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Abstract Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes,
including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be
reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin
chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU)
subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great
variation in structure and function, which display a series of mechanistic features. In this review, we provide a
comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate
specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs.
Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite
the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
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Introduction

Protein ubiquitination is a reversible post-translational
modification with key functions in regulating many
cellular processes [1]. Ubiquitin is conjugated primarily
to lysine and sometimes methionine of target proteins in a
cascade of reactions catalyzed by the ubiquitin-activating
enzyme (E1), the ubiquitin-conjugating enzyme (E2), and
the ubiquitin-ligating enzyme (E3). This process can be
reversed by deubiquitinases (DUBs) that cleave ubiquitin
off the substrate protein. The equilibrium between
ubiquitin conjugation and removal is important and tightly
regulated. Its disruption is related to a number of human
diseases including inflammatory, neurodegenerative, and
metabolic disorders, as well as cancer [2].
The human genome encodes roughly 100 DUBs that fall

into seven structural classes: ubiquitin-specific proteases
(USPs), ovarian tumor proteases (OTUs), Machado-Joseph
domain-containing proteases (MJDs), ubiquitin C-terminal
hydrolases (UCHs), MINDYs (motif-interacting with
ubiquitin containing proteases), ZUP1 (zinc finger contain-
ing ubiquitin peptidase 1) and JAMM/MPN domain-

associated Zn-dependent metalloproteases (JAMMs). The
subfamily of OTUs has emerged as regulators of important
signaling cascades, such as NF-kB signaling, interferon
signaling, DNA damage repair, and immunity [3,4]. For
example, OTUB1 regulates the DNA damage response [5];
OTUD3 regulates PI3K/Akt signaling [6]; OTUD5
regulates IRF3 signaling [7]; A20 regulates NF-kB
signaling [8]; OTUD7B controls non-canonical NF-kB
activation in immune regulation [9]; and OTULIN
regulates linear ubiquitylation and innate immune signal-
ing as well as angiogenesis [10]. Understanding how
OTUs are regulated is important to elucidating the
regulatory networks that control ubiquitin signaling.
Structural information will be helpful for understanding
the mechanisms in which OTUs are involved. This will
provide a basis for design of OTU-targeted chemother-
apeutic agents. In the first part of the following review we
introduce the structure, function and regulation of OTUs;
and in the second part we present the roles of OTUs in
some human diseases and physiologic processes.

Ubiquitin and ubiquitination

Ubiquitin (Ub) is a small, conserved globular protein (76
amino acids) with a β-grasp superfold conformation
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[11,12], consisting of a central α-helix surrounded by
mixed β-sheets, and harboring a C-terminal diglycine motif
[1] (Fig. 1A). Ubiquitin is often recognized through two
hydrophobic surfaces. One consists of Ile44, Leu8, Val7,
and His68 (Ile44 patches), the other consists of Ile36,
Leu71, and Leu73 (Ile36 patches). The Ile44 patch and
Ile36 patch mediate the ubiquitin chain’s interaction, and
they are recognized by E3s [13], DUBs [14], and some
UBDs (ubiquitin binding domains) [15].
A key feature of ubiquitin is its seven lysine residues and

its first methionine residue, all of which can be ubiquiti-
nated, thereby allowing the formation of polymeric
ubiquitin chains [16]. The Ub-substrate linkages show

great diversity (Fig. 1B), and all possible topology linkages
have been found in cells [17,18]. These include mono-
ubiquitin; multimonoubiquitin; homoubiquitin; mixed and
branched-ubiquitin, and unanchored-ubiquitin. Further
expanding the signaling complex and variety of ubiquityla-
tion, ubiquitin itself has recently been found to be subjected
to post-translational modifications (PTMs), including
phosphorylation [19], acetylation [20] and deamidation
[21]. Ubiquitin modification provides a series of distinct
signals that are used in different functional contexts, with
specific signaling needing sophisticated mechanisms for
regulation and control. DUBs play an important role in
regulating the many layers of the ubiquitin code [4,22].

Fig. 1 Ubiquitin and UPS pathway. (A) The structure of ubiquitin (PDB: 1UBQ). The seven lysine, N-terminal methionine, and C-terminal
diglycine are labeled. (B) The complexity of ubiquitin modifications. Monoubiquitin including seven lysines and one N-terminal methionine gives
eight homotypic polyubiquitin chains. Heterotypic types contain mixed or branched linkage type. Also, the cross talk with other PTMs, such as
SUMOylation, Neddylation, acetylation (Ac) and phosphorylation (P) enhances the complexity of ubiquitination. (C) A schematic model of UPS (Ub-
proteasome system) pathway. Ubiquitin modification is an ATP-dependent process carried out by three classes of enzymes: E1, E2, and E3. The
reversible process of ubiquitination is countered by DUBs action.

Jiansen Du et al. 543



The process of ubiquitination is reversible and subject to
dynamic PTMs that are involved in regulating multiple
cellular pathways, including protein degradation, intracel-
lular signaling, cell signaling, transcription, translation,
and DNA damage repair [14]. Ubiquitin is covalently
conjugated by its terminal glycine onto a lysine residue of
its substrate protein using an isopeptide bond. Ubiquitin
conjugation to the substrate occurs through an enzymatic
cascade involving E1 [23], E2 [24], and E3 [25]. Fig. 1C
shows the ubiquitin-proteasome pathway. E1 carries out
the ATP-dependent activation of the C terminus of
ubiquitin, forming a covalently bound intermediate with
ubiquitin in which the terminal glycine of ubiquitin is
linked to the thiol group of a cysteine residue in the E1
active site. Ubiquitin is then transferred to the active site
cysteine residue of E2. Finally, E3 catalyzes the transfer of
ubiquitin to a lysine residue in the protein substrate (or in
some cases the N-terminal α-amino group), forming an
amide bond.

DUBs

The removal and rewriting of ubiquitin signals are
performed by DUBs, which deal with the vast complexity
of the ubiquitin system [26–28]. Mechanisms of action of
DUBs include: (1) maintaining protein homeostasis and
signaling in cells, (2) maintaining ubiquitin levels, and
(3) processing of ubiquitin chains [28,29]. DUBs can
reverse the effect of E3 ligases by removing ubiquitin
from target proteins, and are also involved in
ubiquitin maturation, recycling and editing. Based on the

mechanisms of enzymatic cleavage and their structural
properties, the approximately 100 human DUBs can be
divided into seven subfamilies: USPs, OTUs, UCHs,
MJDs, MINDYs, ZUP1, and JAMMs (Fig. 2A) [26,27,30].
USPs, OTUs, MJDs, UCHs, MINDYs, and ZUP1
subfamilies are all cysteine peptidases, whereas JAMMs
differ from others by utilizing a zinc metalloproteinase
domain to break the ubiquitin-substrate bond.
DUBs hydrolyze the isopeptide bond between ubiquitin

and the target protein. Their activity and specificity depend
on the ability to recognize ubiquitin. All DUBs have at
least one ubiquitin binding site, the S1 site, which guides
the ubiquitin C terminus and the scissile bond into the
active site [22]. The S1 site selects the modifier, and
structural characterizations have shown that the interface
between the S1 site and ubiquitin is typically extensive,
covering about 20%–40% of the bound ubiquitin molecule
[27]. Some biochemical analyses show that the S1 site
contributes to the formation of the enzyme-substrate
complex. After binding to the S1 site, the flexible C
terminus of ubiquitin is maximally extended and covered
by the DUBs. Linkage type, length, and architecture of
ubiquitin chain all impact the DUBs activity [31–33]. In
the case of cleaving diubiquitin, the distal ubiquitin
occupies the S1 site, whereas the proximal moiety occupies
the S1′ site. The substrate or ubiquitin providing the
modified lysine residue can be bound by the catalytic
domain. In addition, some DUBs feature additional
ubiquitin binding sites, such as S2 and S3 (Fig. 2B).
These sites enable interaction between the enzyme and
long ubiquitin polymers and may contribute to linkage
specificity.

Fig. 2 Structures of the catalytic domain of DUBs. (A) Structure of seven classes of DUBs. The active site cysteine or zinc is shown in magentas.
OTUs (OTUB1, PDB: 2ZFG), USPs (USP7, PDB: 1NB8), UCHs (UCH-L3, PDB: 1UCH), MJDs (Ataxin-3, PDB: 3O65), MINDYs (MINDY1,
PDB: 5JKN), ZUP1 (ZUP1, PDB: 6FGE), JAMMs (AfJAMM, PDB: 1R5X). (B) Basic nomenclature of OTU catalytic domain. The distal ubiquitin
occupies the S1 site, and the proximal to the S1′ site. Sometimes, additional Ub binding sites, such as S2, S3, and S2′ are needed.
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OTUs structure, function and substrate
specificity

The subfamily of OTU deubiquitinases contains 16
members in humans, and has been implicated in human
diseases such as cancer, inflammation, neurodegeneration,
and virus infection [34]. The OTU domain was first
identified in an ovarian tumor gene from Drosophila
melanogaster by bioinformatics analysis [35]. The Otu
gene product is associated with cell division and differentia-
tion of the cystoblast cell [36,37]. Subsequent studies
demonstrated that some members of the OTU family are
deubiquitinating enzymes containing putative catalytic
cysteine and histidine residues [28,38]. Almost all OTUs
contain an OTU catalytic domain and an ubiquitin
interaction domain, such as an UIM (ubiquitin interacting
motif) domain, UBA (ubiquitin associated) domain, or ZnF
(Zinc finger) domain. The structure of the OTU core domain
is composed of β-strands flanked between α-helical
domains, which are arranged into an anterior α-helical
domain, a central β-sandwich domain and a posterior α-
helical domain [28,39]. The active site of OTUs is formed
near the center of the OTU surface at the junction between
the helical domain and the β-strands domain. The catalytic
cleft is horizontal along the domain interface. The predicted
ubiquitin binding domain is located in the right part. To the
left of the active site may lay the potential binding surface of
the substrates [40] (Fig. 2A). Although the overall structures
of OTUs are different from each other, the arrangement of
catalytic residues is similar and conserved.
Most DUBs bind ubiquitin via the S1 site and will cleave

all linkage polyubiquitin chains [3]. However, some OTUs
display remarkable preference for cleaving polyubiquitin
chains of certain linkage types (Table 1) [41]. OTUD2 and
OTUD3 show remarkable linkage specific reactivity. The
catalytic domain of OTUD2 shows a preference for cleaving
K11-linked chains, OTUD3 cleaves K6-linked diubiquitin
bound [41]. Other OTUs also show chain specificity against
different diubiquitin conjugates. For example, A20 cleaves
K11 and K48 chains. OTUB1 prefers K48 linkages [42,43],
OTUD7A/OTUD7B prefers K11 linkages, Trabid is K29
and K33 specific [44], and OTULIN is Met1 specific [45].
In some cases, UBDs enhance the specificity activity. For
example, the Lys29- and Lys33-linked specificity of Trabid
depends on its Ank (ankyrin repeat) UBD domain [44].
Similarly, the Lys63 specificity of OTUD1 relies on its
C-terminal UIM domain [3].
OTUs are generally isopeptidases that catalyze a

proteolytic reaction between a lysine ε-side chain and a
carboxyl group of the ubiquitin C terminus [22] (Fig. 3).
Like other cysteine proteases, OTUs share a common
catalytic center, which depends on two or three crucial
amino residues (cysteine-histidine-aspartic acid) [46].
Mevissen and Komander have reviewed the catalytic
mechanisms of DUBs in detail [22]. Briefly, the catalytic

cysteine residue of OTUs enables a nucleophilic attack on
isopeptide linkages; a nearby histidine side chain lowers
the pKa of the catalytic cysteine residue; and a third
residue, usually aspartic acid or asparagine, stabilizes and
polarizes the catalytic histidine residue [27]. A distinct
feature of this catalytic mechanism is a catalytic acyl
intermediate, in which the carboxyl group is covalently
bound to the catalytic cysteine after the amino group has
been cleaved by hydrogen-donating residues, which form
an oxy-anion hole nearby. An important role of the
oxyanion hole is to orient the histidine residue by C-H-O
hydrogen bonding [47]. In a second step, a water molecule
hydrolyses the acyl-cysteine intermediate to complete the
catalytic cycle [48]. The enzyme is regenerated by a
nucleophilic attack of water molecule to acyl intermedi-
ates. Although it is diverse in sequence and structural folds,
the catalytic triad of OTUs is more or less conserved. Some
catalytic triads maybe misaligned in the apo form, but after
ubiquitin binding, the active site reorganizes and a correct
conformation forms [27,46].

OTUs family

Based on protein structures and domains, the OTU-type
DUBs can be divided into four subclasses: the otubains
subfamily (OTUB1 and OTUB2), the OTUD subfamily
(OTUD1, OTUD2, OTUD3, OTUD4, OTUD5, OTUD6A,
OTUD6B, ALG13), the A20-like OTUs subfamily (A20,
OTUD7A, OTUD7B, Trabid, VCPIP1), and the OTULIN
subfamily (Fig. 4A). Most human OTUs contain a catalytic
domain and additional domains, such as UIM, UBA and
ZnF domain (Fig. 4B). Although they share a similar
catalytic mechanism, the sequence and size of the catalytic
domain of the four OTUs subfamilies vary widely. The
typical structures of the OTUs catalytic domains, diubi-
quitin binding state and ubiquitin binding state of each
subfamily are shown (Fig. 5). The structure of the OTU
core domain is arranged like a sandwich, with an anterior
α-helical domain, a central β-sandwich domain and a
posterior α-helical domain [28,39]. The active site of
OTUs is formed near the center of the OTU surface in the
top-down orientation, and the catalytic cleft runs horizon-
tally along the domain interface. Although the sequence
and overall structure of the OTUs are different from both
each other and other members of DUBs family members,
such as USPs and UCHs, the arrangement of catalytic
cysteine and histidine residues is similar and conserved
[82]. In the following paragraphs we describe each of the
four classes of OTUs in more details.

OTUB subfamily (OTUB1 and OTUB2)

The OTU enzyme OTUB1 is one of the most abundant
DUBs in cells, displays a remarkable specificity for Lys48-
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linked chains, and intriguingly, also binds E2 enzymes.
OTUB1 contains a structurally disordered N-terminal
ubiquitin binding helix that is stabilized upon binding to
an E2, such as UBE2N (ubiquitin conjugating enzyme 2N)
or UBE2D. This interaction significantly enhances
OTUB1 catalytic activity. OTUB1 not only reverses
Lys48 ubiquitination but also serves as a powerful inhibitor
of various ubiquitination events by regulating E2-ubiquitin

conjugates. OTUB1 also possibly acts in part as a buffer or
even as a molecular rheostat to sense and regulate
equilibrium between cellular free ubiquitin and ubiquitin-
charged E2 concentrations [5]. OTUB1 participates in
mTOR (mechanistic target of rapamycin) complex regula-
tion, which plays an important role in the integration of
various environmental signals to regulate cell metabolism,
growth, proliferation, and survival. OTUB1 was reported

Fig. 3 Catalytic reaction of OTUs. OTUs generally contain a catalytic triad composed of cysteine, histidine and an acidic residue. Upon diubiquitin
binding, the deprotonated catalytic cysteine residue attacks the isopeptide linkage, forming a negatively charged tetrahedral intermediate. The
proximal Ub releases from the catalytic center, and an acyl intermediate form. Awater molecule triggers a deacylation reaction and then the distal Ub
releases.

Fig. 4 Phylogenetic tree and domain composition of human OTUs. (A) Phylogenetic tree of human OTUs. (B) Domain composition of human
OTUs.
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to inhibit mTORC1 activity by deubiquitinating and
stabilizing the inhibitor DEPTOR (DEP domain-contain-
ing mTOR-interacting protein) in response to amino acid
deprivation [83].
A siRNA screen identified that K63-ubiquitin conju-

gates at DNA DSB (double strands break) sites are further
antagonized by OTUB2 [50]. OTUB2 suppresses RNF8
(ring finger protein 8)-mediated L3MBTL1 ubiquitination
and K63-linked ubiquitin chain formation in a deubiqui-
tinating activity dependent manner. OTUB2 antagonizes
DSB-induced ubiquitination through deubiquitination,
while OTUB1 suppresses DSB-induced ubiquitination by
inhibiting the E2-conjugating enzymes in a DUB activity-
independent manner [5]. Zhang et al. found that OTUB2
enhances breast cancer metastasis by activating the YAP
(Yes-associated protein)/TAZ (transcriptional coactivator
with PDZ binding motif) pathway through direct deubi-
quitination and stabilization of both YAP and TAZ. They

also show Poly-SUMOylation is required for OTUB2 to
interact with and deubiquitinate YAP/TAZ [49]. Since, Zou
et al. shows NEDD8 substrate Cul7 acts as a ubiquitin
ligase to promote Mst1 degradation, thereby activating
YAP signaling and cardiomyocyte proliferation [58]. All
these imply OTUB2 may function in cardiac morphogen-
esis.

OTUD subfamily (OTUD1, OTUD2, OTUD3, OTUD4,
OTUD5, OTUD6A, OTUD6B, ALG13)

OTUD1

OTUD1 is a 481 amino acid long OTUD subfamily protein
containing an UIM domain, which is important in the
regulation of K63 chain specificity. OTUD1 is an
important DUB that regulates cell growth and apoptosis
by directly suppressing p53 ubiquitination in cells that

Fig. 5 Structure of OTUs catalytic domain and diubiquitin/ubiquitin binding state. (A) OTUB subfamily (PDB: 2ZFY, 4DHZ, 4FJV); (B) OTUD
subfamily (PDB: 4BOQ, 4BOZ, 4BOS); (C) A20 subfamily (PDB: 5LRU, 5LRV, 5LRW); (D) OTULIN subfamily (PDB: 3ZNV, 3ZNZ, 4KSK).
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keeps its stabilization and activation [84]. Zhang et al.
found that loss of OTUD1 enables breast cancer cells to
undergo EMT and gain cancer stem cell traits, thereby
driving metastatic spread to distant organs. As a potent
negative regulator of the TGF-β (transforming growth
factor-β) signaling pathway, OTUD1 strongly induces
EMT (epithelial to mesenchymal transition) and cancer cell
stemness [54]. Recently, Zhang et al. revealed novel
negative feedback regulation of innate antiviral immune
response of OTUD1 [85]. The infection of RNA viruses
can upregulate OTUD1 expression, which interacts with
and deubiquitinates Smurf1 (Smad ubiquitination regula-
tory factor 1). The accumulation and deubiquitination of
Smurf1 facilitates its localization to mitochondria, where
Smurf1 interacts with and degrades the MAVS (mitochon-
drial antiviral-signaling protein)/TRAF (TNF receptor
associated factor) 3/TRAF6 signalosome.

OTUD2

OTUD2, also known as YOD1, can remove conjugated
ubiquitin from substrates and participates in endoplasmic
reticulum-associated degradation (ERAD) of misfolded
lumenal proteins [86]. OTUD2 harbors the essential
catalytic DUB activity, but also function as a ubiquitin
sensor by its S2 ubiquitin binding site. Ubiquitin binding
by OTUD2 stimulates the interaction of OTUD2 with p97,
in turn, p97 activates ubiquitin binding of OTUD2. By
recruiting PLAA (phospholipase A-2-activating protein),
UBXN6 (UBX domain-containing protein 6) and VCP
(valosin-containing protein) to damaged lysosome mem-
branes, OTUD2 plays a role in regulation of macroauto-
phagy, including the clearance of damaged lysosome [87].

OTUD3

As a deubiquitinase of tumor suppressor PTEN (phospha-
tase and tensin homolog deleted on chromosome ten),
OTUD3 specifically interacts with PTEN and inhibits the
PI3K (phosphatidylinositol-3-kinases)/AKT (protein-ser-
ine-threonine kinase) signaling pathway. OTUD3 trans-
genic mice exhibit higher levels of the PTEN protein and
are less prone to breast cancer tumorigenesis. OTUD3 is an
essential regulator of PTEN and the OTUD3-PTEN
signaling plays a critical role in tumor suppression [6].
However, Du et al. recently demonstrated that OTUD3
promotes a tumor in lung cancer by maintaining GRP78 (a
glucose-regulated protein 78 kDa) protein levels [59]. To
evaluate the physiologic role of OTUD3 in tumorigenesis,
knockout mice were generated. The data show that the
pathological function of OTUD3 is different in different
tissues, such as a suppressor of breast cancer, a promoter of
lung cancer. This finding means that the function of some
OTUs relies on cell or tissue specificity; an effective cancer

treatment strategy should take this specificity in considera-
tion.

OTUD4

OTUD4 negatively regulates inflammatory signaling; and
as a RBP (RNA binding protein), OTUD4 regulates RNA
granules. Through the IL-1 receptor and TLR signaling
pathways, OTUD4 deubiquitinates K63-linked ubiquitin
of MYD88 (myeloid differentiation primary response 88)
adapter, and triggers downregulation of NF-kB dependent
transcription of inflammatory mediators [61]. OTUD4
deubiquitinates and stabilizes ALKBH3 (α-ketoglutarate-
dependent dioxygenase alkB homolog 3), and promotes
the repair of alkylated DNA lesions [60]. Das et al. reveal
that OTUD4 is a RBP, is present in neuronal RNA
granules, and plays a role in translation. Under physiologic
conditions, OTUD4 is required for proper formation of
cytoplasmic stress granules during acute cellular stress
[88]. Their work opens up new lines of research regarding
OTUD4 as a RBP, and the function of an OTU in
translation regulation and RNA granules. Future work will
be needed to investigate the details and mechanisms of
these processes.

OTUD5

OTUD5 deubiquitinates TRAF3 and subsequently inhibits
IFN production, functioning as a negative regulator of
innate immunity [89]. Phosphorylation of OTUD5 at a
single residue, Ser177, is both necessary and sufficient to
activate the enzyme [7]. de Vivo et al. described a new role
of OTUD5 in chromatin damage response wherein the
OTUD5-UBR5 (E3 ubiquitin-protein ligase UBR5) com-
plex regulates FACT (facilitates chromatin transcription)-
mediated transcription as a response to DNA damage [90].
Further investigation into the nature of the interaction
between OTUD5 and FACTwill provide more insight into
this regulation.

OTUD6A and OTUD6B

OTUD6A and OTUD6B show great similarity (56%
identity), but the publication of OTUD6A is much less
than OTUD6B. OTUD6B primary transcripts can be
alternatively spliced to yield three splice variants. Variant
1 contains an N-coiled coil domain, variant 2 lacks the N-
coiled coil domain, and variant 3 has a short N-terminal
deletion [65]. The function of OTUD6B associates with
protein synthesis initiation complex and modifies the
preinitiation complex. OTUD6B operates downstream
from mTORC1 and regulates protein synthesis in
NSCLC (non-small cell lung cancer) cells. The two main
OTUD6B splicing isoforms (isoform 1 and isoform 2)
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seem to regulate protein synthesis in opposing fashions:
the long OTUD6B-1 isoform acts as a repressor of general
protein synthesis, but the short OTUD6B-2 isoform seems
to stimulate protein synthesis [65]. OTUD6B can repress
DNA synthesis and modify different cellular targets,
thereby regulating cell growth and proliferation [65].
OTUD6Bmay also play a role in proteasome assembly and
function [91]. OTUD6B-AS1 (OTUD6B antisense RNA1)
might also be a novel negative regulator of apoptosis in
systemic sclerosis [92]. Wang et al. recently presented a
novel mechanism by which lncRNA OTUD6B-AS1 can
inhibit ccRcc (clear cell renal cell carcinoma) proliferation
via the Wnt/β-catenin signaling pathway [93].

ALG13

ALG13 (asparagine-linked glycosylation 13 homolog) is a
putative bifunctional enzyme, with UDP-N-acetylglucosa-
mine transferase and deubiquitinase activities. Gao et al.
found that ALG13 expression in the central nervous
system (CNS) had histological and cellular specificity,
mainly in the epilepsy related regions, such as cortex and
hippocampus. They also gave the possible mechanisms of
ALG13 in epilepsy by hyperactive mTOR signaling
pathway in the cortex and hippocampus. This is the first
evidence of the association between ALG13 and epilepsy
in experimental animals [81]. But until now, the research
on the deubiquitinase activity of ALG13 is still rare.

A20-like subfamily (A20, OTUD7A, OTUD7B, Trabid,
VCPIP)

A20

Human A20 localizes to chromosome 6 and encodes a 790
amino acid protein which contains an N-terminal protease
domain and a C-terminal zinc finger domain. A20
possesses two seemingly opposing ubiquitin editing
activities, having both E3 ubiquitin ligase and deubiqui-
tinase activity. As a negative regulator of NF-kB, A20 is
involved in both immune and inflammatory regulation.
Upon TNF (tumor necrosis factor) stimulation, A20
deubiquitinates K63-linked polyubiquitin chains on
RIPK1 and TRAF6, and catalyzes the formation of K48-
linked polyubiquitin chains. These results of RIPK1
degradation and termination are from TNF-mediated
activation of NF-kB [94]. A20 also inhibits NF-kB at the
level of the IKK complex by deubiquitination of NEMO
(NF-kB essential modulator)/IKKg (IkB kinase g)
[40,95]. Upon TCR (T cell receptor)-mediated T cell
activation, A20 deubiquitinates MALT1 (mucosal-asso-
ciated lymphoid tissue 1), thereby mediating disassociation
of the CBM (CARMA1–BCL10–MALT1 signalosome)
and IKK complexes, and preventing sustained IKK

activation [96,97]. The zinc finger domain of A20 targets
TRAF2 for lysosomal degradation [98]. Yang et al. found
that A20 regulates the DNA damage response and
mediates tumor cell resistance to DNA damage therapy
[99].

OTUD7A and OTUD7B

OTUD7A and OTUD7B target Lys11-linked ubiquitin
chains with high specificity. The high expression level of
OTUD7A in the CNS system indicates its important
function in nervous system development. Yin et al. found
that OTUD7A is important in regulation of dendritic
spine density and activity, and revealed that OTUD7A is
crucial for the development and function of the CNS
[100]. Otud7a knockout mice have recapitulated
cardinal phenotypes associated with 15q13.3 microdele-
tion syndrome, such as developmental delay, intellectual
disability, epilepsy, language impairment, abnormal
behaviors, neuropsychiatric disorders, and hypotonia
[67,100].
OTUD7B plays important roles in NF-kB, mTOR, and

hypoxia signaling, as well as in neural stem cell
differentiation [9,101]. Wang et al. found that OTUD7B
and TRAF2 govern an ubiquitin dependent switch that
regulates mTORC2 signaling [102]. The TRAF2 E3
ubiquitin ligase promotes K63-linked ubiquitin of GβL.
This modification disrupts the interaction between GβL
(protein GbetaL) and the unique mTORC2 component
SIN1, thus favoring mTORC1 formation. In contrast,
OTUD7B removes the ubiquitin chains from GβL to
promote GβL interaction with SIN1, facilitating mTORC2
formation in response to various growth signals. Growth
factor signaling triggers OTUD7B-mediated GβL deubi-
quitination to promote mTORC2 integrity, thus favoring
tumorigenesis. Hu et al. found that OTUD7B controls
noncanonical NF-kB activation by deubiquitination of
K63-linked TRAF3. As a pivotal negative regulator of the
noncanonical NF-kB pathway, OTUD7B has been impli-
cated in TRAF3 deubiquitination. This is different from
OTUD5 regulation of K63 ubiquitination and the non-
degradative function of TRAF3 in the PPR-induced IFN-1
signaling pathway [9,89]. OTUD7B can also, by reducing
K63-linked ubiquitin of TRAF6, inhibit NF-kB dependent
inflammation activation in response to hypoxia-reoxygena-
tion [103]. Furthermore, Cui et al. revealed that OTUD7B
seems to be a specific DUB for Sox2 and maintains NPCs
(neural progenitor cells) property by the removal of
ubiquitin from Sox2. OTUD7B is highly expressed in
ESCs (embryonic stem cells) and NPCs, suggesting that it
might play a wide role in this regulation. However,
elucidation of this role requires further deep studies [69].
The crystal structure of OTUD7B illuminated the

specificity mechanism of it. In the absence of an

550 The function and regulation of OTU deubiquitinases



ubiquitination state, OTUD7B is autoinhibited, but is able
to bind a ubiquitin chain due to the open S1 site [68]. Large
conformation changes occur in the OTU domain between
unbound and diubiquitin-bound states. Lys11 diubiquitin
binding to S1 site exposes hydrophobic residues and
contributes to the S1′ site formation in situ. The
mechanism of OTUD7B shows the potential plasticity of
OTUs and suggests that the S1 and S1′ sites may be
dynamic remodeling [68].

Trabid

Trabid exhibits a remarkable preference for K63-linked
ubiquitin with its three tandem NZF fingers, and is required
for efficient TCF (transcription factor)-mediated transcrip-
tion in cells with high Wnt activity. Tran et al. found that
Trabid can bind and deubiquitylate the tumor suppressor
protein APC (adenomatous polyposis coli protein), a
negative regulator of Wnt-mediated transcription [104].
Furthermore, the effect of Trabid on APC appears to
function in downstream of β-catenin stabilization, and
APC may decrease the rate of TCF-β-catenin complex
formation, which is seemingly dependent on K63
ubiquitination of APC. Trabid plays a role in the regulation
of cell morphology, cytoskeletal organization, and cell
migration [44,105]. A report by Jin et al. demonstrated that
the production of IL-12 and IL-23 is under control of
Trabid. This study revealed a new role for Trabid in driving
inflammatory T cell responses and indicates that the
mechanism is Trabid-mediated deubiquitination and sta-
bilization of the demethylase Jmjd2d (lysine-specific
demethylase 4D), which negatively regulates the repres-
sive histone methylation marks at the IL12 (interleukin-2)
and IL23 promoter [106,107].

VCPIP

VCPIP is necessary for VCP-mediated reassembly of
Golgi stacks after mitosis [80]. Another function of VCPIP
is in VCP-mediated formation of transitional endoplasmic
reticulum (tER). Tsai et al. found that VCPIP stabilizes
LCA (light chain A), an extraordinarily stable catalytic
light chain of BoNT/A (BoNT serotype), thereby limiting
BoNT/A degradation by the proteasome, and this results in
the duration of botulinum neurotoxin type A intoxication
[79].

OTULIN subfamily (OTULIN)

OTULIN is the only known Met1-specific DUB. It binds
Met1-linked chains with high affinity to the S1 and S1′
sites in a manner such that only the N-terminal Met1
residue of the proximal ubiquitin is adjacent to the active
site [108]. Importantly, OTULIN uses a mechanism of

ubiquitin-assisted catalysis whereby the proximal ubiquitin
moiety releases an autoinhibited state of the catalytic
center [45]. OTULIN specifically removes Met1-linked
linear polyubiquitin chains from substrates and acts as a
regulator of both angiogenesis and innate immune
response [10,45,109]. OTULIN interacts with HOIP
(HOIL-1L interacting protein)/RNF31, a key component
of LUBAC (linear ubiquitin chain assembly complex), and
counteracts LUBAC activity, further regulating canonical
Wnt signaling [108]. The HOIP-OTULIN interaction has
evolved to be both specific and high-affinity [110]. By
interacting with the LUBAC complex and downregulating
TNFα, OTULIN inhibits LUBAC-mediated NF-kB sig-
naling [45]. As a key negative regulator of inflammation,
OTULIN restricts spontaneous inflammation and main-
tains immune homeostasis [10]. Heger et al. showed that
OTULIN promotes rather than counteracts LUBAC
activity by preventing its auto-ubiquitination with linear
polyubiquitin. These results highlight a new interaction
between linear ubiquitination, cell death regulation, and
type I interferon induction [111].

Regulation mechanism of OTUs

In vitro, the activity of OTUs is often low, indicating the
presence of widespread activation mechanisms imposed by
the cellular environment. The variety of mechanisms for
OTUs to interact with ubiquitin and substrates correspond-
ingly enables enough regulatory mechanisms to fine-tune
OTUs function. The substrate binding site can be occluded,
the catalytic triad of some OTUs seems to be in an inactive
conformation, and a conformational change is necessary
for its activity. All ubiquitin dependent processes, such as
post translational modification, oxidation and allosteric
interactions, and their abundance and subcellular localiza-
tion, are tightly regulated [27].

Post-translational modifications (PTMs)

The extensive crosstalk between ubiquitin signaling net-
works and other PTMs, such as phosphorylation (Fig. 6A),
ubiquitylation, acetylation (Fig. 6B), and SUMOylation, is
an important way to adjust the OTUs catalytic activity.
Phosphorylation is a key PTM that can modulate DUB
activity both positively and negatively. The regulation
mechanism of OTUD5 is the most well understood
example used to explain phosphorylation regulation.
CK2 (casein kinase 2)-mediated Ser177 phosphorylation
within the catalytic domain activates OTUD5 activity,
representing the first example of how phosphorylation
could activate a DUB [7,112]. The phosphorylated loop
can stabilize the enzyme and exclude water molecules from
the active site. This example reveals the regulatory
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capabilities and plasticity present in DUBs [7]. Another
interesting example of phosphorylation mediated regula-
tion of DUBs function is illustrated by A20. A20
phosphorylation on Ser381 within the zinc-finger region
by IKKβ increases A20 activity toward Lys63-linked
chains [3,46,113,114]. In addition to directly affecting the
catalytic activity of DUBs, phosphorylation can also
indirectly regulate DUBs function, for example, by
changing the protein subcellular localization. In DNA
damage repair, the Ser16-phosphorylated OTUB1 accu-
mulates in the nucleus and impacts the DNA repair [115].
Binding of OTULIN to LUBAC is blocked by OTULIN
phosphorylation [76]. Therefore, phosphorylation acts as
an important regulator of OTU function by regulating
either DUB activity, or its interaction and subcellular
localization [116]. Modification of OTUs with ubiquitin or
ubiquitin-like molecule constitutes another regulation
mode, such as SUMOylation. Taking OTUB2 as an
example, SUMOylation of it plays multiple functions:
SUMOylation of the last five amino acid residues causes
OTUB2 self-inhibition, while SUMOylation of Lys233
mediates OTUB2-YAP/TAZ interaction [38,49].
The OTUs are cysteine proteases, of which reactive site

is sensitive to oxidation. Reversible oxidation of the OTUs
has also been reported, such as in A20 and OTUD7B
regulation [71,117–119]. The A20 structures in different

oxidized states revealed how normally unstable hydro-
xylation intermediates (cysteine sulfenic acid) stabilized
by interactions within the OTU domain (Fig. 6C) [71].
Hydrogen peroxide inhibits negative regulation of NF-kB
signaling by modifying OTUD7B and thereby impairing
its capacity to deubiquitylate receptor interacting protein1
(RIP1) [120]. Both DUB activity and oxidation require the
presence of a low pKa cysteine residue that is created
through charge withdrawal by a nearby His residue of the
catalytic triad. The cysteine-based OTUs serve as ROS
(reactive oxygen species) sensors and the oxidation
inhibition regulation is reversible. All these are critical
for fine-tuning cellular stress responses. This regulation
mechanism provides an attractive model for how ubiquitin
signals can be reversibly regulated in response to the
reactive oxygen species.

Allosteric regulation

The specificity and flexibility of substrates, the PTMs
modification, and regulated nonfunctional configuration of
the natural OTUs, all indicate that allosteric regulation is
required to execute OTUs full functionality. The intrinsic
DUB activity of catalytic domains is often allosterically
modulated by domains within the enzyme or by binding

Fig. 6 Structural insights into regulation mechanisms of OTUs activity. (A) Phosphoactivation modification of OTUD5 Ser177 residue (PDB:
3TMP). (B) Acetylation modification of A20 Cys103 residue (PDB: 5V3P). (C) Oxidation regulation of A20 Cys103 in reduced or oxidized station
(PDB: 3ZJD, 3ZJE, 3ZJG). (D) Allosteric regulation of OTU7B and OTUB1. Allosteric regulation of OTUD7B by di-Ub binding and OTUB1 by di-
Ub and UBC13 binding, the conformation changed remarkably are labeled in yellow cycle (PDB: 5LRW, 5LRV, 2ZFY, 4DHZ).
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partners [22]. Substrate or cofactor binding can regulate
enzyme activity, enabling exquisite control of DUB
activity. OTULIN chooses the ubiquitin-assisted mechan-
ism to regulate catalytic activity. The crystal structures of
OTULIN reveal that DUB activity is directly activated by
Met1 diubiquitin [45,108]. By Met1-diubiquitin binding,
Glu16 of the proximal ubiquitin resolves an inhibitory
conformation and helps with formation of the active
catalytic triad. Similarly, OTUD7B activates by Lys11
diubiquitin binding, leading to many more large con-
formational rearrangements during the catalytic cycle (Fig.
6D) [68].
OTUB1 forms complexes with E2 ubiquitin conjugating

enzymes that regulate the activity of both E2 and OTUB1
[53,121]. OTUB1 suppresses the ubiquitin conjugating
activity of E2, while E2 stimulates OTUB1 DUB activity.
Structural studies have elucidated the mechanism of this
reciprocal regulation by enzymes that conjugate and
remove ubiquitin [122]. Structural studies have revealed
that binding of OTUB1 to its E2 conjugate is regulated by
the binding of a free ubiquitin monomer to OTUB1, which
allosterically regulates the binding power of OTUB1 to E2
enzymes. A comparison between the structures of OTUB1
bound to UBC13, and in the absence of ubiquitin shows
that ubiquitin binding triggers conformational change in
OTUB1 (Fig. 6D). These structural changes include
rearrangements within the OTU domain that maximize
contacts with the ubiquitin bound in the OTUB1 proximal
site as well as the formation of a roughly 20 residue
ubiquitin binding helix in the OTUB1 N terminus, which is
disordered in the state of apo enzyme [123].
Many OTUs contain additional ubiquitin binding

domains or motifs, which might directly regulate their
activity or specificity. The ubiquitin-chains binding can
change the conformation of OTUs and modulate their
catalytic activity. OTUD5 requires intact UIMs to
efficiently hydrolyse polyubiquitin chains. UIMs can also
impart linkage specificity [89]. Many DUBs are activated
by UIM binding, which increases the efficiency of
substrate capture. For example, A20 binds to multiple
ubiquitin binding proteins, including TAX1 binding
protein 1 (TAX1BP1) and the A20 binding inhibitor of
NF-kB activation proteins (ABINs), which may affect
catalysis or substrate targeting [124]. Allosteric regulation
should be carefully considered in the research of DUB
assays and allosteric sites have shown their potential for
use in inhibitors design.

Regulation by abundance and subcellular
localization

To understand the function of OTUs on cellular processes,
both the individual protein levels and their intracellular
locations should be considered. Like most signaling

proteins, the quantities of OTUs are regulated by
transcription, translation, and degradation. The expression
of some OTUs can be induced in a stimulation-dependent
manner. One example is the discovery of A20 as a TNF-
induced gene. In unstimulated cells, A20 levels are low,
but substantially rise upon NF-kB activation, acting as a
negative feedback regulator [125]. During proteolytic
processing, A20 abundance can be regulated by MALT1
(mucosa associated lymphoid tissue lymphoma transloca-
tion protein 1) paracaspase, which cuts A20 between the
N-terminal OTU catalytic domain and the C-terminal
UBDs to regulate its function [126]. The cross-regulation
of the OTUB1 and E2 enzyme complex in vivo remains to
be explored using validated substrates, such as c-IAP1
(cellular inhibitor of apoptosis 1) and the E3 ligase,
GRAIL (gene related to anergy in lymphocytes protein)
[127].
The subcellular localization of OTUs has several

important consequences for their functions. Subcellular
localization will determine the palette of substrates
available for processing. Many mechanisms can explain
DUB subcellular localization, including localization sig-
nals, targeting domains, and protein interaction domains
that recruit DUBs to defined complexes [128]. Several
DUBs show nuclear accumulation, with OTUD7A speci-
fically localizing to the nucleolus, thus regulating its
structure and function. Coupling of localization and
activation is an important principle of cellular biology.
Phosphorylation of OTUB1 by casein kinase 2 keeps
OTUB1 in nuclear localization [115,129]. Also, localiza-
tion can be affected by changing protein interactions. For
example, hydroxylation of OTUB1 by FIH (factor
inhibiting HIF) alters both the OTUB1 interactome and
its substrates [130,131].

Cellular function of OTUs

OTUs activities fall into several major functional cate-
gories: (1) generation of free ubiquitin; (2) reversal of
ubiquitin signaling or protein degradation; (3) edit the form
of ubiquitin modification. OTUs serve many important
cellular functions, and several are essential for cell
viability. The importance of the components of the
ubiquitin conjugation and deconjugation systems is under-
scored by the fact that their deregulation has been related to
the pathogenesis of a number of human diseases. These
include neurodegenerative, inflammation/immunity, apop-
tosis, cell cycle, and metabolic disorders, as well as cancer
[30,132].

OTUs and tumorigenesis

The wide function of OTUs has a profound impact on the
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regulation of multiple biological processes such as cell
cycle control, DNA damage repair, chromatin remodeling,
and several cancers related signaling pathways including
p53, NF-kB, and Wnt signaling pathways. OTUB1 have
important roles in DNA damage repair; A20, OTUD5,
OTUD7B, and OTULIN participate in NF-kB signaling
pathway; and Trabid are associated with Wnt signaling.
As a tumor suppressor, p53 performs critical functions in

maintaining cellular homeostasis and is frequently mutated
in most tumors. Some OTUs are associated with p53
regulation. OTUB1 abrogates p53 ubiquitination, as well
as stabilizes and activates p53 in cells. However, this is
independent from its deubiquitinating enzyme activity
[84,133]. OTUD1 directly suppress p53 ubiquitination in
cells. This keeps p53 both stabilized and activated, thus
inhibiting cell growth [84]. In the presence of DNA
damage or genotoxic stress, OTUD5 regulates p53 stability
[62,134].
The NF-kB signaling pathway has involvement in

multiple roles in cancer progression, including anti-
apoptosis, cell cycle, angiogenesis, and metastasis [135].
A20 and several other DUBs are involved in the NF-kB
signaling pathway [136,137]. Through holding the coop-
erative activity of two ubiquitin-editing domains, A20
downregulates NF-kB signaling. The N-terminal domain
of A20 removes lysine-63 (K63)-linked ubiquitin chains
from TRAF6 and RIP1 (receptor interacting protein). A20
has also been reported to possess E3 ligase activity, which
adds K48-linked chains to TRAF6 and RIP1 [138]. The C-
terminal domain of A20 is composed of seven C2/C2 zinc
fingers, and functions as an ubiquitin ligase by poly-
ubiquitinating RIP1 with K48-linked ubiquitin chains,
thereby targeting RIP1 for proteasomal degradation [94].
Thus A20 can edit ubiquitin chain modification by
coordinating removal of K63-linked ubiquitin chains
promoting NF-kB from RIP1. This is followed by its
replacement with K48-linked ubiquitin chains that specify
degradation. Linear ubiquitin chains generated by LUBAC
play an important role in NF-kB activation. By interacting
with HOIP, a catalytic subunit of LUBAC, OTULIN
synergistically suppresses LUBAC-mediated linear poly-
ubiquitination and NF-kB activation. The interaction
between OTULIN and HOIP is involved in controlling
the extent of TNF-α induced NF-kB activation in cells.
This is accomplished by fine-tuning the generation of
linear ubiquitin chains by LUBAC [139]. Furthermore,
OTUD5 deubiquitinates TRAF3, resulting in diminished
type I interferon and interleukin 10 responses [140]. A
third OTU, OTUD7B, has been implicated in negative
regulation of NF-kB signaling. OTUD7B suppresses NF-
kB nuclear translocation and transcriptional activity by
deubiquitinating RIPK1 signaling intermediaries and
interacting with DJ-1 [141,142].
The Wnt signaling pathway is essential for control of

embryonic development and is frequently activated in

cancer. Trabid is critically involved in T cell factor (TCF)-
mediated transcription of Wnt genes. Recently, Zhu et al.
revealed that Trabid inhibits hepatocellular carcinoma
growth and metastasis by cleaving RNF8-induced ubiqui-
tination of Twist1 [143].
Multiple DUBs have been classified as oncogenes or

tumor suppressors because of their functions involved in
tumor development. Therefore, recent studies have focused
on DUBs as an anticancer target. However, further
understanding of the regulatory mechanisms needs to be
investigated for DUBs-targeting therapy against cancer.

OTUs and stem cells

Post-translational modification by ubiquitin is a key
regulator process for stem cell fate determination.
Ubiquitination and deubiquitination are the major cellular
processes used to balance the protein turnover of several
transcription factors that regulate stem cell differentiation
[144,145]. Cross-regulation between E3 ligases and DUBs
for stem cell transcription factors is important in the
regulation of stem cell function, including pluripotency,
differentiation, and self-renewal. E3 ligases ubiquitinate
stem cell-related transcription factors to regulate stem cell
differentiation, whereas DUBs maintain those proteins to
prevent stem cell differentiation by removing ubiquitin
molecules [146,147]. PTEN loss leads to the development
of cancer stem cells with the capacity for self-renewal and
multi-lineage differentiation [148,149]. Duan et al. found
that targeted disruption of PTEN leads to neoplastic
transformation of human neural stem cells [149]. Yuan
et al. report that, as a deubiquitinase of PTEN, OTUD3
interacts with, deubiquitylates, and stabilizes PTEN [6].
This indicates that the OTUD3-PTEN regulation pathway
may play a role in stem cell maintenance and differentia-
tion. Cui et al. report a crucial mechanism of OTUD7B,
which regulates the stem cell transcription factor Sox2 for
cell fate determination of NPCs [69]. As a specific DUB
for Sox2, OTUD7B maintains NPCs property through the
removal of ubiquitin from Sox2. OTUD7B, utilizing its C-
terminal ZF-domain, interacts with and stabilizes Sox2 in a
manner dependent on its deubiquitinase activity. More and
more studies have uncovered the OTUs regulating function
in stem cell pluripotency and differentiation, which may
pave the way to improving the treatment of related
diseases.

OTUs and DNA repair

Safeguarding the genome from genotoxic stress is critical
for cell survival and for preventing various human
diseases. DNA double-strand breaks (DSBs) are lethal
lesions that must be repaired. Protein ubiquitination is
integral in modulating the repair process [150–152]. The
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ubiquitination events upon DSBs generation are largely
mediated by RNF8 and RNF168 on histones, such as H1,
H2A, H2AX, and H2AZ. Increasing evidence demon-
strates the critical function of DUBs such as OTUB1,
OTUB2, and OTUD4 in DNA repair, especially in DSBs
repair [153]. Protein ubiquitination mediated by the RNF8
E3 ubiquitin ligase recruits DNA DSB response factors
and induces chromatin remodeling [154–156]. Kato et al.
found that OTUB2 fine-tunes this repair pathway and
allows the choice of an adequate DNA repair pathway [50].
OTUB2 suppresses RNF8-mediated L3MBTL1 (lethal (3)
malignant brain tumor-like protein 1) ubiquitination and
Lys 63-linked ubiquitin chain formation, but not histone
H2A ubiquitination. Another otubain subfamily member,
OTUB1, suppresses DSB-induced ubiquitination in a
different way, by inhibiting the E2-conjugating enzymes
in a DUB activity independent manner [5]. OTUD4 has
been shown to interact with and stabilize the demethylases
ALKBH2 and ALKHBH3, a function which is indepen-
dent of deubiquitinating activity. In this process, OTUD4
acts as a scaffold, recruits USP7 and USP9X to ALKBH2,
and ALKHBH3 for deubiquitination [60].

OTUs and virus infection

As a host defense mechanism, eukaryotic cells use
ubiquitination of microbial molecular patterns to tag
invasive pathogens and target them for autophagic
degradation. In response to this, intracellular pathogens,
such as bacteria or viruses, have developed strategies to
hijack the host ubiquitin pathway. One such strategy is to
express DUB-like enzymes that are able to counteract
ubiquitination and permit pathogens to escape their
elimination by autophagy [157,158]. Ubiquitination acts
a protective modification in anti-viral signaling pathway
regulation [159]. Viruses have evolved a series of different
mechanisms to evade or subvert cellular processes to their
own advantage. To establish a successful infection, viruses
utilize DUBs to interfere with both anti-viral immune
signaling pathways and other pathways, such as cell cycle
and apoptotic pathways [2]. Viruses utilize DUBs to
counteract innate immune responses and inhibit anti-viral
signaling pathways. Deubiquitination of ubiquitinated
signaling molecules from different innate immune signal-
ing pathways by host and viral DUBs ultimately inhibits
the synthesis of type I IFN.
Many viral and bacterial pathogens have their own

DUBs that are involved in pathogenesis and immune
evasion. Many viruses hold OTU domains. Examples
include nairoviruses, Crimean-Congo hemorrhagic fever
virus (CCHFV), Dugbe virus (DUGV), the papain-like
protease (PLP2) domain of the arterivirus equine arteritis
virus (EAV), and the protease (PRO) domain of the
tymovirus turnip yellow mosaic virus (TYMV) [160]. In

CCHFV, the RNA polymerase as a viral OTU DUB
inhibits RIG-I (retinoblastoma-inhibiting gene1) mediated
type I IFN synthesis by removing K63-ubiquitin from
activated RIG-I [161,162]. In some viruses (EAV,
CCHFV), OTUs can hydrolyze both ubiquitin and
ISG15, an ubiquitin-like antiviral molecule, from con-
jugated protein (Fig. 7). Viral OTUs inhibit ISGylation
modification of protein in order to counter some type-1
IFN antiviral responses, while DUB activity prevents
TNFα transcriptional effects. By these two conjugation
processes, viruses can evade or disrupt many different
cellular processes [162–164].
Instead of encoding DUBs directly, some pathogens

hijack host DUBs. IAV infection induces host A20
expression, negatively regulating the RIG-I/MDA5 depen-
dent type I IFN signaling pathway [165]. Measles virus
infection leads to impaired NF-kB activation by TLR4
signaling [166]. A20 downregulates NF-kB mediated gene
activation by deubiquitinating K63-ubiquitin TRAF6.
TRAF3 and TRAF6 are also deubiquitinated by OTUs
(OTUB1 and OTUB2) upon VSV infection of HEK293T
cells, negatively regulating RIG-I mediated type I IFN
synthesis [167]. In Raji cells (a cell of a cultured line of
lymphoblastoid cells derived from a Burkitt lymphoma),
EBV infection induces A20 mediated IRF7 deubiquitina-
tion to inhibit type I IFN synthesis [168]. Infecting viruses
utilize OTUs to inhibit innate-immune antiviral signaling,
suggesting that viruses co-evolved with their hosts to
acquire similar machinery for tricking immune surveil-
lance and establishing infection [169].
Mounting evidence demonstrates the importance of

DUBs, especially OTUs, in viral replication and pathogen-
esis. It is believed that DUBs will be attractive targets for
future antiviral therapeutics. Selective targeting of virus
DUBs by small molecule inhibitors or genetics-based
technology disruption gives promising potential for
antivirals therapeutics and vaccine design [164]. An
extensive study to understand more about target-substrate
specificity should be considered [169].

OTUs and bone remodeling

OTUs mediate bone remodeling by regulating both
differentiation and function of osteoblasts and osteoclasts
[170]. A20 demonstrates the ability to regulate osteoclas-
togenesis, while knockdown of A20 stimulates bone
resorption. A20 expression is increased by intravenous
immunoglobulin (IVIG ) treatment and plays an important
role in the suppressive effect of IVIG on osteoclast
differentiation. LPS is capable of promoting osteoclast
differentiation but not activation, through a TNF-α
dependent mechanism. Prolonged stimulation with lipo-
polysaccharide ( LPS) results in the expression of A20,
degradation of TRAF6, and inhibition of NF-kB, all of
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which lead to a lack of osteoclast resorption [171,172].
Besides A20, OTUB1 is also involved in bone formation
through TGF-β signaling.
Besides the activities we discussed above, OTUs may

play important roles in other fields, but the mechanisms
need further study. Yin et al. found that OTUD7A is crucial
for the development and function of the CNS. Otud7a null
mice show neurodegenerative phenomena, including
reduced body weight, developmental delay, abnormal
electroencephalography patterns, seizures, reduced ultra-
sonic vocalizations, decreased grip strength, impaired
motor learning/motor coordination, and reduced acoustic
startle [67,100]. OTUD7A localizes to dendritic spines.
The Otud7a null mice have decreased dendritic spine
density compared to the wild-type. Nevertheless,
OTUD7A plays an important role in regulation of dendritic
spine density and activity. Multiple important questions of
OTUD7A still need to be answered. These include
discovering what specific protein OTUD7A interacts
with and regulates as well as in which stages of synapse
development OTUD7A is involved.

Outlook and discussion

Following the approval of the proteasome inhibitor
Bortezomib as an anti-cancer therapeutic for the treatment

of multiple myeloma, inhibitors of the ubiquitin-protea-
some system (UPS ) have been given much attention as
potential drug targets for cancer therapy [173]. Despite the
significant and growing attractiveness of OTUs as drug
targets, OTUs-driven drug discovery has been challenging.
A key challenge of these is the similarity and high
homology that reduces selectivity. Although many small
molecule inhibitors have been reported in publications,
few of these have been specific [174]. Secondly, the
mechanisms of OTUs enzymes are complex and multi-
layered. This complexity is found in PTMs, allosteric
effects, and substrate-mediated catalysis. Many DUBs can
also alternate between active and non-active conforma-
tions. All of these factors should be considered during drug
development. Thirdly, the ubiquitylation-diubiquitylation
process is intracellular, so only traditional small molecular
chemicals can reach the DUBs [175]. In spite of the above
challenges, researchers have identified some small-mole-
cule inhibitors targeting the DUBs catalytic active center or
regulatory region. During the past few decades, we have
witnessed great advances in DUB functions, mechanisms
of reaction, regulation, and disease linkages. At the same
time, there have been major improvements in DUBs
biochemical assays and screening technologies, leading to
the development of increasing numbers of small molecule
DUB inhibitors. Although it is still too early to predict the
extent of the broad therapeutic potential of DUBs, the next

Fig. 7 Structures of viral OTU domains and ISG15. (A–D) Crystal structures of (A) CCHFV viral OTU domain (PDB: 3PT2), (B) DUGV OTU
domain (PDB: 4HXD), (C) EAV PLP2 (PDB: 4IUM), (D) TYMV OTU domain (PDB: 4A5U). (E) Crystal structure of ISG15 (PDB: 1Z2M), the N-
and C-terminal UBL domain are labeled. (F) Crystal structure of CCHFV OTU-ISG15 complex (PDB: 3PHX).
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few years of developments of DUB biology and drug
discovery will be exciting. The conformational plasticity of
the OTU catalytic domain frequently offers both opportu-
nities and targets for selective inhibitor screening [30].
Ubiquitin modification is a key regulator of many

cellular physiologic processes. The subfamily of OTUs has
emerged as an important regulator of signal pathway
cascades. Great progress has been made in the study of
OTUs and recent years have seen an explosion in the
number of reports addressing mechanisms of regulation
and function. However, we still have a way to go to acquire
a complete picture of OTUs biology. As we know, PTMs,
allosteric, and localization regulation play important roles
in OTU activity regulation. More and more evidence
shows RNA-OTU association contributing to the DUB
enzyme function of OTUs. Ji et al. reveal that RNA plays
an active in OTU enzymatic activity as a positive regulator.
They reveal that the binding of RNA promotes the
formation of OTU granules, highlighting the important
regulatory and functional roles of RNA in OTU activity
[176]. Another problem is our limited understanding of
some OTUs, such as OTUD7A. Evidence shows that
OTUD7A is crucial for development and function of the
CNS, as well as for the localization of its dendritic spines
[67,100]. But we still do not know what specific proteins
OTUD7A regulates, and interacts with. The mechanism is
also unknown. Important questions regarding OTUD7A
still need answering. As a potential target, OTUs-focused
research will contribute to understanding the pathogenesis
of some diseases and will help to lead to improved
therapeutic strategies. In this review, we have discussed the
structure, substrate specificity, function, and activity
regulation mechanism of OTUs. We hope to be helpful
in understanding the biological significance and regulation
of OTUs [170] .
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