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Abstract Immune checkpoint inhibitors are a promising strategy in the treatment of cancer, especially advanced
types. However, not all patients are responsive to immune checkpoint inhibitors. The response rate depends on the
immune microenvironment, tumor mutational burden (TMB), expression level of immune checkpoint proteins,
and molecular subtypes of cancers. Along with the Cancer Genome Project, various open access databases,
including The Cancer Genome Atlas and Gene Expression Omnibus, provide large volumes of data, which allow
researchers to explore responsive or resistant biomarkers of immune checkpoint inhibitors. In this review, we
introduced some methodologies on database selection, biomarker screening, current progress of immune
checkpoint blockade in solid tumor treatment, possible mechanisms of drug resistance, strategies of overcoming
resistance, and indications for immune checkpoint inhibitor therapy.

Keywords immune checkpoint blockade; sensitivity; resistance; data mining

Background

Immune checkpoint inhibitors show promising anticancer
activity in solid tumors. They can notably prolong patient
survival, especially in advanced cancers. However, in
clinical practice, not all cancers are responsive to immune
checkpoint inhibitors. The response rate depends on the
immune microenvironment, tumor mutational burden,
certain immune regulatory molecules expressed in tumor
cells, and molecular subtypes of cancers. Recently, open
access cancer databases such as The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) provide
platforms for exploring sensitive or responsive biomarkers
to immune checkpoint inhibitors.
Immune checkpoint inhibitors prevent tumor cells from

escaping T cell immunity by re-activating T cell immune
response to surrounding lymphocytes [1]. Treatment with
immune checkpoint inhibitors significantly extends patient
survival depending on the tumor type [2]. At present, the
FDA-approved immune checkpoint inhibitors include

monoclonal drugs, which target the molecules cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), PD-1, and
PD-L1. Among them, ipilimumab targets CTLA-4,
whereas nivolumab and pembrolizumab target PD-1. In
addition, atezolizumab, durvalumab, and avelumab target
PD-L1 [3–6]. Ipilimumab is the first immune checkpoint
blocker, and it was approved in March 2011. Since then,
several new immune checkpoint blockers have been
approved by the FDA one after the other. Pembrolizumab
has a wide range of indications, including melanoma, non-
small cell lung cancer, advanced gastric cancer, and solid
tumors with microsatellite instability (MSI). Some new
immune checkpoint blockers are also undergoing phase I/II
clinical trials, such as IMP321, which targets LAG3, and
indoximod, which targets IDO1. In addition, urelumab is
another monoclonal antibody drug that activates CD137
[7–10]. Some anticancer drugs have demonstrated immune
regulatory functions during chemotherapy. Axitinib is a
VEGF–VEGFR inhibitor that decreases tumor growth not
only by VEGF–VEGFR inhibition but also by significant
reduction of tumor-promoting mast cells and tumor-
associated macrophages [11]. Abemaciclib was originally
identified as a CDK4/6 inhibitor; however, it also showed
T cell activation function, and its therapeutic efficacy was
increased when combined with anti-PD-L1 treatment [12].
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Mechanisms of action of immune
checkpoint inhibitors

Immune checkpoint inhibitors block immunosuppressive
molecules expressed on tumor cells, allowing T cell
recognition of foreign antigens. Re-activated T cells can
kill tumor cells. CTLA-4 (also known as CD152) was the
first immune checkpoint molecule identified on the T cell
surface. CTLA-4 is highly homologous with CD28 surface
marker of T cell in structure, which competes with B7
(CD80 and CD86), a surface marker of antigen-presenting
cells (APCs) [13,14]. The binding of CTLA-4 and B7
could block signal transmission of APCs to Tcells and lead
to T cell inactivation [13,14]. The target of ipilimumab is
CTLA-4. Ipilimumab can block the binding of CTLA-4 to
B7. In addition, ipilimumab can clear away regulatory T
cells (Tregs) of the tumor microenvironment. Tregs are a
kind of T cells with high expression of CTLA-4 [15].
Some immune checkpoint inhibitors target the PD-1/

PD-L1 signaling pathway. PD-1 is mainly expressed on
activated Tcells, NK cells, and B cells [16–18]. PD-L1 and
PD-L2 are ligands of PD-1. PD-L1 is expressed on the cell
surface of a variety of solid tumors, such as gastric cancer,
breast cancer, and colorectal cancer. Moreover, PD-L1 is
also expressed on immune cells and vascular endothelial
cells. PD-L2 is mainly expressed on APCs [3,19–21]. The
binding of PD-1 and ligand PD-L1 inhibits the T cell
receptor from identifying new cancer antigens and blocks
intracellular signal transmission of the T cell [22].
Therefore, the monoclonal antibodies that target PD-1 or
PD-L1 can block the binding of PD-1/PD-L1 and restore
the signaling transmission of T cells [23,24]. In addition,
anti-PD-1/PD-L1 monoclonal antibody drugs not only
enhance T cell activity but also promote the lytic function
of NK cells and antibody production of plasma cells [18].

Therapeutic indications of available
immune checkpoint inhibitors

Until now, the FDA has approved six immune checkpoint
inhibitors (Fig. 1), including ipilimumab, pembrolizumab,

nivolumab, atezolizumab, avelumab, and durvalumab.
These drugs have been used in the treatment of various
solid tumors. The details of these drugs are summarized in
Table 1.

Methodologies of data mining for open
access databases

R language is an important tool in database mining of open
sources. The general data mining process includes down-
loading the gene expression profiling data set from TCGA
and GEO. The TCGA data are of a standardized RSEM file
format (the numbers represent gene transcript counts). The
GEO data are a normalized gene expression matrix or can
be separated into CEL format files for each sample.
Therefore, the CEL file format is needed for standardiza-
tion using the RMA function of Affy package. The batch
effects of multiple samples (different data sets) should be
removed by an SVA package. The prognostic factors of
each gene can be analyzed by COX univariate regression
(survival package). The prognostic genes are used for
pathway analysis (ClusterProfiler package), which is
helpful for uncovering pathogenesis. Consistent cluster
analysis of genes is suitable for finding the best molecular
classification (ConsensusClusterPlus Package). In data
mining, the data with details of clinicopathological
information or therapeutic information are more valuable.
Supposing one obtains a set of data with detailed clinical
information, he/she can carry out the following:
(1) Differentially expressed genes are calculated by the
Limma package (microarray data should be log2 trans-
formed at first) and edgeR package (for RNA sequencing
data). After obtaining a differentially expressed gene, Gene
Ontology or pathway analysis can be performed (Cluster-
Profiler package). A set of differentially expressed genes
(such as immune-related genes) can be used for consistent
cluster analysis (ConsensusClusterPlus Package) for
obtaining an immune-related molecular classification.
Lasso regression model (glmnet package) is a prognostic
predicting tool and is useful in guiding clinical practice of
immunotherapy. (2) Based on clinical information, Gene

Fig. 1 Immune checkpoint inhibitors approved by the FDA. From left to right, the six immune checkpoint inhibitors are listed.
Ipilimumab targets CTLA-4. Pembrolizumab and nivolumab target PD-1. Atezolizumab, avelumab, and durvalumab target PD-L1. The
drugs are presented according to the chronological order of FDA approval.
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Set Enrichment Analysis (http://software.broadinstitute.
org/gsea/index.jsp) is a method to find related pathways
and gene set. (3) The weighted gene co-expression
network analysis package is used for finding hub genes
associated with clinicopathological features of drug
sensitivity or resistance. The hub gene might be the most
critical gene of particular clinical importance as a potential
therapeutic target. The analytical flowchart of data mining
is summarized in Fig. 2 [19,25–34].

Strategies for suboptimal response to
immune checkpoint blockers

The possible reasons of immune checkpoint inhibitor
resistance are due to decreased tumor immunity or elevated
immunosuppressive status in the microenvironment [2]. To
improve this condition, the following strategies are
expected: (1) Enhancement of tumor immunity through
radiotherapy or chemotherapy. In a retrospective study of

Table 1 Immune checkpoint inhibitors approved by the FDA (https://www.fda.gov/default.htm)
Drug name Trade name Target Structure Company Indications

Ipilimumab Yervoy CTLA-4 IgG1 Bristol-Myers Squibb Unresectable or metastatic melanoma (first or second line)

Stage III cutaneous melanoma (adjuvant therapy, first line)

Pembrolizumab Keytruda PD-1 IgG4 Bristol-Myers Squibb Unresectable or metastatic melanoma (first line)

Metastatic non-small cell lung cancer (TPS*≥1%, second
line; TPS≥50%, first line)

Recurrent or metastatic head and neck squamous cell
carcinoma (second line)

Refractory classical Hodgkin lymphoma (second or more
lines)

Metastatic nonsquamous non-small cell lung cancer (plus
pemetrexed and carboplatin, first line)

Locally advanced or metastatic urothelial carcinoma (second
line)

Unresectable or metastatic solid tumor with high MSI (second
line). Advanced gastric cancer (second line)

Nivolumab Opdivo PD-1 IgG4 MSD Unresectable or metastatic melanoma (alone or with
ipilimumab, second line)

Metastatic squamous non-small cell lung cancer (second line
or third line)

Renal cell carcinoma (second line)

Classical Hodgkin lymphoma (second line)
Adult classical Hodgkin lymphoma (second or more lines)

Recurrent or metastatic squamous cell carcinoma of the head
and neck (second line)

Locally advanced or metastatic urothelial carcinoma (second
line)

Unresectable or metastatic solid tumor with high MSI (second
line). Hepatocellular carcinoma (second or more lines)

Atezolizumab Tecentriq PD-L1 IgG1 Roche Locally advanced or metastatic urothelial carcinoma (second
line)

Metastatic non-small cell lung cancer (second line)

Avelumab Bavencio PD-L1 IgG1 Pfizer/MERCK Adult and pediatric metastatic Merkel cell carcinoma in
patients (second line)

Locally advanced or metastatic urothelial carcinoma (second
line)

Durvalumab Imfinzi PD-L1 IgG1 AstraZeneca Locally advanced or metastatic urothelial carcinoma (second
line)

Unresectable stage III non-small cell lung cancer (second line)

*TPS: tumor proportion score.
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lung cancer, nivolumab combined with chemoradiotherapy
showed a better effect than monotherapy, and the 1-year
disease free survival was improved [35]. (2) Vaccines of
dendritic cells can increase antigen presentation and
activate T cells. (3) Targeting fibroblasts of the tumor
microenvironment will promote T cell infiltration and
enhance the effect of the immune checkpoint inhibitor. For
example, tumor-associated fibroblasts were found to be the
key factor in decreasing the efficacy of immune checkpoint
inhibitor therapy in a mouse pancreatic cancer model.
Fibroblasts express a large amount of CXCL12, a
ligand of CXCR4, and cause tumor immune evasion. The
CXCR4 antagonist AMD3100 can effectively increase T
cell accumulation around cancer cells and enhance the
antitumor activity of anti-PD-L1 treatment [36].
(4) Targeting bone marrow-derived suppressor cells can
reverse immunosuppressive status [37]. (5) Suppressing
the TGF-β signaling pathway by targeting stromal cells can
enrich T cell infiltration and enhance the efficacy of
immune checkpoint inhibitors. In a mouse model, an

antagonist, galunisertib, of the TGF-β signaling pathway
significantly enhanced the efficacy of an immune check-
point inhibitor [38]. (6) Tumor-associated macrophages
(M2) may play an immunosuppressive role [39,40]. In
tumors, M2 macrophages are regulated by the CCL2/
CCR2 axis. Targeting CCL2/CCR2 is a potential ther-
apeutic target [39]. A natural CCR2 antagonist Abies
georgei (named 747) has been found to inhibit macro-
phage-mediated immunosuppression in liver cancer [41].
In gastric cancer, M2 macrophage infiltration is accom-
panied by a high expression of PD-L1. Therefore, targeting
CCL2/CCR2 may be a strategy for reversing resistance to
immune checkpoint inhibitors [42].

Screening sensitive or resistant
biomarkers in multiple databases

The GEO (https://www.ncbi.nlm.nih.gov/geo/) and TCGA
(https://cancergenome.nih.gov/) databases are open source

Fig. 2 Analytical flowchart of data mining for transcriptomic data from GEO and TCGA databases. All data are processed by different
packages of R software. Step 1: Affy package (rma method); step 2: Sva package; step 3: survival package; step 4: Limma package; step 5:
edgeR package; step 6: GSEA software; step 7: WGCNA package; step 8: ConsensusClusterPlus package; step 9: pheatmap package; step
10: ClusterProfiler package; step 11: Rbsurv package (model with minimal AIC); step 12: Cytoscape software; step 13: glmnet package
(Lasso regression). GEO: gene expression omnibus; GSEA: Gene Set Enrichment Analysis; WGCNA: weighted gene co-expression
network analysis; GO: Gene Ontology; DEGs: differentially expressed genes.
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and store a variety of data that originate from “Omics”
research. Many of these data have detailed clinical
information, which are valuable for further data mining.
The cBioPortal (http://www.cbioportal.org/) website is a
data visualization platform for the TCGA database [43].
Along with clinical utilization of immune checkpoint
inhibitors, some data sets also enrolled the therapeutic
information of immune checkpoint blockers, such as
GSE78220, GSE93157, GSE67501, and GSE79691, in
the GEO database. These data sets are involved in
malignant melanoma, non-small cell lung cancer, head
and neck squamous cell carcinoma, and renal cell
carcinoma [44–47]. In addition, the cBioPortal data
platform also presents data about gene mutations and
copy number before anti-PD-1 treatment in esophageal
cancer, gastroesophageal junction carcinoma, and gastric
cancer [48]. Integrated analysis of these data can help
researchers find sensitive or resistant biomarkers. These
data also help researchers find molecular subtypes that may
better respond to immune checkpoint inhibitors.
Based on the literature, the EBV and MSI subtypes of

gastric cancer showed lymphocyte enrichment with better
prognosis [49–52]. Park et al. proposed a Host ImmunE
Response index, which is composed of 29 immune genes
for classifying gastric cancer into three groups that showed
different levels of responses to immune checkpoint
inhibitors [29]. Cao et al. proposed four categories of
head and neck squamous cell carcinoma by consistent
cluster analysis (ConsensusClusterPlus) on 1703 immune-
related genes. Two groups showed enrichment of immune-
related genes. Another group showed enrichment of innate
immunity-related molecules, such as macrophages and
monocytes. The last group showed enrichment of adaptive
immunity-related molecules such as B cells, T helper cells,
and memory T cells in HPV infection [25].
However, not all PD-L1-positive cancers are responsive

to immune checkpoint blockers. Ascierto et al. identified
genes involved in anti-PD-L1/PD-L1 resistance including
increased expression of metabolic genes (UDP-glucuro-
nosyltransferase, UGT1A6, UGT1A1, and UGT1A3),
solute transport potassium channel rectifier KCNJ16,
glucose-6-phosphate translocase SLC37A4, sodium-
dependent ascorbic acid transporter SLC23A1, and
decreased expression of immune-related genes [53]. In
melanoma, increased expression of extracellular LAMA3,
CCM2L, CST2, and DACT1 and neutrophil function
genes FAM183B, PTPRC, and CXCR2 are involved in
anti-PD-1 resistance [54]. Decreased expression of CD3D,
CD3G, GZMA, CD79A, and CD79B is correlated with
ipilimumab resistance in melanoma [28]. Prat et al.
reported that non-small cell lung cancer, head and neck
squamous cell carcinoma, and melanoma with low levels
of PD-L1, PD1, CTLA-4, and CD45 via the PanCancer
730-Immune Panel did not respond to anti-PD-1 treatment
[45].

Immune checkpoint blocking strategy
corresponding to Yibing Tongzhi, a
Chinese proverb

Given the excellent effects of immune checkpoint block-
ers, they have been called “magic medicine.” Keytruda
(pembrolizumab) is a drug approved by the FDA for
treating cancers with MSI variation [55]. This drug is
different from any previously FDA-approved chemicals
and monoclonal antibody drugs. It targets tumors with MSI
without considering the original organs of the tumors. The
new therapeutic paradigm is exactly the same as the idea of
“treating different diseases with the same method” (Yibing
Tongzhi in Chinese) in traditional Chinese medicine.
“Treating different diseases with the same method” is a

philosophy of traditional Chinese medicine. It means that
different disease phenotypes caused by similar pathogen-
esis can be treated using the same method, even if they
occur in different organs [56,57]. In modern medicine, the
pathogenesis of cancers is related to genomic variation,
immune escape, and environmental factors [58,59].
Immunotherapy aims to improve the host’s immune
response to cancers and “strengthening the host’s resistant
ability to eliminate pathogenic factors” (Fuzheng Quxie in
Chinese). Driven by this philosophy, any kind of cancer
with MSI molecular event could be considered a proper
indication for the immune checkpoint blocker, Keytruda
[48]. Melanoma patients are able to benefit from anti-PD-1
and anti-CTLA-4 treatment, which are heavily dependent
on increased new antigen load caused by high mutation
rates in tumor cells [18,60,61]. The same results were also
observed in non-small cell lung cancer [62,63]. However,
some patients did not respond well to immune checkpoint
blockade treatment. This may be attributed to the criteria of
selecting the correct indication of immune checkpoint
blockade in different types of cancer. For example, over
50% of cancer cells with PD-L1 positivity is determined as
an indication of advanced non-small cell lung cancer for
the first-line treatment of Keytruda, but the indication of
second-line treatment is determined as 1% positivity of
PD-L1 in tumor cells [64,65]. Obviously, the positive
criteria for therapy of immune checkpoint blockade of
different types of cancer need to be studied in the future.
In summary, immune therapy using targeted immune

checkpoints has become an area of significant interest.
Recent clinical trials revealed that the introduction of
immune checkpoint inhibitors has achieved tremendous
success in improving overall survival of advanced cancer
patients [66]. However, some advanced cancers with high
expressions of immune checkpoints revealed lower
response rate to immune checkpoint blockade. The innate
or acquired resistance mechanisms are largely unclear. In
the future, finding sensitive or resistant biomarkers for
immune checkpoint inhibitors will be a promising research
area.
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