 cases further

characterized the clinical and biologic prognostic hall-
marks of hypodiploid ALL [40]. The results showed that
despite contemporary treatment, patients with hypodiploid
ALL continue to have poor overall outcome with an 8-year
survival rate for the entire cohort of only 57.5%. It also
demonstrated that hypodiploidy may accompany specific
driver genetic abnormalities with known prognostic
significance, such as BCR-ABL1, TCF3-PBX1, ETV6-
RUNX1, and KMT2A rearrangements. These cases should
be treated according to their driver mutations and MRD
level after remission induction because the treatment
outcomes closely reflect each specific driver mutation
[40]. In this regard, only one of 18 hypodiploid patients
with concomitant ETV6-RUNX1 relapsed, while the
remaining 17 patients were alive in long-term remission.
Three independent favorable prognostic factors were
identified: (1) negative MRD at the end of remission
induction, (2) high hypodiploidy with 44 chromosomes,
and (3) treatment in MRD-stratified protocols. Importantly,
allogeneic transplantation failed to improve outcome
compared with chemotherapy alone, especially for patients
who achieved a negative MRD status after remission
induction, a finding confirmed by a Children’s Oncology
Group study that treated patients during the same time
period [41]. A recent preclinical study identified Bcl-2 as a
key therapeutic target and demonstrated the efficacy of a
selective Bcl-2 inhibitor, venetoclax, in hypodiploid ALL,
providing a promising treatment strategy to improve
outcome in this disease [42].
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Other genotypes that may be targetable by venetoclax

Deregulated cell death pathways contribute to treatment
failure in many cancers, including certain subtypes of
ALL. Intrinsic apoptotic signaling is regulated by
proapoptotic BCL-2 homology domain 3 (BH3) proteins
that trigger apoptotic cell death and by antiapoptotic
molecules including BCL-2 that counter-regulate apopto-
sis induction. A treatment strategy of inhibiting antiapop-
totic regulators led to the development of the BCL-2
inhibitor venetoclax. A functional assay, BH3 profiling,
measured the state of the mitochondrial apoptosis pathway
in cells, and was developed to predict types of cancers that
would respond to this class of drugs [43]. BH3 profiling
and other preclinical methods have identified a number of
high-risk leukemias, including early T cell precursor ALL
[44], immature T-ALL [45], KMT2A (MLL)-rearranged
ALL [46,47] and Philadelphia chromosome-positive ALL
[48,49] as well as TCF-HLF-positive ALL, the most
aggressive form of ALL [50], all of which are Bcl-2
dependent and sensitive in vitro and in vivo to treatment
with venetoclax. Clinical trials are warranted to determine
if venetoclax can improve outcome in these high-risk
subtypes of leukemia.

MEF2D-rearranged ALL

Rearrangements between MEF2D (myocyte enhancer
factor 2D) and various genes (BCL9, CSF1R, DAZAP1,
HNRNPUL1, HNRNPH1, SS18, FOXJ2) occurred in
approximately 2% to 3.5% of patients with a cytoplasmic
µ chain pre-B immunophenotype, older presenting age
(median 12 years) and poor outcome (5-year survival
ranging between 30% to 70%) [14,51,52]. In a study of
relapsed ALL, MEF2D-BCL9 fusion was found in 4 of 59
relapsed or refractory ALL patients who had older age (10
to 13 years), very early relapse (8 to 15 months from
diagnosis), and very poor outcome (0% survival) [53]. The
rearrangements resulted in upregulation of pre-B cell
receptor signaling molecules, downregulation of JAK-
STATsignaling pathway, enhanced MEF2D transcriptional
activity and activation of HDAC9 expression, with
sensitivity to histone deacetylase inhibitors such as
panobinostat [14,51,52]. Studies are needed to assess the
heterogeneity of treatment responses among patients with
different fusion partners and whether these cases respond
to treatment with histone deacetylase inhibitors.

PAX5-driven B-ALL

Recent integrated genomic analyses identified two sub-
types of B-ALL with frequent alterations of the B-
lymphoid transcription factor PAX5 [13,54]. One, desig-
nated PAX5alt, has diverse alterations (mutations, intra-
genic amplifications or rearrangement) of the gene, while

the other, PAX5P80R, has PAXp.Pro80Arg and biallelic
PAX5 alterations. In one study, patients with either set of
changes had a higher median age (22 and 15.4 years vs.13
years for the total patient cohort) and a lower MRD level at
the end of induction (7.2% and 29.4% vs.37.8% for the
total cohort). Not surprisingly, pediatric patients had
intermediate treatment outcomes: 5-year event-free survi-
val rates of 75% � 14.2% and 71.5% � 7%, respectively
[13]. To date, no molecularly targeted therapy has been
identified.

Mixed-lineage acute leukemias

Recent comprehensive genomic and immunophenotypic
analyses have provided important insights into the biology
and treatment response among immunophenotypically
defined subtypes of acute leukemia expressing both
lymphoid and myeloid markers, which account for 2% to
3% of childhood acute leukemias [55,56]. These so-called
mixed-phenotype acute leukemias can be broadly classi-
fied into B-myeloid and T-myeloid subtypes. KMT2A-
rearranged, Philadelphia chromosome-positive and
ZNF384-rearranged leukemias are the most common
genotypes among B-myeloid leukemia, and biallelic WT1
alterations are common in the T-myeloid subtype, which
shares genomic features such as RAS and JAK–STAT
pathway mutations with early T cell precursor ALL [55].
Overall, B-myeloid and T-myeloid leukemias have similar
treatment outcomes except for KMT2A-rearranged cases,
which typically have a very poor prognosis [47]. In a
retrospective multinational study, lymphoid-directed ther-
apy was superior to myeloid-directed therapy for most
pediatric patients with mixed-phenotype acute leukemias,
except for a minority of patients with CD19-negative
leukemia, who benefitted from myeloid-directed therapy
[56].

Leukemias without available molecular targeted
therapy

A substantial proportion of high-risk ALL patients with
poor early treatment responses, for example, those with
iAMP21 [57], do not have targetable genetic lesions or
effective molecular therapeutics available. Current treat-
ment approaches besides intensive chemotherapy that offer
hope for this subgroup are immunotherapy and adoptive
cell therapy. Blinatumomab, a bispecific T cell engager
antibody, by binding to CD3 on the surface of T cells and
CD19 on leukemia cells, initiates T cell receptor-mediated
activation and killing of CD19-positive B-ALL [58]. It has
been shown to improve outcome in multiple studies of
adults with refractory, relapsed and newly diagnosed
Philadelphia chromosome-negative or positive ALL [58].
In fact, the combination of ABL tyrosine kinase inhibitor
and blinatumomab may synergistically improve the
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outcome of patients with Philadelphia chromosome-
positive ALL [59]. Blinatumomab was recently approved
for pediatric patients with relapsed or refractory ALL after
a phase I/II trial showing 39% complete remission rate
with 52% of the responders achieving an MRD negative
status within the first two cycles of treatment [60]. While
blinatumomab is generally well-tolerated, it has been
associated with severe and potentially life-threatening
adverse events, including cytokine release syndrome and
neurotoxicity, which can occur simultaneously or inde-
pendently [61]. The rate of cytokine release syndrome
could be reduced by a debulking sequential combination
approach [58]. An ongoing adult study is investigating the
combination of immune checkpoint blockade with blina-
tumomab treatment to enhance T cell activation and hence
augment the activity of the antibody (NCT03160079) [59].
The anti-CD22/calicheamicin conjugate (inotuzumab

ozogamicin) is an effective FDA-approved agent in the
treatment of adults with relapsed ALL [62]. Among 51
children with relapsed or refractory ALL treated with
inotuzumab ozogamicin in a compassionate-use program,
complete remission was achieved in 67% of the patients
with overt marrow disease, and the majority (71%) of the
responders were negative for MRD [63]. The treatment
was well tolerated; sinusoidal obstruction syndrome was
not observed in any patients during treatment but
developed in 11 of 21 patients (52%) after hematopoietic
cell transplantation. The combination of non-intensive
chemotherapy and blinatumomab plus inotuzumab have
been evaluated in adults with ALL in first relapse with
encouraging results [64]; similar studies have yet to be
conducted in children.
The most effective FDA-approved cellular therapy is the

use of CD19-specific chimeric antigen receptor (CAR) T
cells containing a 4-1BB (CD137) domain to provide a
costimulatory signal. In a recent global study of 75 patients
with relapsed or refractory B-ALL treated with tisagenle-
cleucel (CD19-targeted CAR T cells), the overall complete
remission rate within 3 months was 81%, and the 12-
month event-free and overall survival rates were 50% and
76%, respectively [65]. The cytokine release syndrome
occurred within a median time to onset of 3 days (range, 1
to 22) in 77% of the patients, of whom 47% were admitted
to intensive care unit and 48% of whom required
tocilizumab. Neurologic adverse events (encephalopathy,
confusion, delirium, tremor, agitation, somnolence and
seizure) occurred in 40% of the patients within 8 weeks
after infusion. Of the 22 relapsed cases, 1 had CD19+

recurrence, 15 had CD19– recurrence (3 with concomitant
CD19+ blasts) and 6 had an unknown CD19 status.
Interestingly, CAR-T cells can eradicate leukemia cells in
central nervous system and testes [66,67], sparing patients
with extramedullary disease from receiving local irradia-
tion.

In a recent report of a phase 1 trial testing a CD22-
targeted CAR-T cell therapy in 21 children and adults,
including 17 who were previously treated with CD19-
directed immunotherapy, dose-dependent antileukemic
activity was observed, with complete remission achieved
in 11 of the 15 patients receiving ≥ 1 � 106 CD22-CAR-
T cells per kg of body weight, including all 5 patients with
CD19dim or CD19– B-ALL [68]. However, the median
remission duration was only 6 months. Relapses were
associated with a diminished CD22 site density that likely
permitted CD22+ cell escape from killing by the CD22-
CAR-T cells. Thus, antigen escape is the primary cause of
relapse in the majority of patients treated with either
CD19- or CD22-targeted CAR-T cell therapy. These
findings strongly support current research to develop
simultaneous CD19- and CD22-targeting with CAR-T
cells to disallow the opportunity and time for sequential
loss of both antigens [69]. Although immunotherapy and
adoptive cellular therapy have been used in the relapse or
refractory setting, they are being brought forward to newly
diagnosed B-ALL patients and promise to improve
outcome of these patients.
For T-ALL patients, curative therapeutic options for

relapsed or refractory disease beyond allogeneic trans-
plantation are lacking. Translating CAR-T cell therapies
into the setting of T-ALL have not yet been successful, and
there is a theoretical risk of so-called fratricide by T cell-
targeted clones because of the shared expression of target
antigens between CAR-T cells and T-leukemia cells, and
the risk of severe life-threatening immunodeficiency from
elimination of normal T lymphocytes [70,71]. Recently,
fratricide-resistant CD7, CD5, and CD1a-targeted CAR-T
cells with specific cytotoxicity in vitro and antileukemic
activity in vivo in xenograft models [72,73], and universal
allo-tolerant off-the-shelf CAR-T cells generated by
genomic editing [74,75] have been developed in an
attempt to overcome those limitations but have yet to be
tested in a clinical setting.
Nelarabine is the only drug approved specifically for

relapsed T-ALL. In a recent Children’s Oncology Group
trial (AALL0434) for T-ALL, in which all intermediate- or
high-risk patients received cranial irradiation, those
randomized to receive nelarabine had an excellent
treatment outcome [76]. The 4-year disease-free survival
was 88.9% for patients who received nelarabine, compared
with 83.3% for those treated without this agent. However,
this improvement was noted only in the subset of patients
randomized to receive high-dose methotrexate and not in
the other subset randomized to receive escalating doses of
methotrexate. Thus, additional studies are needed to
determine the true efficacy of nelarabine. Among several
antibodies being evaluated, the anti-CD38 monoclonal
antibody daratumumab appears promising, as this target is
overexpressed on T-ALL cells but expressed in very low
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levels on normal lymphoid and myeloid cells, and the
antibody was very effective against T-ALL in human
xenograft models [77].

Conclusions

With improved genomic sequencing and the development
of novel molecular, immunological and cellular therapy,
we are now entering an exciting era of precision medicine
for ALL. Replacing toxic chemotherapy with precisely
targeted therapy promises to improve not only the cure rate
of this disease, but also the quality of life of patients. Table
2 summarizes some of the potential therapeutic interven-
tion for various subtypes of ALL. Similar to conventional
chemotherapy, we should focus on rational combinations
of targeted therapies with non-overlapping toxicities,
allowing the agents to act synergistically to kill leukemia
cells while sparing normal tissues from excessive toxicity.
For example, while venetoclax by itself has limited activity
against T-ALL, with the exception of early T cell precursor
or immature T cell ALL [44,45], the combination of
venetoclax and navitoclax, a Bcl-2 inhibitor that also
inhibits Bcl-XL and Bcl-w, may achieve effective activity
against T-ALL while sparing patients from profound
navitoclax-induced thrombocytopenia [78]. This hypoth-
esis is being tested in a study (NCT3181126) for
children ≥ 4 years old and adults with refractory or
relapsed ALL.
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Table 2 Clinical implications and potential therapeutic implications of selected subtypes of ALL
Subtype Risk group Therapeutic approach

ETV6-RUNX1 Low Reduced dose intensity if MRD <10–4 during early
induction or <10–5 MRD at the end of induction

High-hyperdiploid Low Reduced dosed intensity if MRD <10–4 during early
induction or <10–5 MRD at the end of induction

DUX4-rearranged Low Standard dose intensity, MRD-adapted

ETV6-RUNX1-like Standard Standard dose intensity, MRD-adapted

TCF3-PBX1 Standard Standard dose intensity, MRD-adapted, high-dose
methotrexate

PAX5 P80R Intermediate Standard dose intensity, MRD-adapted

PAXalt Intermediate Standard dose intensity, MRD-adapted

ZNF384-rearranged Intermediate Standard dose intensity, MRD-adapted

Philadelphia chromosome-positive High ABL tyrosine kinase inhibitors, retinoids, Bcl-2
inhibitors, FAK inhibitors

Philadelphia chromosome-like Variable Second or third generation ABL tyrosine kinase
inhibitors, JAK inhibitors, Bcl-2 inhibitors

Hypodiploid High Intensive dose intensity, MRD-adapted, Bcl-2 inhi-
bitors

KMT2A-rearranged High DOTL1i, Menin inhibitors, Bcl-2 inhibitors

TCF-HLF High Intensive dose intensity, Bcl-2 inhibitors

MEF2D-rearranged High Histone deacetylase inhibitors, bortezomib

Early T cell precursor High Intensive dose intensity, Bcl-2 inhibitors
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