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Abstract T cells are an important adaptive immune response arm that mediates cell-mediated immunity. T cell
metabolism plays a central role in T cell activation, proliferation, differentiation, and effector function. Specific
metabolic programs are tightly controlled to mediate Tcell immune responses, and alterations in Tcell metabolism
may result in many immunological disorders. In this review, we will summarize the main Tcell metabolic pathways
and the important factors participating in Tcell metabolic programming during Tcell homeostasis, differentiation,
and function.
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Introduction

Different types of immune cells play specialized roles in
host defense against tumor cells or pathogens [1,2]. These
diverse types of immune cells are stimulated by all kinds of
threats and activated by extracellular and intracellular cues
to exert their function through diverse, as well as
complicated, signaling cascades. Different stimuli also
mediate the migration of immune cells to different cell
microenvironments and initiate their proliferation and
differentiation. In the processes of leukocyte immunity,
immune cells depend on nutrients and metabolites to
facilitate and enhance their functions to meet the energy
and biosynthesis demands [3,4]. Therefore, the metabolic
characteristics of immune cells are crucial for their diverse
functions.
T cell lineage is an important immune cell population,

which is an essential component of the adaptive immune
system. The ligation of the T cell receptor (TCR) by
antigen/MHC complexes and the interaction of co-
stimulation receptors regulate T cell activation. After
stimulation, naïve T cells begin to proliferate and
differentiate into highly specific effector T cells (Teff),
such as Th1, Th2, Th17, T follicular helper (Tfh) cells,
regulatory T cells (Treg), and cytotoxic CD8+ T lympho-

cytes [5–7]. Diverse T cell subsets serve different but
specific functions in response to a wide variety of stimuli.
Indeed, T lymphocyte and other lymphocyte subsets share
several common characteristics, such as the capability to
sense and respond to extracellular and intracellular
dangerous signals. When the T cells differentiate from
the naïve T cells into different subsets of T cells, stringent
metabolic regulation is required. Indeed, specific metabolic
pathways are critically associated with T cell homeostasis,
differentiation, and function. In this review, we provide a
general overview of the metabolic regulation of T cell
immunity.

Metabolism of different T cell subsets

Without antigen stimulation, naïve T cells are relatively
quiescent. The energy metabolic demands of naïve T cells
mainly come from oxidative phosphorylation (OXPHOS).
Upon TCR stimulation, naïve T cells increase glycolytic
metabolism to differentiate into activated T cells and enter
secondary lymphoid organs or tissues. During T cell
activation, proliferation, and differentiation, energy meta-
bolism mainly depends on aerobic glycolysis and
OXPHOS. Notably, glycolytic metabolism can distinguish
Th1, Th2, and Th17 effector cells from Treg. When the
antigenic stimulus decreases or disappears, most of the Teff
cells undergo apoptosis [8] and a small number of Teff
cells are converted into memory T cells (Tmem) [9,10].
The development of Treg and Tmem mainly depends on
fatty acid oxidation (FAO) and catabolism. Tmem reenter
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the resting state, and their energy metabolism depends on
OXPHOS (Fig. 1).
Recent reports have indicated that the metabolic

regulation of Tfh cells is different from that of Th1 cells
upon viral infection [11,12]. The metabolic demands of
Tfh cells come from mitochondrial metabolism, and the
metabolic activity of LCMV-specific Tfh cells is less than
that of Th1 cells. Lower levels of AKT and mammalian
target of rapamycin (mTOR) signaling were observed in
Tfh cells than in Th1 cells, thereby inhibiting glycolysis
and promoting Tfh cell differentiation. Bcl6 is essential for
Tfh cell differentiation [13,14] and inhibits IL-2-mediated
glycolysis pathways in Th1 cells [15], indicating that Bcl6
and its regulatory proteins may suppress the glycolysis
pathway in Tfh cells. Other reports indicate that IL-2
signaling can differentially regulate the binding of the
transcription factor FOXO1/3a to the Bcl6 locus [16],

indicating that IL-2 is likely to regulate the FOXO/Bcl6
axis to mediate Tfh cell glycolysis and differentiation.
In the case of persistent antigenic stimuli, such as cancer

and chronic infection, Teff cells gradually lose their
function, resulting in T cell exhaustion. Until now, how
different cellular metabolic pathways participate in the T
cell exhaustion process is not yet clear. In tumor models,
tumor-infiltrating T lymphocytes have a phenotype of
reduced mitochondrial mass and OXPHOS [17]. In early
chronic LCMV infection, the expression of genes involved
in OXPHOS, citric acid cycling, and fatty and amino acid
metabolism increased in exhausted T cells [18]. Although
mitochondrial respiration is decreased in early exhausted T
cells, the mitochondrial mass was greater in early
exhausted T cells than that in Teff cells. Moreover, early
exhausted T cells showed depolarization of the mitochon-
drial membrane with a reduced OXPHOS phenotype.
Studies have shown that the transcriptional regulatory
factor PPAR-g coactivator 1a (PGC-1a) is a potential
regulatory target for metabolic dysfunction in exhausted T
cells. Earlier studies have shown that PGC-1a is involved
in mitochondrial biosynthesis [19], and the overexpression
of PGC-1a can maintain Teff cell function in tumor models
and in chronic infections [17,18]. In a mouse model of B
cell leukemia, mTORC1 activity and the expression level
of the glucose transporter Glut1 are decreased in exhausted
T cells, resulting in decreased glucose uptake and reduced
level of glycolytic enzyme hexokinase [20]. Thus, T cell
exhaustion is accompanied by impaired T cell metabolism.
Whether the impaired metabolism is the cause or
consequence, or only a correlation, of T cell exhaustion
requires further investigation.

Key metabolic pathways of T cell immunity

Glycolysis and tricarboxylic acid cycle

During the activation of T cells, the production of ATP
mainly comes from the catabolism of glucose and fatty
acids. Upon entering the cell, glucose is rapidly phos-
phorylated by hexokinase, producing glucose 6-phosphate
and consuming a molecule of ATP. The glycolysis process
can generate high-energy molecules, such as nicotinamide
adenine dinucleotide (NADH) and ATP, and form two
molecules of pyruvate. Intermediates produced during
glycolysis are transferred to the pentose phosphate path-
way, serine biosynthetic pathway, β-oxidation pathway, or
glycogenesis pathway, resulting in nucleotides, fatty acids,
and glycogen generation, which are needed for T cell
metabolism. After pyruvate is synthesized, it is delivered to
the mitochondria and undergoes further breakdown
through the tricarboxylic acid (TCA) cycle. Inside the
mitochondrial matrix, pyruvate is carboxylated to produce
oxaloacetate or decarboxylated and combined with

Fig. 1 Metabolic regulation of the T cell life cycle. The energy
demands of naïve T cells mainly come from oxidative
phosphorylation (OXPHOS). After T cell receptor (TCR)
stimulation, the naïve T cells differentiate into antigen-effector
T cells, whose energy metabolism mainly depends on aerobic
glycolysis and OXPHOS. Glycolytic metabolism distinguishes
CD4 Th1, Th2, and Th17 effector cells from regulatory T cells
(Treg). The development of Treg and memory T cells (Tmem)
mainly depends on fatty acid oxidation (FAO) and catabolism.
Membrane T cells reenter the resting state, and their energy
metabolism depends on OXPHOS.
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coenzyme A (CoA) to form acetyl-CoA. Then, under the
function of citric acid synthase, oxaloacetate combines
with acetyl-CoA to produce citrate. During the TCA cycle,
oxaloacetate is regenerated and recombined with a new
molecule of acetyl-CoA. This cycle produces two reducing
agents, namely, NADH and flavin adenine dinucleotide
(FADH2), which donate electrons to the cytochrome of the
electron transport chain, resulting in large amounts of ATP
by OXPHOS, participating in T cell metabolic regulation.
By contrast, without mitochondrial involvement, pyruvate
can be catalyzed by lactate dehydrogenase to generate
lactate. Lactate generation is involved in energy metabo-
lism.

Aerobic glycolysis

Even in the presence of abundant oxygen, T cells can
preferentially use glycolysis to produce ATP. The energy
and metabolites produced by aerobic glycolysis can
support T cell activation and rapid proliferation [21,22].
The energy of many activated T lymphocytes comes
primarily from aerobic glycolysis, such as Teff cells (Th1,
Th2, and Th17 CD4+ subsets and cytotoxic CD8+ T cells).
In this condition, the majority of pyruvate is rapidly
converted into lactate and expelled. In CD4+ Teff cells, a
part of the pyruvate produced during aerobic glycolysis
remains to be metabolized via TCA and OXPHOS.
Notably, CD8+ T cells do not boost OXPHOS upon
activation [23–25].

Fatty acid oxidation

T cell growth and organelle biosynthesis are mainly
dependent on fatty acid metabolism [26]. Treg and
Tmem support their function and survival mainly through
lipid metabolism mediated by FAO [25,27]. Excess
exogenous fatty acids exhibit a dominant negative effect
on the acquisition of the Th17 phenotype. Treg is crucial
for maintaining immune homeostasis. Forced reliance on
FAO during in vitro T cell differentiation favors Treg
generation [27]. The inhibition of the key metabolic
regulator, mTOR, during CD4+ T cell activation enhances
FAO and reduces aerobic glycolysis favor Treg production
[28]. Metabolic regulation is involved in the rapid
reactivation of Tmem cells. Within the CD8+ memory
lineage, the production and persistence of Tmem, as well
as repeat-antigen-induced reactivation, has been reported
to be dependent on FAO regulation [25,29]. Tmem cells
have a greater mitochondrial mass than other Tcell subsets,
specifically expressing the FAO-related enzymes and the
carnitine palmitoyl transferase system proteins [29–31],
resulting in a stronger spare respiratory capacity (SRC).
SRC represents the capability of cells to generate energy in
response to activation or stress signals [29,32]. Thus, the

stronger SRC capacity of the Tmem cell promotes their
survival under harsh conditions [33].

Nutrient uptake and T cell immunity

Following TCR ligation and co-stimulatory factor activa-
tion, T cells show a rapid proliferation and reprogramming,
resulting in the high expression of cytotoxins, cell surface
molecules, and cytokines. The growth, proliferation, and
differentiation of T cells, as well as related protein
synthesis, are accompanied by metabolite uptake that
provides the energy required for T cell metabolism [34,35].
T cell activation relies on nutrient uptake; thus, glucose and
amino acid are crucial for T cell growth and activation [36].

Glucose uptake

In mammals, glucose uptake depends on the expression of
the cell surface glucose transporter family (Glutl–14) [37–
39]. Glucose transporters are selectively expressed on the
T cell surface, including Glut1, 2, 3, 6 and 8, of which
Glut1 is the most important glucose transporter responsible
for basal glucose transport in all immune cells [40]. During
the activation process, T cells need to uptake nutrients to
promote their proliferation and differentiation and to meet
the metabolic needs of the effector molecules. For the Teff
subset, glucose uptake is crucial for activation-associated
functions [40]. The activation of costimulatory signals
promotes PI3K/Akt signaling to upregulate Glut1 [41]. A
high expression of Glut1 alone on the cell surface is
sufficient to promote a dramatic increase in glucose influx,
which meets the rapidly increasing cell demands for
glycolysis [42,43]. The overexpression of Glut1 enhances
naïve T cell proliferation and activation [44]. Conversely,
the deletion of Glut1 inhibits the proliferation and
differentiation of murine Teff subsets when activated in
vivo [40].

Amino acid uptake

T cell activation also depends on amino acid uptake, and
the high expression of amino acid transporter proteins
increases the activation of T cells. During the T cell
activation process, glutamine is the most important amino
acid. Glutaminolysis is required to absorb and break down
glutamine, and its derivatives can be fed into the TCA
cycle for the de novo synthesis of lipid and NADPH, which
benefits T cell activation. Several specific transporters play
an important role in glutamine uptake. The antiporter, ASC
amino acid transporter 2 (ASCT2; also known as Slcla5), is
upregulated during TCR activation [45]. In the mouse EAE
model, CD4+ T-cell-specific deletion of ASCT2 signifi-
cantly suppresses the immune response of Th1 and Th17
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and alleviates the progress of EAE in mice [45]. CD8+ T
cell function depends primarily on the leucine transport
pathway. Following exposure to activating signals through
TCR ligation and co-stimulation, system L neutral amino
acid transporter 1 (LAT1; also referred to as Slc7a5) is
upregulated in the CD4+ and CD8+ T cell surface. LAT1 is
primarily responsible for the absorption of important
branched chain (e.g., leucine and isoleucine) and aromatic
(e.g., tryptophan and phenylalanine) amino acids. LAT1
also participates in a small amount of glutamine transport
[46–48]. CD8+ T cell differentiation and migration are
dependent on LAT1-mediated leucine influx [49–51].
Therefore, LAT1 deficiency impairs T cell proliferation
and effector differentiation. Taken together, an appropriate
intracellular concentration of amino acids is critical to
establish an effective immune response during T cell
activation.

Key metabolic checkpoints of T cell
immunity

Mammalian target of rapamycin

mTOR is a serine/threonine kinase discovered as the
cellular target of rapamycin [52], which exists in the form
of two complexes, namely, mTORC1 and mTORC2. The
activity of mTORC1 and mTORC2 significantly affects
CD4+ T cell differentiation. Treatment with rapamycin
inhibits Teff cell differentiation by primarily affecting the
mTORC1 activity [53–55]. Inhibition of the mTORC1 and
mTORC2 activities by deleting mTOR affects the
differentiation of Th1, Th2, and Th17 [53]. However,
specific knockout of Rheb in T cells, which inhibits
mTORC1 activity alone, impairs Th1 and Th17 cell
differentiation but does not affect Th2 cell differentiation
[28]. Several studies further indicated that Th17 differ-
entiation is inhibited in the T-cell-specific deletion of
Raptor mice, whereas Th1 differentiation is unaffected
[56]. mTORC1 reportedly promotes the expression of
S6K2, thus affecting the differentiation of Th17. mTORC1
also promotes the nucleus translocation RORgt, a major
transcription factor of Th17 [56]. Treatment with arcti-
genin, a chemical inhibitor of mTORC1, inhibits the Th1
and Th17 differentiation [57]. Using a T-cell-specific
deletion of the Raptor model, another group observed that
the loss of mTORC1 restricts Th2 differentiation [58].
Notably, the role of mTORC2 in Teff cell differentiation is
complicated. Although most studies showed that deletion
of Rictor in T cells suppresses Th2 differentiation [28,59],
mTORC2 has also been shown to promote Th1 differ-
entiation [59]. In the case of T-cell-specific deletion of
Sin1, another key component of mTORC2, no obvious
preference for Th1, Th2, and Th17 cell differentiation in
vitro was observed, indicating that the role of mTORC2 in

T helper cell differentiation and effector function is more
complex than previously thought (Ouyang, Omotooke, &
Su, unpublished data).
mTOR signaling plays an important role in the

metabolic regulation of T cells. In view of glycolysis,
mTORC1 promotes Glut1 gene expression and in turn
enhances glycolysis [60]. Glutamine uptake is significantly
increased in the early stages of Th17 differentiation [61],
and the activation of mTORC1 in CD4+ T cells is
dependent on ASCT2. By contrast, Th17 differentiation
is impaired in ASCT2-deficient mice, illustrating that
glutamine regulated Th17 differentiation [45]. Notably,
mTOR induces Th17 differentiation by promoting the
expression of hypoxia-inducible factor 1α (HIF1α). mTOR
and HIF1α promote glucose uptake and glycolysis at the
transcriptional and translational levels [62]. Previous
studies have shown that Th17 cells are more dependent
on glycolysis than any other subset of T cells [28,56,63].
Without HIF1α, Th17 development in mice is significantly
impaired [58]. HIF1α can enhance glucose uptake and
promote glycolysis by upregulating the expression of
Glut1 and pyruvate dehydrogenase kinase 1 (PDK1).
Glut1 promotes glucose transport across the cell mem-
brane, and PDK1 prevents pyruvate from entering the TCA
cycle, driving it to lactate, and promoting glycolysis. The
activation of mTOR signaling promotes fatty acid synth-
esis (FAS) and aerobic glycolysis, thereby further inhibit-
ing Treg differentiation. In the absence of mTORC1 and
mTORC2 activities, naïve CD4+ T cells only differentiate
into Treg [28,56]. Several studies have shown that a certain
connection exists between the proliferation of Treg and the
transient inhibition of mTOR signaling. However, thus far,
the underlying mechanism of these phenomena is still
unclear [28,64].

AMP-activated protein kinase

AMP-activated protein kinase (AMPK) is an enzyme that
responds to the harsh survival environment of the cells and
is activated in the absence of energy or other physiological
stresses. Therefore, AMPK is an important cellular sensor
of energy stress. The activation of AMPK results in the
downregulation of energy-consuming metabolism, such as
fatty acid or protein synthesis, and the upregulation of
catabolic metabolism, such as glucose and FAO [65,66].
AMPK activation regulates many of the important
enzymes involved in the metabolic pathways of FAO and
FAS, such as ACC1, ACC2, CPTI, and SREBP-1c. CPT1,
as the rate-limiting enzyme in FAO, is critical for the
metabolism of FAO. The phosphorylation of ACC1/2 and
SREBP-1c inhibits FAS but activates FAO [90].
AMPK activation inhibits anabolic metabolism, and

AMPK can inhibit glycolysis [65,67,68]. AMPK activa-
tion also inhibits T cell differentiation. As mentioned
previously, Th17 cells are more dependent on glycolysis
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and Treg cells are more dependent on FAO, such that the
capability of AMPK-mediated metabolism regulates the
balance between Th17 and Treg. AMPK activation can
drive naïve T cells to differentiate into Treg in vitro and in
vivo. By contrast, the loss of AMPK results in upregulated
mTOR activity and increased glycolysis [67]. Studies have
shown that metformin, an activator of AMPK, can inhibit

Th1 and Th17 differentiation [69,70]. Treatment with
metformin or AICAR, a direct activator of AMPK,
alleviates the progress in some inflammatory mouse
models [71–75]. Notably, metformin treatment increases
the population of Treg in an asthmatic mouse model,
further indicating that AMPK activation mediates FAO
upregulation [27] (Fig. 2).

Fig. 2 Simplified scheme of T cell metabolism regulated by mTOR signaling. TCR and CD28 signals induce the expression of
metabolism-related genes, such as glucose transporter Glut1 (murine gene name Slc2a1), and increase the glucose uptake of T cells. Then,
glucose is degraded by glycolysis to generate pyruvate molecules, lactate, or acetyl-CoA. Acetyl-CoA is required for the tricarboxylic acid
(TCA) cycle and utilized as a precursor of fatty acid synthesis (FAS). TCR and CD28 stimulation also induces AKT phosphorylation via
PDK1 and mTORC2 and promotes mTORC1 activation, leading to the elevated glycolysis and increased levels of pyruvate molecules. By
contrast, AMPK promotes FAO and inhibits FAS by negatively regulating ACC1/2. AMPK can inhibit mTOR activity to downregulate
glycolysis. Therefore, mTOR and AMPK act as negative regulators for each other.
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Cellular Myc (c-Myc)

c-Myc is discovered as a driving transformative factor for
lymphoma, which is caused by dysregulated Myc gene
expression [76,77]. c-Myc is rapidly upregulated in the
early TCR and co-stimulatory molecule-triggered signal-
ing cascade. In the in vivomodels, systemic knockout of c-
Myc is lethal, but in vitro c-Myc deficiency can
significantly inhibit glycolysis metabolism. Lack of c-
Myc downregulates the expression of enzymes involved in
the pentose phosphate pathway. Notably, specific deletion
of c-Myc in T cells reduces the expression of LAT1 and
ASCT2 [45,78] and inhibits T cell uptake of amino acids.
c-Myc promotes T cell activation mainly by upregulating
the transporters of glucose and amino acid, as well as
promoting glycolysis and glutaminolysis [78,79]. Instabil-
ity of c-Myc expression leads to the downregulation of
Glut1, which reduces glutamine and arginine uptake of T
cells and inhibits glutamine glutaminolysis and T cell
glycolysis [79]. These findings indicate that c-Myc plays a
multifaceted role in T cell activation and Tcell metabolism.

Tumor microenvironment and T cell
metabolism

Immunometabolism plays a key role in adaptive immunity
and is particularly important for effective antitumor T cell
responses. In the tumor microenvironment, T cells are
affected by the inhibitory network [80] and T cell
metabolism is altered [81], which promotes tumor escape
and development [82,83]. Recent studies have shown that
antitumor functions of effector T cells are impaired in the
tumor microenvironment [84]. In fact, the tumor micro-
environment forms a complex immunosuppression net-
work that inhibits metabolic regulation during tumor
development [85], thereby limiting T cell activation and
inducing T cell anergy [86,87]. However, the exact
mechanism is still unclear. A previous study reported
that changes in T cell metabolic regulation inhibit the
antitumor capability of T cells, leading to tumor escape
[88]. In the tumor microenvironment, metabolic inter-
ference and nutrients competition exist between cancer and
T cells, which are important to drive cancer development
[89,90]. Tumor cells require a large amount of energy
metabolism to proliferate by increasing glycolysis and
glucose uptake from the surrounding environment [91].
Therefore, the abnormal metabolism of tumor cells inhibits
the immune metabolism of T cells, weakens the T cells
glycolytic pathway, and reduces the capability of T cells to
secrete cytokines, resulting in the conversion of effector T
cells into ineffective cells [92].
Studies have shown that Treg differentiation is incon-

ducive to tumor immunity [93,94]. In contrast to effector T
cells, Treg are more likely to be activated in the tumor

microenvironment [95]. When the AMPK signaling path-
way inhibits the mTOR signaling pathway, the balance
between Teff and Treg may be directly disturbed in the
tumor microenvironment [96,97]. In contrast to mTOR
cascade, AMPK cascade is dominantly activated when
nutrients are absent and oxidative metabolism is enhanced
[97]. Notably, AMPK can be mediated by hyperpho-
sphorylation and thus activated in Treg. Therefore, Treg
function is enhanced to impair effector T cell functions in
the tumor microenvironment, which in turn facilitates
tumor development.

Conclusions

Immune cells play an important role in maintaining
homeostasis and regulating cellular functions. T lympho-
cytes act as an important immune cell population involved
in immunoregulation. Recently, many studies have shown
that metabolism and T cell immunity are closely related.
Metabolites are utilized to provide energy during T cell
activation, and glycolysis and FAO are important cellular
metabolic pathways involved in this process. Intermediates
produced by cell metabolism and glucose and amino acid
intake promote T cell activation, and the expression of
glucose and amino acid transporters on the cell surface
benefits T cell activation.
During activation, T cells differentiate into diverse

effector molecules and T cell subsets, which possess
specialized function, resulting in dynamic T cell immunity.
Metabolic pathways involved in mediating T cell function
within diverse T cell subsets are different, and specific
nutrient uptake is different in these subsets.
Numerous studies have shown that the regulation of T

cell immunity effectively controls the occurrence of
immune diseases and maintains T cell homeostasis.
Metabolic regulation is important for T cell function,
which is crucial for immune disease therapy. Although a
large number of studies have reported the relationship
between metabolic regulation and immune diseases, thus
far, how to control cell metabolism effectively to provide
precise immunotherapy still requires extensive research.
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