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Abstract Precise identification of HIV transmission among populations is a key step in public health responses.
However, the HIV transmission network is usually difficult to determine. HIV molecular networks can be
determined by phylogenetic approach, genetic distance-based approach, and a combination of both approaches.
These approaches are increasingly used to identify transmission networks among populations, reconstruct the
history of HIV spread, monitor the dynamics of HIV transmission, guide targeted intervention on key
subpopulations, and assess the effects of interventions. Simulation and retrospective studies have demonstrated
that these molecular network-based interventions are more cost-effective than random or traditional
interventions. However, we still need to address several challenges to improve the practice of molecular
network-guided targeting interventions to finally end the HIV epidemic. The data remain limited or difficult to
obtain, and more automatic real-time tools are required. In addition, molecular and social networks must be
combined, and technical parameters and ethnic issues warrant further studies.
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Introduction

By the end of 2017, the WHO estimated that 36.9 million
people worldwide were living with HIV, 59% of which
were receiving antiretroviral treatment (ART). Further-
more, 1.8 million people were newly infected with HIV,
and 940 000 died from AIDS-related illnesses in 2017
(https://www.who.int/hiv/data/en/). Although ART can
effectively control HIV replication, it cannot completely
cure HIV infection and lifelong treatment is needed. As
neither a feasible cure regimen nor a prophylactic vaccine
for AIDS is currently available, the Joint United Nations
Program on HIV/AIDS (UNAIDS) released a 90-90-90
target as part of the global push to end the AIDS epidemic
by 2030. The following are the targets: 90% of people
living with HIV will know their status, 90% of people
diagnosed as HIV-infected will receive sustained ART, and
90% of people receiving ART will have controlled viral

replication [1]. According to the latest data from UNAIDS,
a huge gap remained between reality and the target at the
end of 2017, as 75% of people living with HIV knew
acquired, 79% of diagnosed HIV-infected cases were
accessing treatment, and 81% of people under treatment
were virally suppressed (https://www.unaids.org/en/
resources/fact-sheet). Therefore, discovering undiagnosed
HIV-infected cases and linking all diagnosed cases to
medical care remain as major challenges. Nevertheless,
many prevention strategies have been proved to be
effective in controlling the spread of HIV among different
high-risk populations. These strategies include syringe
service programs for injection drug users, condom use for
female sex workers and men who have sex with men
(MSM), maternal and child block for HIV-infected
pregnant women, and pre-exposure prophylaxis (PrEP)
and post-exposure prophylaxis for all populations. Unfor-
tunately, implementing these interventions to all high-risk
populations is often infeasible in various settings. An
increasing number of studies support that molecular
network analysis could contribute to disclose among
whom and to where the HIV infection is spreading and

Received July 18, 2019; accepted February 13, 2020

Correspondence: Hong Shang, hongshang100@hotmail.com

REVIEW
Front. Med. 2020, 14(2): 136–148
https://doi.org/10.1007/s11684-020-0756-y



to estimate the speed of HIV transmission. This informa-
tion is usually difficult to obtain via traditional epidemiol-
ogy surveys because of some biological factors (such as
asymptomatic periods of contagiousness), moral framing
(such as the stigma that deters people from testing), and
epidemiological issues (such as difficulty to track contacts
in private settings) [2]. Phylogenetic analysis has long been
used to infer potential transmission chain or network
among HIV-infected patients [3–5]. In recent years, a new
simplified genetic distance (GD)-based approach has been
developed to infer potential transmission network in real
time for proper interventions [6] and is increasingly used in
large sequence datasets in both USA [7,8] and Europe [9].
In 2018, the US Centers for Disease Control and
Prevention (CDC) affirmed the significance of molecular
network analyses [10]. When combined with epidemiolo-
gic investigations and public health action plans, a
molecular network-based strategy can identify more
undiagnosed infections and more HIV-negative network
members at high risk of infection and allow targeted
prevention efforts. Accordingly, the USA and China have
published guidelines on detecting and responding to HIV
molecular network [11] and implemented this molecular
network-based intervention strategy as key tools to HIV/
AIDS control. The US Department of Health and Human
Services announced a project titled “Ending the HIV
Epidemic: A Plan for America” in 2019, which aimed to
reduce new HIV infections in the USA by 75% in 5 years
and by 90% by 2030; in this plan, rapid detection and
response to expanding HIV clusters and further reduction
of new transmissions were proposed as one of the four

pillars of a strategic initiative [12]. In the present review,
we introduce the relationships among molecular, transmis-
sion, and risk networks, as well as the principal methods of
molecular network construction, by focusing on the recent
progress in HIV molecular network application and the
major challenges to improve the molecular network
surveillance and responses in different HIV epidemics.

HIV molecular cluster infers transmission
cluster and risk networks

HIV is characterized by high genetic variability. Indivi-
duals carrying genetically similar viral strains appear to be
closely related by transmission either directly or indirectly
[11]. An HIV molecular cluster is a group of HIV-infected
individuals having genetically similar HIV strains, in
which nodes represent an HIV-infected individual or a
fragment of the HIV sequence, and edges represent the
potential transmission link between cases [11]. By
comparison, an HIV transmission cluster is a group of
HIV-infected individuals having a direct or indirect
epidemiological connection, which includes both HIV-
infected patients in a molecular network and diagnosed or
undiagnosed HIV-infected patients who do not appear in
the molecular cluster because of unavailable sequences
[11]. A risk network includes both HIV-infected cases in
the transmission cluster and individuals who have not been
infected with HIV but have come in contact with infected
cases in the transmission clusters (Fig. 1). The identifica-
tion of cases in HIV molecular clusters helps to elucidate

Fig. 1 Molecular network and underlying transmission and risk networks.
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the rapidly growing HIV transmission clusters so that more
concerns and priorities could be given to the transmission
clusters and risk networks that can be intervened
preferentially. Through investigating the cases in the
prioritized molecular clusters, we can obtain more clinical
and social behavioral data and identify factors associated
with HIV transmission and key characteristics of the
underlying risk network, including high-risk ongoing
transmission, poor outcomes, particularly vulnerable or
underserved population, transmission of drug resistance,
injection drug use, sexually transmitted diseases, and
hepatitis coinfection [11]. Feature-specific interventions
can be provided to the most associated risk networks.
Several key points deserve consideration with regard to

the interpretation and application of molecular networks.
First, depending on the sampling depth, a molecular
network represents only a subset of what is likely a larger
underlying transmission network. Second, if two indivi-
duals have highly similar HIV strains, they could be either
directly or indirectly linked through transmission. Third,
the link (edge) between two cases in a molecular network
does not suggest the direction of infection (who trans-
mitted HIV to whom). Forth, rich data sources of viral
sequences are fundamental for molecular network analysis
to obtain an overall view of HIV transmission with public
health significance. Finally, although drug resistance
testing is recommended for all persons with diagnosed
HIV infection, actually not all persons could receive a drug
resistance test, especially in resource-constrained settings.

Methods of molecular network construction

The pol gene of the HIV-1 genome, the target of HIV drug-
resistance testing, is most commonly used in molecular
cluster construction. All patients are suggested to undergo
HIV drug-resistance test before ART in developed
countries. When patients experience virological failure
during ART treatment in developing countries, huge
volumes of relevant data can be obtained without extra
expenses. Nevertheless, the pol gene is considered as less
informative and has a relatively low substitution rate in the
HIV genome [13]. Whole genome sequence or the env
gene sequence of HIV-1 is thought to better reflect the real
transmission relationship [5,14]. In an HIV-1 transmission
chain consisting of nine patients, the evolutionary history
inferred by phylogenetic tree with the pol gene sequences
was not fully compatible with the known transmission
history, and the multidrug-resistant viruses were incor-
rectly clustered; by contrast, the env phylogenetic tree was
fully compatible with the known transmission history [15].
However, the use of whole genome sequence or the env
gene sequence is not applicable to public health practice
because of the strict technical requirements, high costs, and
high length polymorphisms.

No standard approach is presently available to define
molecular networks. Two general categories of approaches
have been commonly used independently or combined to
identify HIV molecular clusters. The first is phylogeny-
based approach, in which sequences sharing a common
ancestor are defined as a cluster. Several phylogenetic
methods can be used to infer a phylogenetic tree, such as a
neighbor-joining (NJ) tree, maximum likelihood (ML)
tree, or maximum clade credibility (MCC) tree, supported
by the bootstrap value, likelihood-ratio test, zero-branch
length test, or posterior probability. The NJ tree is based on
a distance model and can be constructed faster than the ML
and MCC trees. Therefore, it has been commonly used to
construct phylogenetic trees in earlier studies. The ML and
MCC trees both use site substitution models to evaluate the
relative likelihood of different phylogenetic topologies,
which cause high computational burden. The MCC tree
could also allow for the molecular clock type and
demographic model to estimate the time to most recent
common ancestor (tMRCA), the evolutionary rate, and
past effective population size (the number of individuals in
a population who contribute offspring to the next
generation) through time, which can reflect the growing
or declining demographic history of the viral epidemic
[13,15,16]. The nucleotide substitute, molecular clock, and
population dynamic models should be tested to determine
which would best fit to the target sequence dataset before
reconstructing evolutionary history [17,18]. Software
packages (BEAST 1 and BEAST 2) are widely used for
phylodynamic and phylogeographic inference [19,20].
Several recent studies also used viral sequences with
spatiotemporal characteristics to infer the origin and spread
of transmission cluster or network through phylodynamic
and phylogeographic approaches [21,22]. The basic idea of
molecular network is to classify viral sequences according
to genetic similarities. However, with the phylogeny-based
approach, a highly divergent descendant sequence cannot
be excluded from the others with a common ancestor [23],
which might imply that sample collection long after
transmission does not infer a recent active transmission
network.
The other approach is GD-based cluster definitions.

Pairwise GD is usually calculated using the TN 93
substitution model. Individuals with a pairwise distance
below the predefined GD threshold are assigned to the
same clusters [24]. Various GD thresholds are recom-
mended on the basis of the goal of the analysis. A genetic
threshold of 0.5%, with approximately five different
nucleotides for sequences 1000 nucleotides long, is
suggested to identify cases related to recent and rapid
spread. This threshold corresponds to approximately 2–3
years of independent viral evolution [11]. If the goal is to
identify all possible cases potentially related to a given
case, a larger GD threshold of 1.5% corresponding to a
maximum of 7–8 years of viral evolution separating strains
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is suggested by the US CDC guidelines [11]. The HIV-
TRACE is a distance-based visual software used for
molecular network construction (http://hivtrace.datamon-
key.org/hivtrace) and has been applied in the US and
several Asian countries [25,26].
The GD-based and phylogeny-based methods are

neither good nor bad. However, choosing the appropriate
method on the basis of sequence characteristics and
research objectives is necessary. The HIV-TRACE soft-
ware tends to detect larger and fewer clusters than the
Cluster Picker, which detects more clusters that contain
only two sequences [27]. When the goal is to detect larger
networks in a deep sampling area, the HIV-TRACE may
perform more favorably and is expected to identify more
transmission chains [27]. The GD-based approach can be
used for more rapid computation but cannot distinguish
different evolutionary rates and may underestimate the
divergence time of the virus. Moreover, GD is closely
associated with potential evolutionary distance, which
makes the approach popular for the reconstruction of
molecular networks in real time and monitoring of
dynamic trends [8]. As for the phylogeny approach for
molecular network construction, obtaining a high node

support value and steady topologies is difficult when
processing a large number of sequences. Specific software,
such as the PhyloPart [28] and Cluster Picker [29], can
combine phylogenetic tree bootstraps and GDs to identify
transmission clusters. Whatever inherent bias the genetic
clustering method may have, the rapid succession of newly
infected individuals in a predefined cluster indicates a local
outbreak of HIV infection [30]. The tools commonly used
for both GD-based and phylogeny-based methods are
listed in Table 1.

Molecular networks reconstruct the history
of HIV spread

Phylogenetic analysis has long been used to identify HIV
linkage and infer putative network among populations. The
known HIV-1 transmission history could be accurately
reconstructed through phylogenetic tree analysis [4,31].
Therefore, molecular investigation of HIV-1 transmission
is widely used to infer HIV transmission among popula-
tions [5,32], such as in a Dutch criminal case [3] and
presumed transmission pairs in a heterosexual cohort of

Table 1 Tools for GD-based and phylogeny-based approaches
Method Model/techniques Cutoff values Objects Source/method References

GD-based method

Threshold bootstrap
clustering (TBC)

Resampling techniques
and models of sequence
evolution, such as the
LogDet distance

Need to be set for
research purposes

HIV group M (n = 38)
/HIV-pol gene
(subtype B, n = 356)
/HCV

Source code attached to
study

[97]

Gap Procedure Adjusted versions of
the K80 distance

No user-specific
threshold values

HIV-pol gene
(subtype B, n = 1571)

GapProcedure package
(https://github.com/
vrbiki/GapProcedure)

[98]

TRAnsmission Cluster
Engine (HIV-TRACE)

TNa93 distances ≤1.5% genetic
distance for subtype B

HIV-pol gene
(subtype B, n = 605)

www.hivtrace.org
/www.github.com/veg
/hivtrace

[8,99]

Phylogeny-based method

Bootstrap subtrees NJb tree with the
bootstrap value

Bootstrap (>85%) HIV-pol gene
(subtype B, n = 191)

PHYLIP package [15]

Bootstrap and
branch-lengths

NJb tree constructed
from HKYc85 distances

Bootstrap>99%,
mean branch
length<1.5%

HIV-pol gene
(subtype B, n = 193)

Paup software [100]

PhyloPart MLd tree was constructed
by FastTree with support
values based on the
SHe test; the median
patristic distances
within a given subtree
was computed

SH tested support
value (>90%); genetic
distances (4%–8%
nucleotide
substitutions per site)

HIV-pol gene
(subtype B, n = 11 541)

Attached to the study [28]

Cluster Picker MLdtree was constructed
by FastTree2 with
support values based
on the SHe test; the
maximum pairwise
distance within the
subtree was computed

SHe tested support
value (70%–99%);
genetic distances
(1.5%–4.5% nucleotide
substitutions per site)

HIV-pol gene
(subtype B, n = 1381)
/HCV/Flu sequences

http://hiv.bio.ed.ac.uk
/software.html

[29]

aTN, Tamura–Nei; bNJ, neighbor-joining; cHKY, Hasegawa–Kishino–Yano; dML, maximum likelihood; eSH, Shimodaira–Hasegawa test.
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discordant couples in Zambia [5]. Phylogenetic analysis
has also been used to infer HIV transmissions in countries
with large datasets [33–36]. With the combination of
demographic, sociological, and epidemiological informa-
tion, phylogenetic analysis can also help to characterize the
source population of HIV infection. Paraskevis et al.
analyzed nearly 9000 HIV-1 sequences collected from one
Canadian and nine European HIV cohorts and found that
the sub-type B viruses that spread within MSM networks
appeared to be the major driving force responsible for the
HIV epidemic dispersal [37]. A large-scale study in
KwaZulu-Natal, South Africa combined molecular net-
work and demographic information to identify the key
mode of sexual networks driving local HIV transmission.
In that study, older men were found to acquire HIV from
women of similar age and transmit HIV to younger women
[38]. Faria et al. used the HIV-1 sequence data from
Central Africa and reconstructed the early stage of HIV-1
transmission history; they emphasized that both social
changes and transport networks played important roles in
the viral establishment in human populations [39]. The
geospatial viral migration patterns and temporal dynamics
of HIV-1 transmission can be further reconstructed when
molecular network analysis is combined with both
geographical and temporal information [35,40,41]. A
study on the HIV-1 epidemic in the Nordic countries
found both different HIV-1 transmission patterns between
countries and linkages in a large geographical region;
Denmark and Sweden showed the strongest geographical
link, and Denmark had a great part of heterosexual
domestic spread of HIV-1 subtype B [32]. A phylogeo-
graphic study in Uganda detected viral migration from the
general population to fishing communities, suggesting that
these communities were a reservoir for, and not the source
of, viral strains from the general population [35]. A recent
study from Europe applied phylogeographic analyses and
successfully identified the HIV transmission hotspots in
Cologne-Bonn (Germany). The authors found that clus-
tered individuals tended to live closer to one another
compared with other individuals without any linkage [42].
A study from Europe used Bayesian coalescent-based
methods to analyze the HIV sequences of primary HIV-1-
infected individuals from the ANRS PRIMO C06 cohort
for over 15 years and determined that Paris was the spread
center of both subtype B and CRF02_AG epidemics [43].
In 2014, Wertheim et al. developed a computationally

efficient GD-based approach [44], which increased the
speed of analysis to a level high enough for both large-
scale sequence data and dynamic monitoring of transmis-
sion clusters in a near real-time manner. They used more
than 80 000 published sequences from 141 countries and
regions worldwide to construct molecular networks [44]
and revealed a contemporary picture of HIV-1 transmission
within and between countries, including well-characterized
transmission clusters, unrecognized transmission clusters

across international borders, and other previously unde-
scribed transmission clusters [45–47]. In subsequent
studies, this approach was used to analyze cross-border
transmission. Mehta et al. constructed HIV transmission
networks in the San Diego–Tijuana border region and
found five clusters consisting of individuals residing on
both sides of the border [48]. Using the GDmethod, the US
CDC studied 40 950 HIV-pol sequences, along with
demographic and epidemiological data, and found that
heterosexual women were more likely linked to MSM than
to heterosexual men, especially older and African–
American MSM. This study underlined the key role of
MSM in the HIVepidemic in the USA [49]. Another recent
study from the Los Angeles County Department of Public
Health used a combination of molecular network and
epidemiological data and found that transgender women
with sexual risk factor tended to be clustered and linked
both to other transgender women and cisgender men but
were less likely linked to MSM [50].
Compared with the above European and American

countries, some countries like China have complex HIV
subtypes and multiple distinct viral lineages. Numerous
phylogenetic studies have revealed the origins and routes
of transmission of major HIV subtypes prevalent in China
[51–58]. In recent years, some Chinese scholars have also
used genetic surveillance or drug-resistance testing data to
construct national or regional molecular networks for
major HIV subtypes in China with both the above two
approaches; these studies were the first attempts and
explorations of molecular networks and transmission
networks [59–63]. The 4th National HIV Molecular
Epidemiological Survey revealed a full picture of the
main epidemic clusters among different high-risk popula-
tions. Multiple clusters were identified from the MSM
population, including two CRF01_AE clusters, one
CRF07_BC cluster, and a small CRF55_01B cluster. A
greater number of MSM were observed within clusters and
linked with other high-risk populations [64]. Several other
large-scale studies have also demonstrated multiple
epidemic clusters responsible for 85% of the total
CRF01_AE infections in China [65], among which two
large clusters were found with high prevalence among
MSM [57,58]. These findings all suggest that MSM are at
higher risk than others in the population and highlight the
importance of MSM-focused interventions for the control
of HIV in China.

Molecular networks monitor the dynamics
of local HIV transmission

Molecular network analysis can also be used to monitor
epidemic trends among populations. The determination of
molecular cluster growth provides a quantitative evalua-
tion of relevant transmission clusters and risk networks that
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enable targeted interventions or effect evaluation. Dennis
et al. revealed the transmission cluster expansion in North
Carolina using densely sampled data and characterized
active transmission clusters with phylodynamic analysis.
They used effective reproductive number (Re) to monitor
active clusters, which demonstrated the propensity of
steady onward propagations [21]. Another phylodynamic
analysis study in Serbia revealed that the Re remained over
one during the complete period of the investigation; an
MSM transmission group of subtype B was determined to
have a recent tMRCA and steep growth curve until 2030,
whereas heterosexuals with both subtypes B and C
displayed minor growth and stagnation [34]. Valverde
et al.’s study, which focused on HIV transmission
dynamics among US immigrants who were disproportio-
nately affected by HIV, revealed that the majority of new
HIV infections appeared subsequent to the immigration of
related individuals to the USA. Consequently, the
transmission network information regarding HIV acquire-
ment and transmission routes among these individuals are
required to improve HIV prevention among such popula-
tions [66]. In a phylodynamic study in South Africa using a
large sequence dataset, the date of origin of 18 clades fell
between 1979 and 1992 and a strong growth was found to
have occurred in the 1990s. A decreasing growth rate in
four of the clades was detected since the advent of
interventions but not in the other 14 clades [22]. Effective
intervention depends on the timely monitoring of the
dynamic of HIVepidemic. Therefore, real-time monitoring
of the growth of molecular clusters is important. Two
studies demonstrated that molecular network analysis is
sensitive enough to record the process of an outbreak and
control of HIV infection. One study on injection drug users
in rural Indiana identified a molecular cluster supported by
both epidemiological and viral genetic similarity, which
first arose in 2011 then had an outbreak in mid-2014, and
subsequently waned after the declaration of a public health
emergency and intervention [67]. Another study in British
Columbia, Canada conducted in 2016 implemented an
automated near real-time monitoring system, which could
generate monthly reports to public health officers, and
showed the growth of HIV molecular clusters. This system
demonstrated the ability to monitor the outbreak of HIV
drug-resistance clusters and assess the enhancement of
public health action, resulting in a remarkable decrease in
the transmission of those clusters in the affected sub-
population [68].

Molecular networks guide targeted
intervention

HIV transmission networks elucidate the spread of HIV
among population and offer the opportunity of interven-
tion, which are traditionally identified through HIV

surveillance, partner services, and contact investigations.
Molecular network analysis is complementary to the
existing partnerships that underlies the social or HIV
transmission networks and contributes in partner notifica-
tion promotion [6], thereby bridging the previously
unrecognized partner notification network component.
This analysis provides more reliable evidence than partner
naming for the identification of potential transmission links
[69–72]. In 2009, Smith et al. introduced a scientific model
designed for studying the molecular surveillance of HIV
transmission using public health information [6]. They
found that molecular epidemiology coupled with partner
contact tracing can be used to identify individuals within a
population that belong to highly related HIV transmission
groups. These methods could be used to implement
selectively targeted preventive interventions. Some para-
meters have been used to quantify the risk of individuals
among molecular networks and to guide targeting inter-
vention. One indicator is called link or degree. The more
links the individuals have in the network, the more
potential transmission partners they could have and the
higher possible communication risk will be. Oster et al.
used the link as an indicator in a study on the groups with
high risks and among groups with different racial/ethnic
statuses in US National HIV Surveillance System. The
HIV-infected heterosexual women were predominantly
linked to MSM. The interventions that were able to reduce
HIV transmissions among individuals in the MSM
population showed great possibilities to reduce HIV
acquisition, as well as among other groups with high
risks [49]. Leigh Brown et al. used degrees to categorize
HIV infection in a phylodynamic analysis on MSM in the
United Kingdom (UK) and showed the preferential
association of UK MSM and called for intervention
targeting high-degree individuals [73]. A San Diego
research group developed a parameter called transmission
network score (TNS) to estimate the HIV transmission risk
from a newly diagnosed individual to his partner. In this
retrospective simulation analysis, they found that com-
pared with the clustered individuals from a randomly
selected subset, the ART targeting individuals with the
highest TNS showed a substantially reduced HIV
transmission level within the network [8]. The effect of
the TNS-based targeted ART was further supported by
another study on Chinese MSM. High levels of TNS-based
ART were simulated and compared with CD4 T cell
counts, a viral load-based strategy, and a treat-all strategy
in a primary HIV-infected MSM cohort in Beijing. The
results showed that the prevention efficiency of high TNS-
based ART was between 30% and 42%, which was
considerably higher than the other three strategies
evaluated. This study implied that TNS-based strategies
may be an efficient way to provide preventive interven-
tions [26]. In addition to targeted interventions based on
individual HIV transmission risk, the transmission rate has
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been used to identify recent and rapidly growing clusters
and prioritize public health responses. A study from the US
CDC identified 60 clusters from 27 surveillance jurisdic-
tions in the National HIV Surveillance System from 2013
to 2017; the transmission rate of 11 clusters was eleven
times higher than that of the national estimates of 4/100
person-years and should be prioritized for public health
intervention [74]. Except for the parameters of molecular
cluster, high viral load might also act as an indicator of
targeted interventions. According to the latest research on
the United States National HIV Surveillance System, the
frequently transmitted strains were found in large mole-
cular clusters and had significantly higher viral loads and
increased network connectivity, and that these clusters
should be afforded the highest priority for public health
interventions to interrupt the transmission [75].
Investigations of molecular clusters might also help to

reveal diagnosed or undiagnosed HIV-infected cases
without links to medical care and uninfected cases at a
very high risk of infection. An excellent example of
molecular networks guiding targeted intervention in real-
world settings was implemented in Canada. In this study,
an automated phylogenetic system detected a recent HIV
outbreak and supported an enhanced public health follow-
up to ensure linkage to care and treatment initiation in the
affected subpopulation; a reduction in the onward
transmission of drug resistance was observed during the
follow-up [68]. One retrospective study conducted in San
Antonio, Texas from 2013 to 2015 identified a cluster of 27
individuals, which expanded rapidly on subsequent
monitoring. Further investigation of the partner services
and interview records identified 87 HIV-infected persons
who were sex partners, needle-sharing partners, or social
network contacts of confirmed cases; therefore, these 87
individuals were highly likely to belong to the same
transmission cluster as the aforementioned 27 individuals.
However, these individuals failed to receive appropriate
medical care and their HIV sequencing data were not
available for molecular network analysis; as a result, they
remained at a high HIV transmission risk [10]. Another
example is an HIVoutbreak among injection drug users in
Indiana. Through molecular networks and high-risk sex,
needle sharing, and both sex and needle sharing contact
self-reports, more than 200 HIV-negative individuals were
identified with close social links to clusters of HIV-infected
members, among which the outbreak occurred [67,76].
This study demonstrated that investigating actively grow-
ing molecular clusters provides opportunities for prioritiz-
ing persons associated with these clusters for linkage to
care and PrEP referral [77]. A study from the UK also
demonstrated that network-based approaches can guide
targeted prevention efforts for individuals who were
currently HIV-negative but with very high infection risks
at a cost-effective manner. Simulated interventions indi-
cated that focusing PrEP on young MSM can prevent four

times more infections over 5 years than random allocation
[9]. Although PrEP is widely accepted in developed
countries, its use in China is controversial. The estimated
1.2 million MSMs in China with the highest HIV incidence
[78] are the potential targeted population for PrEP.
Molecular network analysis helps to provide PrEP to
individuals in priority network and might substantially
improve the effect of PrEP in this situation.

Molecular networks evaluate the
effectiveness of interventions

Molecular networks can also be used to evaluate the effects
of intervention. Several methods have been developed to
evaluate whether the intervention strategy under investiga-
tion can interrupt transmission at the population level. A
recent retrospective study on New York HIV transmission
network demonstrated that previous growth dynamics of
clusters can predict the future growth of the clusters.
Therefore, the prioritization schemes at the cluster-level,
with a consideration of the relationship between the
previous cluster growth and size, may contribute to
improve the final outcomes in public health [79]. A
study from San Diego evaluated the effects of HIV control
in a nucleic acid testing-based early test program using
molecular cluster monitoring. The authors found that with
the early test program, about 100 less HIV infections
occurred compared with the number expected in the central
region of San Diego in 2012. Genetic analysis also
suggested that the HIV transmission chains are more likely
to end in areas with marketed early testing [80]. The
reproduction number (R), a parameter reflecting how
efficiently the infectious agents are transmitted, is usually
used for modeling infection dynamics. R > 1 represents
the infectious agents can continue to spread. Two main
estimators are used: the basic reproductive number (R0)
and the effective reproductive number (Re). R0 and Re are
the average numbers of secondary infections caused by a
typical infected individual in an entirely susceptible
population and in only a part of the population that is
susceptible, respectively [81]. For low prevalent epidemic
diseases like HIV, Re is equal to R0 [44]. In 2012, a group
from Switzerland developed a new Bayesian phylogenetic
method based on a birth–death model to estimate the R0
directly by using the viral sequence data, in which the
transmission and death rates were estimated independently
to substantially improve the accuracy compared with other
coalescent estimates [82]. In 2017, the same group
estimated the R0 of HIV epidemics among a heterosexual
population in Switzerland using the population-based
phylogenetic cluster analysis and found that the R0 of
the population was far below the epidemic threshold [83].
This method might be able to assess the effects of currently
implemented preventive measures. Another recent study
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incorporated phylodynamics into a molecular cluster
analysis to monitor the cluster dynamics with densely
sampled sequences from North Carolina. The estimated Re
of the active clusters was remarkably higher than that of the
historical clusters. Determining actively growing clusters
is crucial to optimize the approaches for public health
responses, and an effective intervention would be expected
to reduce the Re [21,84].

Challenges and recommendations

An increasing number of studies support the essential role
of molecular network analysis in HIVepidemic monitoring
and targeted intervention. Molecular network-based inter-
vention strategy has been implemented as a key tool for
HIV/AIDS control in many countries, including China.
However, we still need to overcome several challenges to
improve the practice of molecular network-guided targeted
interventions and to finally end the HIVepidemic. First, the
sequence data for molecular network construction are still
limited. In-depth sampling is important for more accurate
characterization of HIV transmission networks [85,86].
The latest US CDC guidelines for detecting and respond-
ing to HIV transmission clusters recommended the
collection of sequences from more than 60% of individuals
diagnosed with HIV infection among the target population
[11]. However, in most resource-limited countries, drug-
resistance testing immediately after diagnosis or even
before ART is still unavailable. More financial support
would help to increase regular drug-resistance testing,
either through government support or broadening medical
insurance coverage. In other instances, sequences of drug-
resistance testing and surveillance data from hospitals
cannot be transmitted efficiently to public health depart-
ments. The establishment of a procedure of the pol gene
sequence collection and analysis is pressing need to ensure
that the pol gene sequence data are transmitted to the
public health department for molecular network monitor-
ing. Second, real-time molecular network monitoring is
required to reveal the rapidly growing transmission
clusters and guide timely investigation and response.
This real-time monitoring requires a platform that provides
a setting on which the following objectives can be
achieved automatically and efficiently: collection of the
pol sequences generated from decentralized hospitals and
institutes, identification of molecular clusters, evaluation
of time-space dynamics of clusters, and prioritization of
clusters for investigation. Although some GD-based or
phylogenetic-based software packages, such as HIV-
TRACE [87] and Cluster Picker [29], are publicly
available, the construction of molecular networks remains
a highly technical and labor-intensive task. More automatic
data transfer and analysis tools must be developed in the
future. Third, molecular cluster inference must be

combined with cluster surveillance, investigation, and
intervention to complement and support one another.
Therefore, staff members concerned with data analysis,
surveillance, and intervention, together with HIV care
providers and community-based organizations, must
collaborate with one another to provide timely information
on transmission networks during investigations, which can
help them to focus on prevention efforts [88,89]. The real-
time molecular network study in Canada provides an
excellent example of close cooperation between the CDC
and hospitals: the study identified the clinical, demo-
graphic, epidemiological, and HIV sequence data from all
HIV infections and efficiently integrated those data into a
cached database that was automatically processed to
support public health responses [68]. Supplementary
national or regional guidelines on molecular network
monitoring and response are required to meet the specific
condition. Fourth, various parameters are the key determi-
nants of the sensitivity and specificity of molecular cluster
inference. However, the studies on HIV evolution support
the key parameter selection and molecular network-guided
applications, which were mainly focused on subtype B
HIV-1 [71,90]. Subtype B is responsible for only 12.1% of
HIV infections globally [91], whereas multiple non-B HIV-
1 strains are being transmitted at various rates in different
countries worldwide, including China [92]. Nearly all
molecular network studies on non-B HIV have followed
the parameters of subtype B [26,93–95]. However,
whether the parameters for subtype B are also appropriate
for non-B viral strains and more complicated epidemic
conditions have not been fully explored. Evolutionary
studies on non-B HIV must be strengthened to provide a
stronger theoretical basis for non-B HIV molecular
network studies. Finally, ethical, legal, and social issues
remain for HIV molecular network analyses aimed at
targeted intervention, as reviewed by Mehta et al. recently
[96]. The legal provisions and public opinion on disclosure
vary greatly from country to country. Further studies are
warranted to develop privacy protection data-sharing
techniques and strengthen the understanding between the
researcher and public health officials.
In more than 30 years of practice in HIV/AIDS

prevention and control, scholars from China have also
gained rich experience in HIV molecular epidemiology
research, epidemiological surveys, and social network
investigations. Various research teams in China are
presently engaged in the study of HIV-1 molecular
network-based targeted interventions aligned with the
HIV epidemics in China. These studies are expected to
provide new strategies to deal with HIV transmission
among high-risk populations in China.

Acknowledgements

This work was supported in part by the Mega-Projects of the

Xiaoxu Han et al. 143



National Science Research for the 13th Five-Year Plan (No.

2017ZX10201101), Innovation Team Development Program of the
Ministry of Education (No. IRT_16R70), the National Natural
Science Foundation of China (No. 81871637), and Central Public-

interest Scientific Institution Basal Research Fund (No. 2018PT-
31042).

Compliance with ethics guidelines

Xiaoxu Han, Bin Zhao, Minghui An, Ping Zhong, and Hong Shang
declare no conflicts of interest. This manuscript is a review article

and does not entail a research protocol requiring approval by the
relevant institutional review board or ethics committee.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate

if changes were made.
The images or other third party material in this article are included

in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright
holder.

To view a copy of this licence, visit https://creativecommons.org/
licenses/by/4.0/.

References

1. McMahon JH, Medland N. 90-90-90: how do we get there? Lancet

HIV 2014; 1(1): e10–e11

2. Kazanjian P. UNAIDS 90-90-90 campaign to end the AIDS
epidemic in historic perspective. Milbank Q 2017; 95(2): 408–439

3. Machuca R, Jørgensen LB, Theilade P, Nielsen C. Molecular
investigation of transmission of human immunodeficiency virus
type 1 in a criminal case. Clin Diagn Lab Immunol 2001; 8(5):

884–890

4. Leitner T, Escanilla D, Franzén C, Uhlén M, Albert J. Accurate
reconstruction of a known HIV-1 transmission history by
phylogenetic tree analysis. Proc Natl Acad Sci USA 1996;
93(20): 10864–10869

5. Trask SA, Derdeyn CA, Fideli U, Chen Y, Meleth S, Kasolo F,

Musonda R, Hunter E, Gao F, Allen S, Hahn BH. Molecular
epidemiology of human immunodeficiency virus type 1 transmis-
sion in a heterosexual cohort of discordant couples in Zambia. J
Virol 2002; 76(1): 397–405

6. Smith DM, May SJ, Tweeten S, Drumright L, Pacold ME,
Kosakovsky Pond SL, Pesano RL, Lie YS, Richman DD, Frost
SD, Woelk CH, Little SJ. A public health model for the molecular
surveillance of HIV transmission in San Diego, California. AIDS
2009; 23(2): 225–232

7. Aldous JL, Pond SK, Poon A, Jain S, Qin H, Kahn JS, Kitahata M,

Rodriguez B, Dennis AM, Boswell SL, Haubrich R, Smith DM.
Characterizing HIV transmission networks across the United
States. Clin Infect Dis 2012; 55(8): 1135–1143

8. Little SJ, Kosakovsky Pond SL, Anderson CM, Young JA,
Wertheim JO, Mehta SR, May S, Smith DM. Using HIV networks
to inform real time prevention interventions. PLoS One 2014; 9(6):
e98443

9. Volz EM, Le Vu S, Ratmann O, Tostevin A, Dunn D, Orkin C,
O’Shea S, Delpech V, Brown A, Gill N, Fraser C; UK HIV Drug
Resistance Database. Molecular epidemiology of HIV-1 subtype B
reveals heterogeneous transmission risk: implications for interven-
tion and control. J Infect Dis 2018; 217(10): 1522–1529

10. Oster AM, France AM,Mermin J. Molecular epidemiology and the
transformation of HIV prevention. JAMA 2018; 319(16): 1657–
1658

11. National Center for HIV/AIDS, Viral Hepatitis, STD, and TB
Prevention; Division of HIV/AIDS. Prevention Detecting and
Responding to HIV Transmission Clusters: A Guide for Health
Department. 2018. https://www.cdc.gov/hiv/pdf/funding/
announcements/ps18-1802/CDC-HIV-PS18-1802-AttachmentE-
Detecting-Investigating-and-Responding-to-HIV-Transmission-
Clusters.pdf

12. Fauci AS, Redfield RR, Sigounas G, Weahkee MD, Giroir BP.
Ending the HIV epidemic: a plan for the United States. JAMA
2019; 321(9): 844–845

13. Hué S, Clewley JP, Cane PA, Pillay D. HIV-1 pol gene variation is
sufficient for reconstruction of transmissions in the era of
antiretroviral therapy. AIDS 2004; 18(5): 719–728

14. Yebra G, Hodcroft EB, Ragonnet-Cronin ML, Pillay D, Brown AJ;
PANGEA_HIV Consortium; ICONIC Project. Using nearly full-
genome HIV sequence data improves phylogeny reconstruction in
a simulated epidemic. Sci Rep 2016; 6(1): 39489

15. Yerly S, Vora S, Rizzardi P, Chave JP, Vernazza PL, Flepp M,
Telenti A, Battegay M, Veuthey AL, Bru JP, Rickenbach M,
Hirschel B, Perrin L; Swiss HIV Cohort Study. Acute HIV
infection: impact on the spread of HIV and transmission of drug

resistance. AIDS 2001; 15(17): 2287–2292

16. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 1987; 4(4): 406–
425

17. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA,
Alekseyenko AV. Improving the accuracy of demographic and

molecular clock model comparison while accommodating phylo-
genetic uncertainty. Mol Biol Evol 2012; 29(9): 2157–2167

18. Baele G, Li WL, Drummond AJ, Suchard MA, Lemey P. Accurate
model selection of relaxed molecular clocks in bayesian phyloge-
netics. Mol Biol Evol 2013; 30(2): 239–243

19. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment

M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N,
Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L,
Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA,
Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ. BEAST 2.5:
An advanced software platform for Bayesian evolutionary
analysis. PLoS Comput Biol 2019; 15(4): e1006650

20. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ,
Rambaut A. Bayesian phylogenetic and phylodynamic data
integration using BEAST 1.10. Virus Evol 2018; 4(1): vey016

144 Molecular network-based intervention brings us closer to ending HIV pandemic



21. Dennis AM, Hué S, Billock R, Levintow S, Sebastian J, Miller

WC, Eron JJ. Human immunodeficiency virus type 1 phylody-
namics to detect and characterize active transmission clusters in
North Carolina. J Infect Dis 2019 Apr 27. [Epub ahead of print]
doi: 10.1093/infdis/jiz176

22. Wilkinson E, Junqueira DM, Lessells R, Engelbrecht S, van Zyl G,
de Oliveira T, Salemi M. The effect of interventions on the
transmission and spread of HIV in South Africa: a phylodynamic
analysis. Sci Rep 2019; 9(1): 2640

23. Poon AF. Impacts and shortcomings of genetic clustering methods
for infectious disease outbreaks. Virus Evol 2016; 2(2): vew031

24. Aldous JL, Pond SK, Poon A, Jain S, Qin H, Kahn JS, Kitahata M,
Rodriguez B, Dennis AM, Boswell SL, Haubrich R, Smith DM.
Characterizing HIV transmission networks across the United
States. Clin Infect Dis 2012; 55(8): 1135–1143

25. Chin BS, Chaillon A, Mehta SR, Wertheim JO, Kim G, Shin HS,
Smith DM. Molecular epidemiology identifies HIV transmission
networks associated with younger age and heterosexual exposure
among Korean individuals. J Med Virol 2016; 88(10): 1832–1835

26. Wang X, Wu Y, Mao L, Xia W, Zhang W, Dai L, Mehta SR,
Wertheim JO, Dong X, Zhang T, Wu H, Smith DM. Targeting HIV
prevention based on molecular epidemiology among deeply

sampled subnetworks of men who have sex with men. Clin Infect
Dis 2015; 61(9): 1462–1468

27. Rose R, Lamers SL, Dollar JJ, Grabowski MK, Hodcroft EB,
Ragonnet-Cronin M, Wertheim JO, Redd AD, German D,
Laeyendecker O. Identifying transmission clusters with cluster
picker and HIV-TRACE. AIDS Res Hum Retroviruses 2017;
33(3): 211–218

28. Prosperi MC, Ciccozzi M, Fanti I, Saladini F, Pecorari M, Borghi
V, Di Giambenedetto S, Bruzzone B, Capetti A, Vivarelli A,
Rusconi S, Re MC, Gismondo MR, Sighinolfi L, Gray RR, Salemi
M, Zazzi M, De Luca A; ARCA collaborative group. A novel
methodology for large-scale phylogeny partition. Nat Commun
2011; 2(1): 321

29. Ragonnet-Cronin M, Hodcroft E, Hué S, Fearnhill E, Delpech V,
Brown AJ, Lycett S; UK HIV Drug Resistance Database.

Automated analysis of phylogenetic clusters. BMC Bioinformatics
2013; 14(1): 317

30. Hassan AS, Pybus OG, Sanders EJ, Albert J, Esbjörnsson J.
Defining HIV-1 transmission clusters based on sequence data.
AIDS 2017; 31(9): 1211–1222

31. Paraskevis D, Magiorkinis E, Magiorkinis G, Kiosses VG, Lemey

P, Vandamme AM, Rambaut A, Hatzakis A. Phylogenetic
reconstruction of a known HIV-1 CRF04_cpx transmission
network using maximum likelihood and Bayesian methods. J
Mol Evol 2004; 59(5): 709–717

32. Esbjörnsson J, Mild M, Audelin A, Fonager J, Skar H, Bruun
Jørgensen L, Liitsola K, Björkman P, Bratt G, Gisslén M,
Sönnerborg A, Nielsen C; SPREAD/ESAR Programme, Med-
strand P, Albert J. HIV-1 transmission between MSM and

heterosexuals, and increasing proportions of circulating recombi-
nant forms in the Nordic Countries. Virus Evol 2016; 2(1): vew010

33. Bruhn CA, Audelin AM, Helleberg M, Bjorn-Mortensen K, Obel
N, Gerstoft J, Nielsen C, Melbye M, Medstrand P, Gilbert MT,
Esbjrnsson J. The origin and emergence of an HIV-1 epidemic:
from introduction to endemicity. AIDS 2014; 28(7): 1031–1040

34. Jovanović L, ŠiljićM, Ćirković V, Salemović D, Pešić-Pavlović I,
Todorović M, Ranin J, Jevtović D, Stanojević M. Exploring
evolutionary and transmission dynamics of HIV epidemic in
Serbia: bridging socio-demographic with phylogenetic approach.
Front Microbiol 2019; 10: 287

35. Bbosa N, Ssemwanga D, Nsubuga RN, Salazar-Gonzalez JF,
Salazar MG, Nanyonjo M, Kuteesa M, Seeley J, Kiwanuka N,
Bagaya BS, Yebra G, Leigh-Brown A, Kaleebu P. Phylogeography
of HIV-1 suggests that Ugandan fishing communities are a sink for,
not a source of, virus from general populations. Sci Rep 2019; 9(1):

1051

36. Ragonnet-Cronin M, Jackson C, Bradley-Stewart A, Aitken C,
McAuley A, Palmateer N, Gunson R, Goldberg D, Milosevic C,
Leigh Brown AJ. Recent and rapid transmission of HIV among
people who inject drugs in Scotland revealed through phylogenetic
analysis. J Infect Dis 2018; 217(12): 1875–1882

37. Paraskevis D, Beloukas A, Stasinos K, Pantazis N, de Mendoza C,
Bannert N, Meyer L, Zangerle R, Gill J, Prins M, d’Arminio
Montforte A, Kran AB, Porter K, Touloumi G; CASCADE
collaboration of EuroCoord. HIV-1 molecular transmission
clusters in nine European countries and Canada: association with
demographic and clinical factors. BMC Med 2019; 17(1): 4

38. de Oliveira T, Kharsany AB, Gräf T, Cawood C, Khanyile D,
Grobler A, Puren A, Madurai S, Baxter C, Karim QA, Karim SS.

Transmission networks and risk of HIV infection in KwaZulu-
Natal, South Africa: a community-wide phylogenetic study. Lancet
HIV 2017; 4(1): e41–e50

39. Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward
MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, Posada D,
Peeters M, Pybus OG, Lemey P. The early spread and epidemic
ignition of HIV-1 in human populations. Science 2014; 346(6205):
56–61

40. Waruru A, Achia TNO, Tobias JL, Nganga J, Mwangi M,
Wamicwe J, Zielinski-Gutierrez E, Oluoch T, Muthama E,
Tylleskär T. Finding hidden HIV clusters to support geographic-
oriented HIV interventions in Kenya. J Acquir Immune Defic
Syndr 2018; 78(2): 144–154

41. Butt Z, Grady S, Wilkins M, Hamilton E, Todem D, Gardiner J,
Saeed M. Spatial epidemiology of HIV-hepatitis co-infection in the

State of Michigan: a cohort study. Infect Dis (Lond) 2015; 47(12):
852–861

42. Stecher M, Hoenigl M, Eis-Hbinger AM, Lehmann C, Fätkenheuer
G, Wasmuth JC, Knops E, Vehreschild JJ, Mehta S, Chaillon A.
Hotspots of transmission driving the local human immunodefi-
ciency virus epidemic in the Cologne-Bonn Region, Germany. Clin
Infect Dis 2019; 68(9): 1539–1546

43. Chaillon A, Essat A, Frange P, Smith DM, Delaugerre C, Barin F,
Ghosn J, Pialoux G, Robineau O, Rouzioux C, Goujard C, Meyer
L, Chaix ML; on behalf the ANRS PRIMO Cohort Study.
Spatiotemporal dynamics of HIV-1 transmission in France (1999–
2014) and impact of targeted prevention strategies. Retrovirology
2017; 14(1): 15

44. Wertheim JO, Leigh Brown AJ, Hepler NL, Mehta SR, Richman
DD, Smith DM, Kosakovsky Pond SL. The global transmission

network of HIV-1. J Infect Dis 2014; 209(2): 304–313

45. Fisher M, Pao D, Brown AE, Sudarshi D, Gill ON, Cane P,
Buckton AJ, Parry JV, Johnson AM, Sabin C, Pillay D.

Xiaoxu Han et al. 145



Determinants of HIV-1 transmission in men who have sex with
men: a combined clinical, epidemiological and phylogenetic
approach. AIDS 2010; 24(11): 1739–1747

46. Yirrell DL, Pickering H, Palmarini G, Hamilton L, Rutemberwa A,
Biryahwaho B, Whitworth J, Brown AJ. Molecular epidemiolo-
gical analysis of HIV in sexual networks in Uganda. AIDS 1998;
12(3): 285–290

47. Ng KT, Ng KY, Chen JH, Ng OT, Kamarulzaman A, Tee KK.
HIV-1 transmission networks among men who have sex with men
in Asia. Clin Infect Dis 2014; 59(6): 910–911

48. Mehta SR, Wertheim JO, Brouwer KC, Wagner KD, Chaillon A,
Strathdee S, Patterson TL, Rangel MG, Vargas M, Murrell B,
Garfein R, Little SJ, Smith DM. HIV transmission networks in the
San Diego-Tijuana Border Region. EBioMedicine 2015; 2(10):
1456–1463

49. Oster AM, Wertheim JO, Hernandez AL, Ocfemia MC, Saduvala
N, Hall HI. Using molecular HIV surveillance data to understand
transmission between subpopulations in the United States. J Acquir
Immune Defic Syndr 2015; 70(4): 444–451

50. Ragonnet-Cronin M, Hu YW, Morris SR, Sheng Z, Poortinga K,
Wertheim JO. HIV transmission networks among transgender

women in Los Angeles County, CA, USA: a phylogenetic analysis
of surveillance data. Lancet HIV 2019; 6(3): e164–e172

51. Li X, Liu H, Liu L, Feng Y, Kalish ML, Ho SYW, Shao Y. Tracing
the epidemic history of HIV-1 CRF01_AE clusters using near-
complete genome sequences. Sci Rep 2017; 7(1): 4024

52. Li Z, He X, Wang Z, Xing H, Li F, Yang Y, Wang Q, Takebe Y,

Shao Y. Tracing the origin and history of HIV-1 subtype B′
epidemic by near full-length genome analyses. AIDS 2012; 26(7):
877–884

53. Ye J, Lu H, Su X, Xin R, Bai L, Xu K, Yu S, Feng X, Yan H, He X,
Zeng Y. Phylogenetic and temporal dynamics of human immuno-
deficiency virus type 1B in China: four types of B strains circulate
in China. AIDS Res Hum Retroviruses 2014; 30(9): 920–926

54. Meng Z, Xin R, Zhong P, Zhang C, Abubakar YF, Li J, Liu W,
Zhang X, Xu J. A new migration map of HIV-1 CRF07_BC in
China: analysis of sequences from 12 provinces over a decade.
PLoS One 2012; 7(12): e52373

55. Chen X, Ye M, Pang W, Smith DM, Zhang C, Zheng YT. First
appearance of HIV-1 CRF07_BC and CRF08_BC outside China.
AIDS Res Hum Retroviruses 2017; 33(1): 74–76

56. Han X, Takebe Y, Zhang W, An M, Zhao B, Hu Q, Xu J, Wu H,
Wu J, Lu L, Chen X, Liang S, Wang Z, Yan H, Fu J, Cai W,
Zhuang M, Liao C, Shang H. A large-scale survey of CRF55_01B
from men-who-have-sex-with-men in China: implying the evolu-
tionary history and public health impact. Sci Rep 2015; 5(1):
18147

57. Han X, An M, Zhang M, Zhao B, Wu H, Liang S, Chen X, Zhuang

M, Yan H, Fu J, Lu L, Cai W, Takebe Y, Shang H. Identification of
3 distinct HIV-1 founding strains responsible for expanding
epidemic among men who have sex with men in 9 Chinese cities.
J Acquir Immune Defic Syndr 2013; 64(1): 16–24

58. An M, Han X, Xu J, Chu Z, Jia M, Wu H, Lu L, Takebe Y, Shang
H. Reconstituting the epidemic history of HIV strain CRF01_AE
among men who have sex with men (MSM) in Liaoning,
northeastern China: implications for the expanding epidemic
among MSM in China. J Virol 2012; 86(22): 12402–12406

59. Li X, Xue Y, Lin Y, Gai J, Zhang L, Cheng H, Ning Z, Zhou L,

Zhu K, Vanham G, Kang L, Wang Y, Zhuang M, Pan Q, Zhong P.
Evolutionary dynamics and complicated genetic transmission
network patterns of HIV-1 CRF01_AE among MSM in Shanghai,
China. Sci Rep 2016; 6(1): 34729

60. Zhu Z, Hu Y, Xing W, Guo M, Zhao R, Han S, Wu B. Identifying
symptom clusters among people living with HIV on antiretroviral
therapy in China: a network analysis. J Pain Symptom Manage
2019; 57(3): 617–626

61. Zhang Z, Dai L, Jiang Y, Feng K, Liu L, Xia W, Yu F, Yao J, Xing
W, Sun L, Zhang T, Wu H, Su B, Qiu M. Transmission network
characteristics based on env and gag sequences from MSM during
acute HIV-1 infection in Beijing, China. Arch Virol 2017; 162(11):
3329–3338

62. Li X, Zhu K, Xue Y, Wei F, Gao R, Duerr R, Fang K, Li W, Song
Y, Du G, Yan W, Musa TH, Ge Y, Ji Y, Zhong P, Wei P. Multiple

introductions and onward transmission of HIV-1 subtype B strains
in Shanghai, China. J Infect 2017; 75(2): 160–168

63. Chen M, Ma Y, Chen H, Dai J, Dong L, Yang C, Li Y, Luo H,
Zhang R, Jin X, Yang L, Cheung AKL, Jia M, Song Z. HIV-1
genetic transmission networks among men who have sex with men
in Kunming, China. PLoS One 2018; 13(4): e0196548

64. Shao Y. AIDS molecular network research and AIDS precision
prevention and control. 2018 National Conference on HIV and
Hepatitis C Prevention and Treatment. April 19, 2018

65. Wang X, He X, Zhong P, Liu Y, Gui T, Jia D, Li H, Wu J, Yan J,
Kang D, Han Y, Li T, Yang R, Han X, Chen L, Zhao J, Xing H,
Liang S, He J, Yan Y, Xue Y, Zhang J, Zhuang X, Liang S, Bao Z,
Li T, Zhuang D, Liu S, Han J, Jia L, Li J, Li L. Phylodynamics of
major CRF01_AE epidemic clusters circulating in mainland of
China. Sci Rep 2017; 7(1): 6330

66. Valverde EE, Oster AM, Xu S, Wertheim JO, Hernandez AL. HIV
transmission dynamics among foreign-born persons in the United
States. J Acquir Immune Defic Syndr 2017; 76(5): 445–452

67. Campbell EM, Jia H, Shankar A, Hanson D, Luo W, Masciotra S,
Owen SM, Oster AM, Galang RR, Spiller MW, Blosser SJ,
Chapman E, Roseberry JC, Gentry J, Pontones P, Duwve J,

Peyrani P, Kagan RM, Whitcomb JM, Peters PJ, Heneine W,
Brooks JT, Switzer WM. Detailed transmission network analysis
of a large opiate-driven outbreak of HIV infection in the United
States. J Infect Dis 2017; 216(9): 1053–1062

68. Poon AFY, Gustafson R, Daly P, Zerr L, Demlow SE, Wong J,
Woods CK, Hogg RS, Krajden M, Moore D, Kendall P, Montaner

JSG, Harrigan PR. Near real-time monitoring of HIV transmission
hotspots from routine HIV genotyping: an implementation case

study. Lancet HIV 2016; 3(5): e231–e238

69. Pasquale DK, Doherty IA, Sampson LA, Hué S, Leone PA,
Sebastian J, Ledford SL, Eron JJ, Miller WC, Dennis AM.
Leveraging phylogenetics to understand HIV transmission and
partner notification networks. J Acquir Immune Defic Syndr 2018;
78(4): 367–375

70. Avila D, Keiser O, Egger M, Kouyos R, Böni J, Yerly S, Klimkait
T, Vernazza PL, Aubert V, Rauch A, Bonhoeffer S, Günthard HF,
Stadler T, Spycher BD; Swiss HIV Cohort Study. Social meets
molecular: combining phylogenetic and latent class analyses to
understand HIV-1 transmission in Switzerland. Am J Epidemiol
2014; 179(12): 1514–1525

146 Molecular network-based intervention brings us closer to ending HIV pandemic



71. Wertheim JO, Kosakovsky Pond SL, Forgione LA, Mehta SR,

Murrell B, Shah S, Smith DM, Scheffler K, Torian LV. Social and
genetic networks of HIV-1 transmission in New York City. PLoS
Pathog 2017; 13(1): e1006000

72. Kostaki EG, Nikolopoulos GK, Pavlitina E, Williams L,
Magiorkinis G, Schneider J, Skaathun B, Morgan E, Psichogiou
M, Daikos GL, Sypsa V, Smyrnov P, Korobchuk A, Malliori M,
Hatzakis A, Friedman SR, Paraskevis D. Molecular analysis of
human immunodeficiency virus type 1 (HIV-1)-infected indivi-
duals in a network-based intervention (Transmission Reduction

Intervention Project): phylogenetics identify HIV-1-infected
individuals with social links. J Infect Dis 2018; 218(5): 707–715

73. Leigh Brown AJ, Lycett SJ, Weinert L, Hughes GJ, Fearnhill E,
Dunn DT; UK HIV Drug Resistance Collaboration. Transmission
network parameters estimated from HIV sequences for a nation-
wide epidemic. J Infect Dis 2011; 204(9): 1463–1469

74. France AM, Panneer N, Ocfemia CB, Saduvala N, Campbell E,
Switzer WM, Wertheim J, Oster AM. Rapidly growing HIV
transmission clusters in the Unites States, 2013–2016. 2018
Conference on Retroviruses and Opportunistic Infections. March
4–7, 2018

75. Wertheim JO, Oster AM, Switzer WM, Zhang C, Panneer N,
Campbell E, Saduvala N, Johnson JA, Heneine W. Natural
selection favoring more transmissible HIV detected in United

States molecular transmission network. Nat Commun 2019; 10(1):
5788

76. Peters PJ, Pontones P, Hoover KW, Patel MR, Galang RR, Shields
J, Blosser SJ, Spiller MW, Combs B, Switzer WM, Conrad C,
Gentry J, Khudyakov Y, Waterhouse D, Owen SM, Chapman E,
Roseberry JC, McCants V, Weidle PJ, Broz D, Samandari T,
Mermin J, Walthall J, Brooks JT, Duwve JM; Indiana HIV
Outbreak Investigation Team.HIV infection linked to injection use
of oxymorphone in Indiana, 2014-–2015. N Engl J Med 2016;

375(3): 229–239

77. Monterosso A, Minnerly S, Goings S, Morris A, France AM,
Dasgupta S, Oster AM, Fanning M. Identifying and investigating a
rapidly growing HIV transmission cluster in Texas. Conference on
Retroviruses and Opportunistic Infections. March 8, 2017. Seattle,
Washington

78. Shang H, Xu J, Han X, Spero Li J, Arledge KC, Zhang L. HIV
prevention: bring safe sex to China. Nature 2012; 485(7400): 576–
577

79. Wertheim JO, Murrell B, Mehta SR, Forgione LA, Kosakovsky
Pond SL, Smith DM, Torian LV. Growth of HIV-1 molecular
transmission clusters in New York City. J Infect Dis 2018; 218(12):
1943–1953

80. Mehta SR, Murrell B, Anderson CM, Kosakovsky Pond SL,
Wertheim JO, Young JA, Freitas L, Richman DD, Mathews WC,
Scheffler K, Little SJ, Smith DM. Using HIV sequence and
epidemiologic data to assess the effect of self-referral testing for
acute HIV infection on incident diagnoses in San Diego,
California. Clin Infect Dis 2016; 63(1): 101–107

81. Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis
D, Dye C, Eames KT, Edmunds WJ, Frost SD, Funk S,

Hollingsworth TD, House T, Isham V, Klepac P, Lessler J,
Lloyd-Smith JO, Metcalf CJ, Mollison D, Pellis L, Pulliam JR,
Roberts MG, Viboud C; Isaac Newton Institute IDD Collaboration.

Modeling infectious disease dynamics in the complex landscape of
global health. Science 2015; 347(6227): aaa4339

82. Stadler T, Kouyos R, von Wyl V, Yerly S, Böni J, Bürgisser P,
Klimkait T, Joos B, Rieder P, Xie D, Günthard HF, Drummond AJ,
Bonhoeffer S; Swiss HIV Cohort Study. Estimating the basic
reproductive number from viral sequence data. Mol Biol Evol
2012; 29(1): 347–357

83. Turk T, Bachmann N, Kadelka C, Büni J, Yerly S, Aubert V,
Klimkait T, Battegay M, Bernasconi E, Calmy A, Cavassini M,
Furrer H, Hoffmann M, Günthard HF, Kouyos RD, Aubert V,
Battegay M, Bernasconi E, Böni J, Braun DL, Bucher HC, Calmy
A, Cavassini M, Ciuffi A, Dollenmaier G, Egger M, Elzi L, Fehr J,
Fellay J, Furrer H, Fux CA, Günthard HF, Haerry D, Hasse B,
Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O,
Klimkait T, Kouyos RD, Kovari H, Ledergerber B, Martinetti G,
Martinez de Tejada B, Marzolini C, Metzner KJ, Müller N, Nicca
D, Pantaleo G, Paioni P, Rauch A, Rudin C, Scherrer AU, Schmid
P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P, Wandeler G,

Weber R, Yerly S. Assessing the danger of self-sustained HIV
epidemics in heterosexuals by population based phylogenetic
cluster analysis. eLife 2017; 6: e28721

84. France AM, Oster AM. The promise and complexities of detecting
and monitoring HIV transmission clusters. J Infect Dis 2019 Apr
27. [Epub ahead of print] doi: 10.1093/infdis/jiz177

85. Novitsky V, Moyo S, Lei Q, DeGruttola V, Essex M. Impact of
sampling density on the extent of HIV clustering. AIDS Res Hum
Retroviruses 2014; 30(12): 1226–1235

86. Chaillon A, Delaugerre C, Brenner B, Armero A, Capitant C, Nere
ML, Leturque N, Pialoux G, Cua E, Tremblay C, Smith DM,
Goujard C, Meyer L, Molina JM, Chaix ML. In-depth sampling of
high-risk populations to characterize HIV transmission epidemics
among young MSM using PrEP in France and Quebec. Open

Forum Infect Dis 2019; 6(3): ofz080

87. Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO.
HIV-TRACE (Transmission Cluster Engine): a tool for large scale
molecular epidemiology of HIV-1 and other rapidly evolving
pathogens. Mol Biol Evol 2018; 35(7): 1812–1819

88. Dennis AM, Pasquale DK, Billock R, Beagle S, Mobley V, Cope

A, Kuruc J, Sebastian J, Walworth C, Leone PA. Integration of
contact tracing and phylogenetics in an investigation of acute HIV
infection. Sex Transm Dis 2018; 45(4): 222–228

89. Fitzmaurice AG, Linley L, Zhang C, Watson M, France AM, Oster
AM. Novel method for rapid detection of spatiotemporal HIV
clusters potentially warranting intervention. Emerg Infect Dis
2019; 25(5): 988–991

90. Hightower GK, May SJ, Pérez-Santiago J, Pacold ME, Wagner
GA, Little SJ, Richman DD, Mehta SR, Smith DM, Pond SL. HIV-
1 clade B pol evolution following primary infection. PLoS One
2013; 8(6): e68188

91. Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I,
Kirtley S, Williams B, Gouws-Williams E, Ghys PD; WHO–
UNAIDS Network for HIV Isolation Characterisation. Global and
regional molecular epidemiology of HIV-1, 1990–2015: a

systematic review, global survey, and trend analysis. Lancet Infect
Dis 2019; 19(2): 143–155

92. Bbosa N, Kaleebu P, Ssemwanga D. HIV subtype diversity
worldwide. Curr Opin HIV AIDS 2019; 14(3): 153–160

Xiaoxu Han et al. 147



93. Fabeni L, Alteri C, Berno G, Scutari R, Orchi N, De Carli G,

Bertoli A, Carioti L, Gori C, Forbici F, Salpini R, Vergori A,
Gagliardini R, Cicalini S, Mondi A, Pinnetti C, Mazzuti L,
Turriziani O, Colafigli M, Borghi V, Montella F, Pennica A,
Lichtner M, Girardi E, Andreoni M, Mussini C, Antinori A,
Ceccherini-Silberstein F, Perno CF, Santoro MM4; SENDIH
Study group. Characterisation of HIV-1 molecular transmission
clusters among newly diagnosed individuals infected with non-B
subtypes in Italy. Sex Transm Infect 2019; 95 (8): 619–625

94. Bon I, Ciccozzi M, Zehender G, Biagetti C, Verrucchi G, Lai A, Lo

Presti A, Gibellini D, Re MC. HIV-1 subtype C transmission
network: the phylogenetic reconstruction strongly supports the
epidemiological data. J Clin Virol 2010; 48(3): 212–214

95. Parczewski M, Leszczyszyn-Pynka M, Bander D, Urbanska A,
Boroń-Kaczmarska A. HIV-1 subtype D infections among
Caucasians from Northwestern Poland—phylogenetic and clinical
analysis. PLoS One 2012; 7(2): e31674

96. Mehta SR, Schairer C, Little S. Ethical issues in HIV phylogenetics

and molecular epidemiology. Curr Opin HIV AIDS 2019; 14(3):
221–226

97. Prosperi MC, De Luca A, Di Giambenedetto S, Bracciale L,
Fabbiani M, Cauda R, Salemi M. The threshold bootstrap
clustering: a new approach to find families or transmission clusters
within molecular quasispecies. PLoS One 2010; 5(10): e13619

98. Vrbik I, Stephens DA, Roger M, Brenner BG. The Gap Procedure:
for the identification of phylogenetic clusters in HIV-1 sequence
data. BMC Bioinformatics 2015; 16(1): 355

99. Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO.
HIV-TRACE (TRAnsmission Cluster Engine): a tool for large
scale molecular epidemiology of HIV-1 and other rapidly evolving
pathogens. Mol Biol Evol 2018; 35(7): 1812–1819

100. Hué S, Clewley JP, Cane PA, Pillay D. HIV-1 pol gene variation is
sufficient for reconstruction of transmissions in the era of
antiretroviral therapy. AIDS 2004; 18(5): 719–728

148 Molecular network-based intervention brings us closer to ending HIV pandemic


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38
	bmkcit39
	bmkcit40
	bmkcit41
	bmkcit42
	bmkcit43
	bmkcit44
	bmkcit45
	bmkcit46
	bmkcit47
	bmkcit48
	bmkcit49
	bmkcit50
	bmkcit51
	bmkcit52
	bmkcit53
	bmkcit54
	bmkcit55
	bmkcit56
	bmkcit57
	bmkcit58
	bmkcit59
	bmkcit60
	bmkcit61
	bmkcit62
	bmkcit63
	bmkcit64
	bmkcit65
	bmkcit66
	bmkcit67
	bmkcit68
	bmkcit69
	bmkcit70
	bmkcit71
	bmkcit72
	bmkcit73
	bmkcit74
	bmkcit75
	bmkcit76
	bmkcit77
	bmkcit78
	bmkcit79
	bmkcit80
	bmkcit81
	bmkcit82
	bmkcit83
	bmkcit84
	bmkcit85
	bmkcit86
	bmkcit87
	bmkcit88
	bmkcit89
	bmkcit90
	bmkcit91
	bmkcit92
	bmkcit93
	bmkcit94
	bmkcit95
	bmkcit96
	bmkcit97
	bmkcit98
	bmkcit99
	bmkcit100


