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Abstract
Traumatic axonal injury (TAI) may result in the disruption of brain functional networks and is strongly associated with cogni-
tive impairment. However, the neural mechanisms affecting the neurocognitive function after TAI remain to be elucidated. 
We collected the resting-state functional magnetic resonance imaging data from 28 patients with TAI and 28 matched healthy 
controls. An automated anatomical labeling atlas was used to construct a functional brain connectome. We utilized a graph 
theoretical approach to investigate the alterations in global and regional network topologies, and network-based statistics 
analysis was utilized to localize the connected networks more precisely. The current study revealed that patients with TAI 
and healthy controls both showed a typical small-world topology of the functional brain networks. However, patients with 
TAI exhibited a significantly lower local efficiency compared to healthy controls, whereas no significant difference emerged 
in other small-world properties (Cp, Lp, γ, λ, and σ) and global efficiency. Moreover, patients with TAI exhibited aberrant 
nodal centralities in some regions, including the frontal lobes, parietal lobes, caudate nucleus, and cerebellum bilaterally, 
and right olfactory cortex. The network-based statistics results showed alterations in the long-distance functional connec-
tions in the subnetwork in patients with TAI, involving these brain regions with significantly altered nodal centralities. These 
alterations suggest that brain networks of individuals with TAI present aberrant topological attributes that are associated with 
cognitive impairment, which could be potential biomarkers for predicting cognitive dysfunction and help understanding the 
neuropathological mechanisms in patients with TAI.

Keywords Traumatic axonal injury · Traumatic brain injury · Brain functional networks · Graph theory · Resting-state 
functional magnetic resonance imaging

Introduction

Traumatic axonal injury (TAI) is often diffuse after trau-
matic brain injury (TBI) and frequently leads to disruption 
of brain networks, which is recognized as a major cause 

of poor functional outcomes, including cognitive disorder, 
motor deficits, behavioral problems, and emotional lability, 
comprising a “disconnection syndrome”. (Bonnelle et al., 
2011; Castellanos et al., 2011; Fagerholm et al., 2015; Pons-
ford et al., 2014; Sharp et al., 2014). TAI is characterized 
by widespread axonal damage caused by shearing forces 
of rotational acceleration and deceleration occurring at the 
time of injury. The recent development of new neuroimag-
ing techniques has substantially improved our understanding 
of the underlying pathophysiology of persistent cognitive 
impairment after TBI by allowing the visualization of local 
changes in brain structure and function networks (Li et al., 
2023; Pan et al., 2023; Sharp et al., 2014). Unlike focal inju-
ries that affect specific brain regions, axonal injury funda-
mentally impairs the substrate through which brain networks 
communicate with each other. TAI disrupts the integrity of 
white matter microstructure, which affects brain functional 
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connectivity supporting cognitive function (Kinnunen 
et al., 2011). The change in functional connectivity can be 
attributed to the presence of diffuse white matter pathol-
ogy, as well as reductions in both gray and white matter 
volume (Caeyenberghs et al., 2017). Since the patterns of 
TAI are generally widespread and highly variable among 
individuals (Hellyer et al., 2013; Jolly et al., 2021; Kinnunen 
et al., 2011), this condition may have complex effects on 
brain network function after TBI. Previous studies showed 
that TAI primarily damages the long-distance white matter 
pathways connecting the nodes of large-scale distributed 
brain networks, resulting in a reduced capacity to integrate 
information between different brain regions (Bonnelle et al., 
2011; Fagerholm et al., 2015; Kinnunen et al., 2011; Pandit 
et al., 2013; Sharp et al., 2014). Therefore, understanding 
the effects of TAI on brain function and behavior requires 
a detailed investigation on the global brain network func-
tion. However, the characteristics of information flow within 
and between regions remain largely unknown, as well as 
the effect of insult-induced alterations on the interactions 
between the functional network nodes in patients with TAI.

Functional connectivity networks are primarily concerned 
with the connective properties of temporal coherences 
between blood oxygen level-dependent functional magnetic 
resonance imaging (fMRI) signals from both local and dis-
tant brain regions (Salvador et al., 2005), and connectivity 
patterns can also be represented graphically. Graph theory 
is a unique and powerful tool to quantify the topological 
features of functional networks. In graph theory, a network 
consists of a set of ‘nodes’, which represent cortical and sub-
cortical anatomical regions, and ‘edges’, the properties of the 
connections between these nodes (e.g. white matter fibers). 
This schematic structure reflects the network connectivity 
and offers an integrative approach to explore the commu-
nication and transmission of information between regions 
in the whole brain by investigating the different properties 
of the cerebral networks, including integration, segregation, 
centrality, and small-world properties. An increasing num-
ber of studies used graph theory to investigate the effects 
on brain functional networks of several neurological dis-
eases, such as Alzheimer's disease (John et al., 2017), autism 
spectrum disorder (Chen et al., 2021), schizophrenia (Liu 
et al., 2016), and functional dyspepsia (Zhang et al., 2022). 
A recent study reported that patients with cerebral small ves-
sel disease and microbleeds exhibited significantly reduced 
clustering coefficient, global efficiency, and local efficiency, 
and an increased shortest-path length, compared to controls 
and patients with the same disease and no cerebral micro-
bleeds. This finding indicates a disrupted balance between 
local specialization and global integration in functional 
connectivity networks. Similarly, functional connectivity 
alterations associated with TBI have recently been studied 
using the mathematical concepts of graph theory (Boroda 

et al., 2021; Fagerholm et al., 2015; Kim et al., 2022; Li 
et al., 2023; Pandit et al., 2013; Raizman et al., 2020). How-
ever, the findings in these studies were contradictory and 
inconsistent due to the heterogeneity of patients with TBI, 
with large differences in severity, etiology, type of injury and 
mechanism, as well as recovery rate and burden of chronic 
symptoms (Maas, 2016; O'Brien et al., 2020; Caeyenberghs 
et al., 2017).

Graph theoretical analysis has already offered precious 
insights into the dysfunction of brain networks following 
TBI. For example, patients with moderate-to-severe TBI 
showed higher degree and strength of connectivity and 
higher values of local efficiency in the late phase of the dis-
ease (averaged 4.83 years prior to the study) compared to 
healthy controls (HCs), whereas these differences were sig-
nificantly correlated with poorer switching task performance 
(Caeyenberghs et al., 2012). In contrast, a reduction in net-
work efficiency was observed in patients with TBI in other 
studies (Han et al., 2016; Pandit et al., 2013), and Han et al. 
(2016) indicated that disruptions in nodal connectivity pre-
dominantly appeared in the inter-network edges investigated, 
rather than the intra-network edges, as noted with a network-
based statistics (NBS) analysis. Alterations in graph metrics, 
such as higher connectivity degree, clustering coefficient and 
strength, fewer inter-module connections, and reduced net-
work efficiency, indicated that the functional connectivity 
network was significantly disrupted in patients with TBI, 
might be associated with hyperconnectivity and a subopti-
mal global integration (Caeyenberghs et al., 2017). These 
previous studies on TBI have shown that global changes in 
network metrics are accompanied with alterations in nodal 
metrics in specific brain regions (Caeyenberghs et al., 2012; 
Messe et al., 2013; Pandit et al., 2013). The ratio between 
global and local connectivity can be quantified by the con-
cept of small-worldness, reflecting the requirement for the 
networks to satisfy the opposing demands of local and 
global processing (Kaiser & Hilgetag, 2006). However, the 
small-world attributes had been quantified by graph theory 
to assess the functional connectivity after TBI with mixed 
results (Caeyenberghs et al., 2012; Hillary et al., 2014; 
Kuceyeski et al., 2016). The inconsistent findings suggest 
that both global integration and regional segregation of the 
brain networks can be affected after TBI. However, how TBI 
disrupts the topological organization of the brain connectiv-
ity networks still remains to be elucidated. Moreover, the 
underlying mechanisms connecting the pathophysiology of 
TBI and the topological features of functional networks are 
still unclear. This uncertainty may be due to the problem-
atic nature of the index (Rubinov & Sporns, 2010), hetero-
geneity in patient populations (including diffuse and focal 
lesions and at different stages of the disease), and parcella-
tion schemes in most patients with TBI reported in previous 
studies (Caeyenberghs et al., 2017). Therefore, we recognize 
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that variability is a hallmark of TBI, and subgroup analyses 
should be performed. A feasible approach to counter the 
issue of heterogeneity is to select relatively homogeneous 
individuals such as “pure” TAI patients (Caeyenberghs et al., 
2017; Turner et al., 2011), investigating the extent to which 
graph metrics are preserved or affected.

The purpose of this study was to examine the changes in 
whole-brain functional networks in patients with relatively 
“pure” TAI, characterizing the global and local topological 
properties with graph theory and NBS analyses. We hypoth-
esized that the topological organization of brain functional 
networks is disrupted in patients with TAI, and that these 
alterations may be related to impairments in functional con-
nectivity and cognitive function. In particular, we aimed to 
construct a functional connectome in patients with TAI and 
determine whether these patients show the following: (1) 
altered global and regional properties in whole-brain func-
tional networks, (2) disrupted functional connectivity in spe-
cific subnetworks, and (3) possible relationships between 
global and local topological properties and cognitive disor-
ders or clinical measures.

Materials and methods

Participants

Twenty-eight patients with TAI (20 males, 8 females; mean 
age: 38.96 ± 14.26 years) were retrospectively selected from 
a TBI database (n = 182) including multimodal MRI images 
of patients recruited from the Department of Neurosurgery 
of the First Affiliated Hospital of Nanchang University 
between October 2013 and February 2017. The cause of 
TAI was motor vehicle accident for all patients selected. The 
following inclusion criteria were applied, as in a previous 
study (Li et al., 2017): 1) closed-head TBI via a mecha-
nism consistent with TAI (i.e.,. high-velocity rotational or 
acceleration-deceleration forces); 2) hemodynamical stabil-
ity to ensure a safe transfer to the scanner; and 3) patient age 
between 18–60 years. The exclusion criteria were as follows: 
1) previous history of TBI or neurological disorders; 2) pres-
ence of any focal, mixed, or high-density lesion (including 
contusions, extra-axial hematomas, and/or intraparenchy-
mal hemorrhages), with a volume > 1 mL, visible on head 
computed tomography (CT); 3) absent pupillary responses 
bilaterally; 4) any condition that could result in atypical MRI 
findings and compromised cognitive functions (i.e.,. prior 
brain tumor, epilepsy, multiple sclerosis, psychiatric disor-
ders); and 5) any contraindication to MRI, including metal 
and/or electronic implants, claustrophobia, and possible or 
verified pregnancy.

Traumatic microbleeds are visible on susceptibility-
weighted imaging (SWI) with clear margins and high 

sensitivity and are often considered a marker of TAI. All 
patients selected exhibited subcortical traumatic micro-
bleeds, as determined by a senior neuroradiologist. The vast 
majority of these typical microbleeds in patients with TAI 
have been described in our previous study (Li et al., 2017).

In addition, 28 healthy volunteers (20 males, 8 females; 
mean age: 38.59 ± 13.20 years), matched for age, sex, and 
education level and with no history of neurological or psy-
chiatric disorders, were recruited as HCs. Informed con-
sent was obtained from all the participants. This study was 
approved by the Institutional Review Board of the First 
Affiliated Hospital of Nanchang University and conducted 
in accordance with the principles of the Declaration of 
Helsinki.

Clinical assessments

Each patient with TAI was assessed via a detailed clinical 
interview and several rating scales, mainly the Glasgow 
Coma Scale (GCS) to assesses the level of conscious-
ness impairment and the Mini-Mental State Examination 
(MMSE) to evaluate the cognitive function. In addition, we 
assessed the patients with the Disability Rating Scale (DRS), 
Motor Assessment Scale (MAS), Adaptive Behavior Scale 
(ABS), Hamilton Anxiety Scale (HAMA), and Activity of 
Daily Living Scale (ADL), in the 2 h before the MRI scans.

MRI data acquisition and preprocessing

All subjects underwent MRI scanning with a Trio 3.0 
Tesla MRI system equipped with an 8-channel phased-
array head coil (Siemens, Erlangen, Germany). Foam pads 
and earplugs were used to reduce involuntary head move-
ments and external noise. The scanning protocol included 
the following sequences: (1) localizer, (2) T1-weighted 
MPRAGE structural images (176 sagittal slices; thick-
ness/gap = 1.0/0 mm, in-plane resolution = 256 × 256, 
field of view (FOV) = 240 mm × 240 mm, repetition time 
(TR) = 1,900 ms, echo time (TE) = 2.26 ms, flip angle = 15°), 
and (3) echo-planar imaging pulse sequence (30 axial slices; 
thickness/gap = 4.0/1.2 mm, in-plane resolution = 64 × 64, 
FOV = 200 mm × 200 mm, TR = 2,000 ms, TE = 30 ms, flip 
angle = 90°, 240 time points). During the scan, the partici-
pants were asked to remain still, awake and calm, with their 
eyes closed, and avoid thinking as much as possible. In addi-
tion, conventional T2-weighted images, T2 fluid-attenuated 
inversion recovery (FLAIR) images, SWI, and diffusion-
weighted imaging (DWI) of the brain were acquired in each 
subject for the diagnosis.

All preprocessing was performed using the Data Process-
ing & Analysis Assistant for Resting-State Brain Imaging 
(DPABI, http:// rfmri. org/ dpabi) and Statistical Parametric 
Mapping (SPM12, https:// www. fil. ion. ucl. ac. uk/ spm/ softw 

http://rfmri.org/dpabi
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are/ spm12/) packages in MATLAB 2016a (MathWorks, 
Natick, MA, USA). The first 10 volumes of resting-state 
fMRI data were discarded, and the remaining 230 volumes 
acquired from each participant were corrected for the differ-
ences in slice acquisition times. The resulting images were 
then realigned to correct for small movements between 
scans. Images with head motion that exceeded a 2-mm 
translation or 2° rotation during functional imaging were 
excluded. Individual T1-weighted structural images were co-
registered with the mean realigned echo-planar images. The 
transformed structural images were then segmented into gray 
matter, white matter, and cerebrospinal fluid and registered 
to the Montreal Neurological Institute (MNI) space using the 
Diffeomorphic Anatomical Registration Through Exponenti-
ated Lie Algebra (DARTEL) toolbox. The same transforma-
tion parameters were applied to the functional images for 
spatial normalization, and the volumes were then resliced 
at a resolution of 3 × 3 × 3 mm. A nuisance linear regression 
was performed to reduce the effects of confounding factors, 
using as covariates the 24 head-motion parameters (Friston 
24-parameter model), white matter, cerebrospinal fluid, and 
whole-brain signal. Finally, temporal filtering (0.01–0.1 Hz) 
of the time series was performed.

Functional network construction

Definition of the nodes and edges

Automated anatomical labeling (AAL) was used to define 
the brain nodes, dividing the whole brain into 116 corti-
cal and subcortical regions of interest (Chen et al., 2021; 
Liu et al., 2015; Tzourio-Mazoyer et al., 2002). The aver-
aged time series of all voxels in each region of interest was 
extracted to obtain a representative time series for each sub-
ject using the AAL template. The Pearson’s correlation coef-
ficients between the regional mean time series of all possible 
pairs among the 116 brain regions were calculated as edges 
in the network, resulting in a 116 × 116 Pearson’s correla-
tion matrix for each participant, then converted into bina-
rized matrices to facilitate the network topology analysis. A 
Fisher’s r-to-z transformation was performed to translate the 
individual correlation maps into normalized z-score maps.

Graph theory analysis

The properties of the brain functional networks in patients 
with TAI and HCs were examined at the global and regional 
(nodal) levels using the Graph-Theoretical Network Analysis 
(GRETNA) toolbox (http:// www. nitrc. org/ proje cts/ gretna/) 
(Wang et al., 2015). The brain functional networks were 
modeled based on an unweighted and undirected method. 
We applied a sparsity (Sp) threshold to all correlation 

matrices over a wide range of Sp levels (from 0.05 to 0.50, 
using intervals of 0.01) to explore the between-group dif-
ferences in the brain functional network organization in 
patients with TAI and HCs. We used the AUC to identify 
significant between-group differences comparing the global 
network metrics and nodal characteristics of the whole-brain 
functional networks between the TAI and HC groups. We 
examined several global network metrics, including the 
small-world properties (Watts & Strogatz, 1998), such as the 
clustering coefficient (Cp), characteristic path length (Lp), 
normalized clustering coefficient (γ), normalized character-
istic path length (λ), and small-world-ness (σ), and the net-
work efficiency parameters, i.e.,. global efficiency  (Eglob) and 
local efficiency  (Eloc). We also examined the nodal network 
metrics (nodal degree centrality, nodal betweenness central-
ity, nodal efficiency, nodal clustering coefficient, nodal local 
efficiency, and nodal shortest-path length). The descriptions 
of graph metrics investigated in the current study were given 
in Table 1.

A small-world network meets the following criteria: 
γ =  Cpreal/Cprand > 1, and λ =  Lpreal/Lprand ≈ 1, or σ = γ/λ > 1 
(Watts & Strogatz, 1998).

Statistical analysis

The AUC of each metric was calculated to determine the 
between-group differences in small-world properties, net-
work efficiency, and nodal characteristics, for statistical 
comparison within the Sp range mentioned above, includ-
ing as covariates age, educational level, and mean frame 
displacement. Demographic and clinical variables of the 
patients with TAI and HCs were compared using independ-
ent two-sample t-tests with SPSS 22.0 (IBM, Armonk, NY, 
USA). The significance level was set at p < 0.05.

Cerebral regions were considered altered nodal centrali-
ties in patients with TAI when they exhibited significant 
between-group differences in at least one of the six nodal 
centralities (nodal degree, nodal betweenness centrality, 
nodal efficiency, nodal clustering coefficient, nodal local 
efficiency, and nodal shortest-path length). An NBS analy-
sis (http:// www. nitrc. org/ proje cts/ nbs/) was performed on 
Fisher’s z-transformed correlation coefficients to examine 
the differences in functional connections between the TAI 
and HC groups (Liu et al., 2016; Zalesky et al., 2010). A 
subset of connection matrices was generated based on the 
altered nodes in the patients with TAI. We applied the NBS 
method to define a set of suprathreshold links among any 
connected components (threshold: T = 2.368, p < 0.01). The 
significance of each component was estimated using the non-
parametric permutation method (10,000 permutations). Age, 
educational level, and mean frame displacement were used 
as covariates. Finally, a partial correlation analysis was per-
formed to assess the relationships between network metrics 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/nbs/
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and clinical variables and evaluate the clinical correlates 
of these network property changes in patients with TAI. P 
values < 0.05 were considered statistically significant.

Results

Demographic and clinical features

The TAI and HC groups were accurately matched in terms 
of sex (p > 0.99), age (p = 0.99), and educational level 
(p = 0.87). Significant alterations were observed in the TAI 
group as expressed by clinical scale scores, including GCS, 
MMSE, DRS, MAS, ABS, HAMA, and ADL (Table 2).

Differences in global network measures

In the wide range of thresholds selected, patients with TAI 
and HCs both showed a typical small-world topology of 
the functional brain networks, expressed by a γ value > 1, 
λ value approximately equal to 1, and σ value > 1 (Fig. 1). 
Furthermore, the normalized clustering coefficient γ and 
the overall normalized path length λ were not signifi-
cantly different between TAI and HC groups (t =  − 1.765, 
p = 0.083 and t =  − 0.709, p = 0.481, respectively), sug-
gesting an overall preserved organization of the func-
tional brain network in patients with TAI. However, these 

patients showed a significantly lower  Eloc (t =  − 2.026, 
p = 0.048) compared to HCs. In contrast, there were no 
significant differences between groups in σ (t =  − 1.508, 
p = 0.137), Cp (t =  − 0.386, p = 0.701), Lp (t = 0.623, 
p = 0.536), or  Eglob (t =  − 0.857, p = 0.395). The global 
network measures are illustrated in Fig. 2.

Table 1  Descriptions of graph metrics examined in the current study

Graph metric Descriptions

Global network metrics
  Clustering coefficient (Cp) The average inter-connectedness of a node’s direct neighbors
  Characteristic path length (Lp) The average shortest path length between any pairs of nodes
  Normalized clustering coefficient (γ) The clustering coefficient compared to matched random networks
  Normalized characteristic path length (λ) The characteristic shortest path length compared to matched random networks
  Small-worldness (σ) The normalized clustering coefficient divided by the normalized characteristic shortest path 

length, which reflect the balance of global efficiency and local efficiency
  Global efficiency  (Eglob) The efficiency of information transfer through the entire graph
  Local efficiency  (Eloc) The average efficiency of information transfer over a node’s direct neighbors

Nodal network metrics
  Nodal degree centrality Measure of the number of connections connected directly to a node in the graph
  Nodal betweenness centrality Fraction of all shortest paths in the network that pass through a given node, which reflect the 

influences of a node over information flow between other nodes
  Nodal efficiency The efficiency of information transfer over a node’s direct neighbors, indicating the efficiency of 

the parallel information transmission of the node in the network
  Nodal clustering coefficient The inter-connectedness of a node’s direct neighbors
  Nodal local efficiency The inverse of the shortest average path length in a subgraph comprising of node and its adjacent 

neighbors
  Nodal shortest path length Measurement of the functional integration of nodes in brain networks

Table 2  Demographic and clinical features of participants

The data are presented as mean ± SD. TAI traumatic axonal injury, 
HCs healthy controls, GCS Glasgow coma scale, MMSE mini-mental 
state examination, DRS disability rating scale, MAS motor assessment 
scale, ABS agitated behavior scale, HAMA Hamilton anxiety scale, 
ADL activities of daily living. P-values were obtained using a two-
tailed chi-squared test or a two-sample two-tailed t-test, as applicable

Characteristics TAI (n = 28) HCs (n = 28) p-value

Sex (male/female) 20/8 20/8  > 0.99
Age (years) 38.96 ± 14.26 38.59 ± 13.20 0.99
Education (years) 7.18 ± 3.44 7.32 ± 3.10 0.87
Injury-to-MRI interval 

(days) (median, range)
22 (2–210) n/a n/a

Handedness (right), % 100 100 1.0
GCS (Scanning) 13.82 ± 2.31 15 ± 0 0.01
MMSE 19.82 ± 10.15 29.71 ± 0.46  < 0.01
DRS 9.32 ± 6.15 0 ± 0  < 0.01
MAS 35.82 ± 11.71 48 ± 0  < 0.01
ABS 31.21 ± 12.78 15.09 ± 1.38  < 0.01
HAMA 10.57 ± 6.65 1.43 ± 1.03  < 0.01
ADL 32.43 ± 14.45 14.36 ± 0.62  < 0.01
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Differences in regional network measures

Compared with HCs, patients with TAI showed several alter-
ations in nodal centralities in the brain functional network 
(Supplementary Material 1), with significant between-group 
differences in at least one of the five nodal centralities (nodal 
betweenness, nodal degree, nodal clustering coefficient, 
nodal efficiency, and nodal local efficiency; p < 0.05, uncor-
rected), and none survived the correction for nodal shortest-
path length. Patients with TAI showed significantly lower 
nodal centralities compared to HCs in the right olfactory 
cortex, left medial cingulate cortex, right superior occipital 
gyrus, left postcentral gyrus, right inferior parietal lobule, 
supramarginal gyrus and caudate nucleus bilaterally, left 
cerebellar hemisphere (VIII), and cerebellar vermis (10). 
Significantly higher nodal centralities were noted in patients 

with TAI in the left superior frontal gyrus, left superior 
orbital gyrus, superior medial gyrus bilaterally, right cer-
ebellar hemisphere (crus 2, VII), and cerebellar vermis (4/5, 
7) (p < 0.05, uncorrected). In addition, the patients with TAI 
exhibited some increased nodal centralities (nodal between-
ness, nodal degree) and some decreased nodal centralities 
(nodal clustering coefficient, nodal local efficiency) in the 
right cerebellum (VI). These results suggest a modification 
in the local network integration following TAI.

TAI‑Related alterations in functional connectivity

Using the NBS approach, we identified a disconnected 
functional subnetwork, with 20 nodes and six connections, 
that was significantly altered in the TAI group (p < 0.01, 
uncorrected). This subnetwork, comprising pairs of nodes, 

Fig. 1  Small-world parameters of the brain functional network in 
patients with traumatic axonal injury (TAI) and healthy controls 
(HCs). The graphs show that in the wide range of thresholds exam-
ined (from 0.05 to 0.50), patients with TAI and HCs both exhibited 

normalized clustering coefficient (γ) obviously > 1, normalized path 
lengths (λ) approximately equal to 1, and small-world-ness (σ) > 1, 
suggesting that all participants show a typical small-world topology

Fig. 2  Graphs showing the 
small-world parameters and 
network efficiency of the whole-
brain functional network in 
patients with traumatic axonal 
injury (TAI) and healthy con-
trols (HCs). Patients with TAI 
showed a significantly lower 
 Eloc (t =  − 2.026, p = 0.048). σ: 
small-world-ness; γ: normal-
ized clustering coefficient; 
λ: normalized path lengths; 
Cp: clustering coefficient; Lp: 
characteristic path length;  Eglob: 
global efficiency;  Eloc: local 
efficiency
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exhibited between-group differences in nodal centralities. 
Compared to HCs, patients with TAI exhibited signifi-
cantly reduced functional connectivity between the right 
inferior parietal lobule and left supramarginal gyrus, right 
olfactory cortex and right supramarginal gyrus, both cau-
date nuclei and right cerebellar hemisphere (crus 2), and 
right caudate nucleus and right (VII) and left (VIII) sides 
of the cerebellum. Patients with TAI showed significantly 
higher functional connectivity between the right olfac-
tory cortex and cerebellar vermis (4/5) compared to HCs. 
These connections mainly link regions over long distances 
(Table 3, Fig. 3).

Correlations between network measures and clinical 
variables

The nodal degree of the right inferior parietal lobule and 
the nodal clustering coefficient of the right cerebellar hemi-
sphere (VII) had significant negative correlations with 
the MMSE score (r =  − 0.384, p = 0.044, and r =  − 0.479, 
p = 0.010, respectively). Other topological network measures 
were not significantly correlated with clinical assessments 
(Fig. 4).

Discussion

Our results can be summarized in five main findings: (1) 
all participants presented typical small-world attributes in 
the brain functional networks, with no differences between 
TAI and HC groups in small-world properties and global 
efficiency; (2) the patients with TAI exhibited lower  Eloc 
in brain functional networks; (3) they also exhibited aber-
rant nodal centralities in some regions, including the frontal 
lobes, parietal lobes, caudate nucleus, and cerebellum bilat-
erally, and right olfactory cortex; (4) the patients with TAI 
presented altered long-distance connections in a functional 
subnetwork; (5) the nodal degree of the right inferior parietal 
lobule and nodal clustering coefficient of the right cerebellar 
hemisphere (VII) were negatively correlated with the MMSE 
score. These results also show that graph theory analysis 
is a powerful tool to examine the aberrant neural topology 

Table 3  Alterations in functional connectivity between TAI and HCs

Alterations in functional connectivity within the networks of dis-
rupted areas significantly different between patients with TAI and 
HCs. (p < 0.01, uncorrected). TAI traumatic axonal injury, HC healthy 
controls, L left, R right.

Brain region 1 Brain region 2 t-value p-value

L Supramarginal Gyrus R Inferior Parietal 
Lobule

 − 2.760 0.008

R Supramarginal Gyrus R Olfactory cortex  − 2.869 0.006
R Cerebellum (Crus 2) L Caudate Nucleus  − 3.706  < 0.001
R Cerebellum (Crus 2) R Caudate Nucleus  − 3.446 0.001
R Cerebellum (VII) R Caudate Nucleus  − 3.955  < 0.001
L Cerebellum (VIII) R Caudate Nucleus  − 3.538 0.001
Cerebellar Vermis (4/5) R Olfactory cortex 3.059 0.003

Fig. 3  Altered functional connectivity within the network of dis-
rupted  areas significantly different between patients with traumatic 
axonal injury (TAI) and healthy controls (HCs). Abbreviations: 
SFGdor.L, left superior frontal gyrus; ORBsup.L, left superior 
orbital gyrus; SFGmed.L, left superior medial gyrus; SFGmed.R, 
right superior medial gyrus; CRBLCrus2.R, right cerebellum (Crus 
2); CRBL7b.R, right cerebellum (VII); Vermis45, cerebellar vermis 
(4/5); Vermis7, cerebellar vermis (7); CRBL6.R, right cerebellum 
(VI); OLF.R, right olfactory cortex; DCG.L, left MCC; SOG.R, right 

superior occipital gyrus; PoCG.L, left postcentral gyrus; IPL.R, right 
inferior parietal lobule; SMG.L, left supramarginal gyrus; SMG.R, 
right supramarginal gyrus; CAU.L, left caudate nucleus; CAU.R, 
right caudate nucleus; CRBL8.L, left cerebellum (VIII); Vermis10, 
cerebellar vermis (10). The blue edges represent the reduced func-
tional connectivity, and the red edges the higher functional connec-
tivity in patients with TAI compared to HCs. Undirected edges cor-
respond to t-values, with larger t-values represented by thicker edges 
(p < 0.01, uncorrected)
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in patients with TAI and characterize the pathophysiology 
at the level of brain networks.

Large-scale brain networks typically show efficient eco-
nomic small-world organization with short normalized path 
lengths and high normalized clustering coefficients, reaching 
an optimal balance between global integration and local spe-
cialization (Bassett & Bullmore, 2009; Bullmore & Sporns, 
2009). In previous studies, a reduced small-world index 
was observed in patients with severe TBI (Nakamura et al., 
2009); in contrast, Kuceyeski et al. (2016) reported a higher 
small-world index. However, our study showed that patients 
with TAI and HCs both had typical small-world attributes in 
brain functional networks, with no significant group differ-
ences in small-world metrics, including σ, γ, and λ, consist-
ent with previous studies in patients with moderate-to-severe 
TBI (Caeyenberghs et al., 2012; Messe et al., 2013). The 
present findings suggest an overall preserved organization of 
the functional brain network in patients with TAI. However, 
how TAI affects small-world topology remains unclear with 
mixed results in prior studies. Besides, the small-worldness 
may also mistakenly identify a small-world topology in 
poorly segregated networks that are highly integrated, and 
should be a combination of different graph metrics capturing 
both integration and segregation (Caeyenberghs et al., 2017).

The loss of global integration is often interpreted as 
reduced efficiency of information processing in the net-
works. Altered topological architecture of functional 
networks in patients with TBI was found in previous 
studies(Han et al., 2016; Nomura et al., 2010; Pandit et al., 
2013), revealing a reduction in the global integration of net-
work efficiency interpreted as poor large-scale information 
transfer throughout the network (Rubinov & Sporns, 2010). 
However, patients with TAI in the current study showed no 
significant difference in  Eglob. The finding suggested that the 
capacity for information integration between distant brain 

regions and the efficiency of information dissemination in 
the global network were preserved, consistent with a previ-
ous study (Spielberg et al., 2015). This could be explained 
by the global brain network restoring effective functional 
connections via alternate structural pathways that circum-
vent the impaired white matter connections (Kuceyeski 
et al., 2016). Nevertheless, patients with TAI in our study 
exhibited a reduction in network efficiency with a lower  Eloc, 
predominantly related to short-range connections between 
adjacent nodes. Han et al. (2016) reported reduced global 
and local efficiencies in chronic TBI, whereas Caeyenberghs 
et al. (2012) found higher values of local efficiency in the 
TBI group. Such inconsistencies may be due to the hetero-
geneous characteristics of TBI and different methodolo-
gies. Our finding of reduced  Eloc in patients with TAI could 
be attributed to inadequate axonal wiring or differences in 
metabolic running costs to provide parallel information com-
pared to HCs.

The graph theoretical approach also allows the evalua-
tion of regional characteristics of whole-brain functional 
networks using regional network measures, including nodal 
degree, nodal betweenness, nodal clustering coefficient, 
nodal efficiency, and nodal local efficiency. Several studies 
on TBI have shown alterations in nodal metrics in specific 
brain regions. For example, Pandit et al. (2013) showed a 
significant reduction in degree and betweenness centrality in 
the posterior cingulate cortex in TBI patients, whereas Caey-
enberghs et al. (2012) reported higher betweenness central-
ity in the dorsal premotor cortex and dorsolateral prefrontal 
cortex in patients with moderate-to-severe TBI. The recent 
study observed decreased betweenness centrality, cluster-
ing coefficient, and local efficiency in several brain areas, 
including the fronto-parietal attention network (Kim et al., 
2022).Our study showed higher nodal metrics values (nodal 
degree and nodal efficiency) in the left dorsolateral superior 

Fig. 4  Relationships between altered nodal centralities and clini-
cal measurements in patients with traumatic axonal injury (TAI). 
The nodal degree of the right inferior parietal lobule (IPL.R) and the 
nodal clustering coefficient of the right cerebellar hemisphere (VII) 

(CRBL7b.R) were negatively correlated with the Mini-Mental State 
Examination (MMSE) score. P values < 0.05 were considered statisti-
cally significant
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frontal gyrus in patients with TAI, as well as higher in nodal 
centralities (nodal betweenness, degree) and nodal efficiency 
in the medial superior frontal gyrus bilaterally, and higher 
nodal betweenness in the left superior orbital gyrus. These 
findings on basic measures and segregation suggest a higher 
functional connectivity in specific brain regions, which may 
reflect an adaptive mechanism to diminish injury-related 
symptom severity and maintain and/or stabilize neuro-
cognitive performance (Hillary and Grafman, 2017). This 
modification may be attributed to numerous biophysical 
mechanisms, including hyperexcitability or disinhibition of 
functionally related networks (Fornito et al., 2015; Hillary 
et al., 2014). Hyperconnectivity is substantially universal 
in patients with TBI, regardless of the injury phase (acute, 
subacute, or chronic) and severity, replacing the traditional 
view of a transient process (Caeyenberghs et al., 2012; Iraji 
et al., 2016). The finding of increased functional connec-
tivity in segregation after TAI is similar to the results of 
studies on healthy aging (Heitger et al., 2013) and some neu-
rological diseases, such as brain tumors (Bartolomei et al., 
2006; Bosma et al., 2008). Nonetheless, hyperconnectivity 
should not be automatically interpreted as supporting the 
compensation hypothesis in brain injuries; this concept is 
likely to be metabolically costly (Fornito et al., 2015), result-
ing in reduced adaptability to regulate the activity levels 
of network nodes. Caeyenberghs et al. (2012) demonstrated 
that patients with moderate-to-severe TBI who showed a 
higher connectivity degree presented a lower switching 
performance. The current finding suggests that the activity 
levels across multiple network nodes may show a higher 
level of synchronization in patients with TAI compared to 
HCs, in response to a damaged neurobiological substrate. 
In fact, volume loss and diffuse axonal injury are among the 
most common pathophysiologic sequelae of TBI (Benjamini 
et al., 2021; Bourke et al., 2022). The dorsolateral prefrontal 
cortex receives visual, somatosensory, and auditory infor-
mation, and plays a central role in the cognitive control of 
motor behaviors (Miller & Cohen, 2001). Therefore, the 
higher nodal efficiencies in the dorsolateral prefrontal cortex 
in patients with TAI may indicate a less automatic movement 
generation. TBI most commonly disrupt the frontal system 
and interrupt the executive control processes (Hillary et al., 
2002). Moreover, Alstott et al., (2009) demonstrated that a 
targeted injury of the frontal lobes induces a severe disrup-
tion of this network.

Reduced nodal efficiency values (including nodal degree, 
nodal clustering coefficient, and local efficiency) were 
observed in the caudate nucleus bilaterally in patients with 
TAI compared to HCs. Simoni et al. (2018) reported that 
patients with TBI showed a disruption of the functional con-
nectivity between the caudate nucleus and several cortical 
regions, associated with cognitive impairments. Fagerholm 
et al. (2015) demonstrated that betweenness centrality and 

eigenvector centrality were reduced in the cingulate cortex 
and caudate due to the impact of a TAI on network connec-
tions. Furthermore, caudate activity during executive func-
tion tasks is associated with prefrontal measures of structural 
connectivity (Casey et al., 2007). Disruption of the fronto-
caudate interactions may underpin the common cognitive 
impairments observed in patients with TBI. Interestingly, 
our NBS results showed significantly reduced long-distance 
functional connectivity between the caudate and cerebel-
lum, especially the right caudate. This finding indicates the 
presence of pathway and interplay disturbances between 
the cerebellum and cerebrum due to damaged white mat-
ter connections between network nodes caused by a TAI. 
These alterations can disrupt the network function and lead 
to cognitive impairment.

Moreover, we observed higher nodal efficiency values 
(including nodal clustering coefficient, nodal efficiency, and 
nodal local efficiency) in the right cerebellar hemisphere 
(Crus 2, VII) and cerebellar vermis (4/5, 7). However, sig-
nificant reductions in nodal efficiencies emerged in the left 
cerebellar hemisphere (VIII) and cerebellar vermis (10). 
These findings suggest that the cerebellar regional network 
is disrupted in patients with TAI. In addition, our NBS 
results revealed disrupted functional connectivity between 
the cerebellum and cerebrum, including reduced functional 
connectivity between the caudate and cerebellum, whereas 
higher functional connectivity between the olfactory cortex 
and cerebellum. Previous studies reported cerebellar atrophy 
in patients with TBI (Drijkoningen et al., 2015) and lower 
activation within the cerebellum (Yang et al., 2012). Our 
previous work also showed abnormalities in neural activity 
intensity and its temporal variability (Zhou et al., 2021) and 
decreased interhemispheric coordination in the cerebellum 
posterior lobes (Li et al, 2017). Moreover, our latest study 
revealed a disrupted functional connectivity of the striatal-
cerebellar loop, whihc was strongly correlated with the prog-
nosis of TAI patients (Xu et al., 2023). Further correlation 
analyses also showed that the nodal clustering coefficient 
of the right cerebellar hemisphere (VII) was negatively 
correlated with the MMSE score, suggesting a correlation 
with cognitive disorders in patients with TAI. Based on the 
above findings, we inferred that altered nodal efficiencies 
in the cerebellar network and disrupted functional connec-
tivity between the cerebellum and cerebrum suggested the 
abnormality of cerebellar-cerebral connections, and might 
underlie the pathophysiology of the cognitive impairments 
seen in patients with TAI. However, the finding is needed 
more studies to confirm the reliability.

Compared to HCs, the TAI group observed significantly 
reduced nodal efficiency values (including nodal between-
ness, degree, clustering coefficient, efficiency, and local 
efficiency) in the inferior parietal lobule, including the right 
angular gyrus and supramarginal gyrus bilaterally. The 
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inferior parietal lobule is often involved in spatial percep-
tion, visuomotor integration, and sensory and memory cir-
cuitry. Additionally, this inferior parietal lobule is also key 
node of the posterior default network, which has been widely 
investigated and exhibited alterations in nodal activity within 
the network and in the intrinsic connectivity between net-
works (Sharp et al., 2014), and failure to deactivate the 
default network has been associated with poorer cognitive 
function in patients with TBI (Bonnelle et al., 2011). Fur-
thermore, the NBS results showed reduced functional con-
nectivity between the left supramarginal gyrus and the right 
inferior parietal lobule (angular gyrus), as well as between 
the right supramarginal gyrus and the right olfactory cortex. 
Meanwhile, the nodal degree of the right inferior parietal 
lobule had significant negative correlations with the MMSE 
score, speculating that may be involved in cognitive per-
formance in TAI patients, However, the pathophysiology 
mechanism of the related cognitive impairments is not very 
clear. Our novel demonstration requires further study.

Prior studies have repeatedly demonstrated that individu-
als with TBI often present impairments in facial and vocal 
affect recognition and empathy (Babbage et al., 2011; Hop-
kins et al., 2002; Milders et al., 2003). Emotion recognition 
and empathy are key components of successful interper-
sonal interactions and relationships. Olfactory deficits are 
also common after TBI, affecting more than 56% of patients 
(Neumann et al., 2012). However, in practice, there is a lack 
of awareness regarding this deficit. Hopkins et al. (2002) 
found that patients with a closed-head injury who presented 
poorer emotion recognition and arousal responses to facial 
expressions compared to controls also had lower olfactory 
test scores. Similarly, Neumann et al. (2012) showed that 
olfactory deficits might be indicative of impaired affect rec-
ognition and reduced empathy after TBI. Our study showed 
a reduction in nodal local efficiency in the right olfactory 
cortex in patients with TAI. Furthermore, the NBS results 
showed reduced functional connectivity between the right 
olfactory cortex and the right supramarginal gyrus, and 
higher functional connectivity between the right olfactory 
cortex and cerebellar vermis. These findings suggest that the 
involvement of the olfactory cortex may be closely related 
to emotional processing impairments in patients with TAI.

The present study has several limitations. First, con-
sidering the heterogeneity of TBI, we selected a subgroup 
of relatively “pure” TAI patients among the 57 available; 
29 patients were not examined due to larger local hemor-
rhages, and the final sample size was relatively small. We 
will stick to keep recruiting patients with TAI to conduct 
a large-sample in next work, further performing more 
precise subgroup analyses. Second, multiple comparison 
correction was eschewed as an exploratory analysis on 
topological properties in TAI patients, similarly reported 
altered graph-theory measures without correction for 

multiple comparison in previous studies (Chen et  al., 
2021; Hou et al., 2019; Shi et al., 2021). We will further 
improve the interpretability of statistical analysis by a 
large-sample study and consider the influence of differ-
ent brain network segmentation templates in next work. 
Third, we only analyzed the differences in the functional 
brain networks between patients with TAI and HCs. Future 
research should examine the combination of functional 
and structural connectivity at the subject level. Fourth, 
this study was cross-sectional, and further longitudinal 
analyses are needed to investigate the predictive value of 
graph metrics.

Conclusions

The brain networks of individuals with TAI undergo sig-
nificant changes in topology, visible mainly in regional 
network measures, with no significant difference in small-
world properties and global integration compared to HCs. 
These findings indicate that the graph theoretical analysis 
of fMRI data can provide useful information on the altera-
tion of neural networks in patients with TAI. Aberrant 
topological attributes may be associated with cognitive 
impairment and might be potential biomarkers for predict-
ing neurological dysfunctions, allowing further under-
standing of the neuropathological mechanism in patients 
with TAI.
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