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Abstract
This study uses methods recently developed to study the complex evolution of atmospheric phenomena which have some 
similarities with the dynamics of the human brain. In both cases, it is possible to record the activity of particular centers 
(geographic regions or brain nuclei) but not to make an experimental modification of their state. The study of “causality”, 
which is necessary to understand the dynamics of these complex systems and to develop robust models that can predict their 
evolution, is hampered by the experimental restrictions imposed by the nature of both systems. The study was performed 
with data obtained in the thalamus and basal ganglia of awake humans executing different tasks. This work studies the linear, 
non-linear and more complex relationships of these thalamic centers with the cortex and main BG nuclei, using three com-
plementary techniques: the partial correlation regression method, the Gaussian process regression/distance correlation and 
a model-free method based on nearest-neighbor that computes the conditional mutual information. These causality methods 
indicated that the basal ganglia present a different functional relationship with the anterior-ventral (motor), intralaminar and 
medio-dorsal thalamic centers, and that more than 60% of these thalamus-basal ganglia relationships present a non-linear 
dynamic (35 of the 57 relationships found). These functional interactions were observed for basal ganglia nuclei with direct 
structural connections with the thalamus (primary somatosensory and motor cortex, striatum, internal globus pallidum and 
substantia nigra pars reticulata), but also for basal ganglia without structural connections with the thalamus (external globus 
pallidum and subthalamic nucleus). The motor tasks induced rapid modifications of the thalamus-basal ganglia interactions. 
These findings provide new perspectives of the thalamus - BG interactions, many of which may be supported by indirect 
functional relationships and not by direct excitatory/inhibitory interactions.
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Introduction

Magnetic resonance imaging (MRI) provides information to 
study the functional connectivity of brain centers in awake 
humans (functional connectivity MRI; fcMRI). This method 
uses the fluctuation of the blood oxygenation level dependent 
(BOLD) signal of two brain centers to establish their func-
tional connectivity (Arthurs & Boniface, 2002; Logothetis, 

Highlights  
• Methods to study atmospheric phenomena were adapted here 
to study the human brain activity.
• The development of robust models able to predict the evolution 
of complex systems need the determination of causality.
• Present study shows for the first time the ability of thalamic 
centers to influence the dynamic of human basal ganglia.
• The “causal” activity of the thalamus in the motor behavior 
changes with the motor task.

 * Manuel Rodriguez 
 mrdiaz@ull.edu.es

1 Laboratory of Neurobiology and Experimental Neurology, 
Department of Physiology, Faculty of Medicine, University 
of La Laguna, Tenerife, Canary Islands, Spain

2 Center for Networked Biomedical Research 
in Neurodegenerative Diseases (CIBERNED), Madrid, Spain

3 Department of Physics, University of La Laguna, Tenerife, 
Canary Islands, Spain

4 Department of Neurology, La Candelaria University 
Hospital, Tenerife, Canary Islands, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11682-023-00803-4&domain=pdf
http://orcid.org/0000-0001-7569-2898


2 Brain Imaging and Behavior (2024) 18:1–18

1 3

2002; Logothetis & Wandell, 2004; Raichle, 1998; Raichle 
& Mintun, 2006). However, the utility of fcMRI methods to 
group many centers in complex networks and to character-
ize their internal dynamic is limited (Fox & Raichle, 2007; 
Goebel et al., 2006; Lee et al., 2011; Rodriguez-Sabate 
et al., 2019a, b, c). The understanding of the behavior of 
complex natural networks normally needs the experimen-
tal evaluation of cause/effect relationships between their 
components. In this respect, an event is considered as the 
cause of another when its intentional activation is frequently 
followed by the triggering of the second event (Rodriguez-
Sabate et al., 2020). This action is normally not possible in 
the human brain, particularly in neural networks composed 
of nuclei located deep in the subcortical areas of the brain. 
Thus, can the BOLD signal fluctuations of the brain centers 
of a network be used to identify cause/effect relationships 
and to characterize the behavior of neural networks? The 
mathematical methods to detect cause/effect relationships 
in time-series of interacting elements that cannot be experi-
mentally manipulated began during the 1950s-1960s (mainly 
with the Wiener and Granger studies). These methods have 
shown an accelerated development in recent years (Barnett 
et al., 2018; Hillebrand et al., 2016; Korzeniewska et al., 
2008; Korzeniewska et al., 2011; Meier et al., 2017; Runge, 
2018a; Runge et al., 2019a; Saggioro et al., 2020; Seth et al., 
2015; Sugihara et al., 2012), where they have proven to be 
very suitable for the characterization of climate dynamics 
(Runge, 2018a; Runge et al., 2019a; Saggioro et al., 2020). 
Some of these methods have been adapted here to study the 
cause/effect relationships between basal ganglia, brain cent-
ers of a neural network located deep in the human brain and 
which cannot be experimentally manipulated.

Basal ganglia (BG) are functionally connected with the 
brain cortex by four cortico-subcortical networks, one of 
which is the basal ganglia motor circuit (BGmC) (Alexan-
der et al., 1986; Hoover & Strick, 1993; Nambu, 2011). The 
BGmC transmits information from the primary somatosen-
sory (S1) and motor (M1) cortex to the caudal striatum and 
subthalamic nucleus (STN), and then to the internal globus 
pallidum (GPi), external globus pallidum (GPe) and sub-
stantia nigra pars reticulata (SNr). Information from the 
GPe and SNr goes to the anterior-ventral thalamus (motor 
thalamus; M-Tal) and returns to the S1 and M1 (Alexander 
& Crutcher, 1990; DeLong, 1990; Obeso et al., 2000). This 
cortico-subcortical loop is composed of three subcompo-
nents: the direct (M1→Put→SNr/GPi→M-Tal→M1), indi-
rect (M1→Put→GPe→STN→ GPi/SNr→M-Tal→ M1) and 
hyperdirect (M1→STN→ SNr/GPi→M-Tal→M1) circuits 
that compete for the functional control of M1 activity (Albin 
et al., 1989; Alexander et al., 1986; DeLong, 1990; Penney & 
Young, 1986). These cortico-subcortical loops are normally 
interacting with other subcortical circuits that do not involve 
the brain cortex. One of these include the intralaminar (IL-Tal) 

and mediodorsal thalamus (MD-Tal) thalamic centers (Metzger 
et al., 2010; Metzger et al., 2013) which receive inputs and 
send projections to different BG (Benarroch, 2008; Galvan & 
Smith, 2011; Huerta-Ocampo et al., 2013; Smith et al., 2009; 
Smith et al., 2004), forming short closed-loop circuits with the 
direct and indirect pathways (McHaffie et al., 2005; Redgrave 
et al., 1992). Therefore, the thalamus presents interactions with 
the BG circuits which are highly complex and whose study 
with fcMRI methods is particularly challenging.

The present work uses recently introduced mathematical 
frameworks to identify cause/effect relationships in complex 
systems which, as is the case of BG, can be recorded but not 
directly manipulated (e.g. climate evolution) (Barnett et al., 
2018; Hillebrand et al., 2016; Meier et al., 2017; Runge, 
2018a; Runge et al., 2019a; Saggioro et al., 2020; Seth et al., 
2015; Sugihara et al., 2012) (Runge et al., 2019a), to study 
cause/effect relationships of centers of the thalamus-BGmC 
neuronal network.

Materials and methods

Participants

Twenty-two right-handed volunteers with no history of neu-
rological or mental disease participated in this study (11 
males and 11 females between 21–67 years of age; 42.3 ± 9.5 
years old). Written informed consent was provided by all 
participants, all procedures were in accordance with the ethi-
cal standard of the 1964 Helsinki declaration, and the study 
was approved by an institutional review board (Institutional 
Human Studies Committee of La Laguna University).

Data collection

The basic experimental procedures were similar to those 
reported in previous studies (Rodriguez-Sabate et  al., 
2015, 2017b). Two experimental conditions were used, the 
resting-task condition with subjects maintaining their body 
posture and not performing any planned movement and the 
motor-task condition with subjects performing a repetitive 
sequence of finger extensions/flexions with the right hand. 
BOLD-contrast images (4x4x4 mm voxels in-plane resolu-
tion; echo-planar imaging with repetition time 1.6s; echo time 
21.6 msec; flip angle 90º) were recorded in blocks of 100 
volumes in the following sequence: motor block → resting 
block → motor block → resting block (400 total volumes/sub-
ject = 100 volumes x 2 motor-blocks x 2 resting-blocks). fMRI 
data were co-registered with 3D anatomical images (1x1x1 
mm voxel resolution; repetition time 7.6 ms; echo time 1.6 
ms; flip angle 12º; 250 x 250 mm field of view; 256x256 sam-
pling matrix). All data sets were normalized to the Talairach 
space (Table 1 shows the position and size of ROIs).
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BOLD time series normally contain coherent fluctuations 
which are unrelated to neural activity and which originate 
from residual motion artifacts and physiological signals 
induced by respiration and cardiac activity. These artifacts 
may induce an overestimation of functional connectivity 
strengths. To prevent the confusing effect of artifacts the 
BOLD-signal of BG were regressed with the BOLD-signals 
recorded in white matter and brain ventricles (which are sen-
sitive to respiration, cardiac effects, scanner instabilities and 
other confounding variables..) (Jo et al., 2013b; Power et al., 
2014). The BG position may present substantial between-
subject differences. Time-series used in this study were 
obtained by averaging the BOLD-data of voxels located in 
each of the regions of interest (ROIs) which was manually 
located in each BG of every subject. Figure 1 shows the 
brain position of each BG in the T1 weighted templates (nor-
malized 3D-anatomical spaces). To prevent the contamina-
tion of data from different centers, ROIs were always located 
in the central area of each basal ganglia. The resolution of 
the fMRI (4x4x4 mm) and T1 (1x1x1 mm) images was 
planned in such a way that one fMRI voxel corresponded 
with a whole number of T1 voxels (one fMRI voxel contain-
ing 64 T1 voxels). T1 and fMRI studies were performed in 
a single recording session, using the same field of view, and 
keeping the head attached to the head-coil to prevent move-
ment throughout the T1 and fMRI studies. Thus, there was 
a marked spatial correspondence between the structural and 
functional images, and the T1-fMRI correspondence did not 
need spatial motions during their co-registration of images. 
Representative fMRI ROIs were obtained from the central 
region of BG previously identified in T1 images. The ROI 
size was always big enough to represent the center and small 
enough to prevent the inclusion of the center boundaries. 
VOI positions were always verified by independent research-
ers which confirmed their location inside the corresponding 

center (not touching the center boundary, surrounding cent-
ers or fiber tracts).

fMRI VOIs were individually positioned by using T1 
weighted templates normalized 3D-anatomical spaces and 
using three main indications: 1. coordinates in the Talairach 
space; 2. the shape of the nucleus; and 3. the anatomical 
relationship of the nucleus with other structures (external 
cues) (Fig. 1). Centers were identified in coronal slices 
located 4–27 mm posterior to the anterior commissure (AC). 
The optic tract (opt) and internal capsule were used as exter-
nal cues to identify the GPe, putamen (Put), GPi and MTal. 
The GPi was identified ≈ 6 mm posterior to AC just above 
the opt. The putamen VOIs were located ≈ 5 mm posterior 
to AC because the somato-sensorimotor regions project pri-
marily to the posterior putamen (Haber, 2003; Nambu, 2011; 
Parent, 1990; Selemon & Goldman-Rakic, 1985). GPe was 
located ≈ 3 mm posterior to AC and MTal was located ≈ 11 
mm posterior to AC. STN is a small nucleus whose location 
was defined according to four external cues, the cerebral 
peduncle (cp), oculomotor nerve (3), opt, and pons. In this 
case, coronal images are moved backwards and forwards 
(10↔18 mm posterior to AC) to identify the slice where the 
oculomotor nerve is trapped between the pons and cerebral 
peduncle, and the opt is lateralized. In this slice, the STN 
was identified 10 mm medial to the opt and above a horizon-
tal line crossing the central point of this tract (discontinuous 
line), and near the medial boundary of the cerebral pedun-
cle (cp). The STN is surrounded by tracts and other nuclei 
(SN, zona incerta) and, to prevent the data contamination 
those of near structures, the STN ROI was small and clearly 
located within the nucleus boundary. This was not the case 
of the SN. The SN was located between the red nucleus 
and cp (19–25 mm posterior to AC). The SN pars compacta 
(SNc) is intermixed with the SN pars reticulata (SNr), and 
both components cannot be clearly separated in human MRI. 

Table 1  Coordinates (Talairach) are shown in mm

The size of the ROIs is shown by the number of their voxels

X Y Z Size

Primary motor cortex 37.2 ± 5.0 -18.3 ± 4.2 47.5 ± 4.9 34.0 ± 10.2
Primary sensitive cortex 35.6 ± 7.1 -22.3 ± 2.2 50.6 ± 7.2 36.9 ± 8.1
Caudate 8.7 ± 0.3 11.7 ± 1.1 3.9 ± 1.4 53.3 ± 11.0
Putamen 26.4 ± 1.4 -4.2 ± 1.0 0.1 ± 0.7 30.4 ± 3.3
External pallidum 14.4 ± 2.9 -2.0 ± 1.0 3.2 ± 1.0 29.4 ± 3.3
Internal pallidum 14.2 ± 1.8 -6.3 ± 1.1 -2.4 ± 1.7 27.3 ± 2.3
Subthalamic nucleus 10.8 ± 1.6 -13.1 ± 2.3 -4.4 ± 2.1 20.8 ± 2.2
Substantia nigra 7.4 ± 0.7 -18.0 ± 1.2 -8.8 ± 2.2 270.3 ± 47.3
Intralaminar thalamic nuclei 4.3 ± 1.2 -117.4 ± 1.3 3.7 ± 1.6 52.3 ± 17.1
Ventral-anterior thalamus 9.2 ± 1.2 -6.4 ± 1.3 7.4 ± 2.2 51.6 ± 11.0
Medial dorsal thalamus 6.3 ± 1.3 -16.4 ± 1.7 13.6 ± 1.8 61.2 ± 12.6
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Thus, the VOI of the SN included the whole nucleus. The 
MD and ILTal were identified according to previous studies 
of Metzger et al (Metzger et al., 2013). The identification of 
the hand representation in M1 and S1 was performed in the 
precentral and postcentral gyrus according to a previously 
reported procedure (Rodriguez et al., 2004). The comparison 
of BOLD data recorded during the resting and motor tasks 
was used to verify the hand representation in the M1 and S.

Data preprocessing

The data preprocessing included a slice scan time cor-
rection, a 3D motion correction, and a time filter which 
eliminates frequencies below 0.009 Hz. Studies with 
images showing a displacement > 0.5mm or a rota-
tion > 0.5degrees were removed. No spatial smoothing 

was performed. Residual motion artifacts and physiologi-
cal signals unrelated to neural activity (e.g. respiration, 
cardiac activity) were removed by regressing the BOLD 
signals recorded throughout the brain with the mean aver-
age of the BOLD signals recorded in white matter and 
brain ventricles (Jo et al., 2013a; Power et al., 2014).

For each brain nucleus, the time series for all the par-
ticipants were concatenated to obtain two data sequences, 
one for the motor case and the other for the resting case. 
As a first step, data for each subject were normalized 
around the mean. Then each 100 sample block (motor or 
resting) was concatenated with the other blocks of the 
same type, two for each person, for the whole set of par-
ticipants, obtaining a single time series of 100 volumes x 
2 motor/resting blocks x 20 participants = 4000 samples. 
In order to prevent spurious correlations between series 

Fig. 1  Identification of centers. 
Time-series used in this study 
were obtained by averaging (at 
each time-point) the BOLD-
data of the voxels of a region 
of interest (ROIs) which was 
manually located in each BG 
of each subject (T1 normal-
ized 3D-anatomical spaces). 
The brain position of each BG 
(red) is shown in coronal slices 
whose location regarding the 
optic chiasm is indicated in 
millimeters (top-right of each 
figure). To prevent the contami-
nation of data from different 
centers, ROIs were always 
located in the central area of 
each basal ganglia
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due to block concatenation, the first and last 5 samples of 
each block were filtered using a gaussian moving average 
window of size 5, smoothing the transitions between dif-
ferent recordings. Although an effort has been made to 
normalize the data for all individuals, both in selecting 
the voxels belonging to each ROI and in the amplitudes 
of the signals, the different hemodynamic responses and 
other particular characteristics can cause temporal dif-
ferences to appear in the individual signals hat compli-
cate the interpretation of causality. However, the use of 
longer time series increases the robustness of the meth-
ods. Further experiments were performed with each of 
the individual series of 100 time steps and also with the 
concatenated series for each individual (200 time steps), 

however, very few causal relationships were obtained. 
As the number of individuals increased, more consist-
ent results were obtained. Therefore, it was considered 
that the individual series were different realizations on a 
normalized individual, assuming the error introduced by 
the different mentioned properties.

The time series for each nucleus and behavior type 
(motor/resting), Xi, were joined to create multivariate 
time series, X, of dimension N (with N being the num-
ber of brain nuclei considered for each causal discovery; 
N = 9). The interactions of the different thalamic centers 
with BG were studied separately as follows: the M-Tal 
vs. BG, the IL-Tal vs. BG, and the MD-Tal vs. BG, in all 
cases the motor and resting tasks were computed sepa-
rately. Therefore, only the causal relationships between the 
three thalamic nuclei and the main centers of the BGmC 
were computed. For each time step Xt =  (X1

t,  X2
t, …,  XN

t).

Causality analysis

In this work, a causal network algorithm was used to infer 
dependencies between the eight centers of the BGmC and each 
of the thalamic centers. In particular, the PCMCI + method 
was applied to the multivariate time series for the motor and 
resting cases (Runge, 2018a; Runge et al., 2019b). This causal 
discovery method consists of two steps. In the first one, it 
uses a version of the algorithm proposed by Peter and Clark 
(PC) (Spirtes & Glymour, 1991) but only to selec t the con-
ditions necessary for the following step, reconstructing the 
causal parents of each nucleus through iterative conditional 
independence tests. In this case, the procedure is performed 
separately for lagged sets and contemporaneous sets. In the 
second step, the momentary conditional independence (MCI) 
test is applied, which uses the sets of parents to determine 
the strength of causal relationships, taking advantage of 

autocorrelation for orientation identification in contemporary 
links. This feature is especially important in those cases, such 
as the present one, where the temporal resolution is too coarse. 
Specifically, Python package Time Series Graph Based Meas-
ures of Information Transfer (TiGraMITe), available athttps:// 
github. com/ jakob runge/ tigra mite. git. was used.

The goal in causal discovery is to estimate the causal 
parents from time series data. Thus, the relationship between 
two processes (nuclei signals), Xi and Xj, must be computed 
using a particular definition of conditional independence to 
estimate causal links with statistical reliability. In general, 
conditional independence of  Xi

t−λ and  Xj
t given Z, denoted 

by  Xi
t−λ ⫫  Xj

t | Z, can be expressed in terms of the corre-
sponding conditional probabilities:

where  Xi
t−λ indicates the value in the time series correspond-

ing to nucleus i at lag λ, and Z is a subset of all other pro-
cesses that potentially influence the relationship between the 
two processes being tested, i.e., a subset of {X1

t,  X2
t, …,  XN

t, 
 X1

t − 1,  X2
t − 1, …,  XN

t−1, …,  X1
t − T,  X2

t − T, …,  XN
t−T}, where 

T is the maximum lag considered. As mentioned, in the case 
of PCMCI+, the lagged and the contemporaneous sets are 
treated separately. All those links detected by the algorithm 
between delayed variables are easily orientated, since the 
cause corresponds to a previous instant of time, that is, for 
example  Xi

t−λ →  Xj
t. For the contemporaneous links, two 

consecutive algorithms are applied, which the author named 
the collider phase and the rule phase. In them, unshielded 
triples  Xi

t−τ →  Xk
t ◦−◦Xj

t (τ > 0) or  Xi
t◦−◦Xk

t ◦−◦Xj
t (τ = 0) 

where  (Xi
t−τ,  Xj

t ) are not adjacent, are detected and, if pos-
sible, oriented .

TiGraMITe provides several statistical methods to test 
independence hypotheses, which are typically based on spe-
cific assumptions about the underlying dependence between 
processes, three of which have been used in this study. 
The first one is based on classical statistics and provides a 
robust theoretical background. It assumes linear relation-
ships between variables, testing the conditional independ-
ence through the corresponding partial correlation (PC), 
⍴(Xi

t-λ,Xj
t | Z). Specifically, to perform the conditional inde-

pendence test, a linear model fit of the centered variables 
 Xi

t-λ and  Xj
t as a function of Z is considered and an inde-

pendent and identically normally distributed observational 
noise ϵ is assumed (Runge, 2018a):

Then, the corresponding residuals are calculated from 
the estimated linear functions (f ̂), that will be used in the 
dependency tests:

Xi
t−λ

= fi(Z) + �i, X
j

t
= fj(Z) + �j

https://github.com/jakobrunge/tigramite.git
https://github.com/jakobrunge/tigramite.git
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The second conditional independence test does not assume 
linear relationships as in the previous case, but it uses a non-
parametric method based on gaussian process regression and a 
distance correlation test on the residuals (GPDC) (Szekely et al., 
2007) to test the dependence, allowing the detection of non-
linear dependencies. The kernels used to perform the Gaussian 
processes regression are based on the addition of a radial basis 
function kernel and one that simulates a white noise, assum-
ing that the noise of the signal is independently and identically 
normally-distributed. The last one is the conditional mutual 
information test based on nearest-neighbor (CMIknn) estima-
tor (Runge, 2018a). It is the most general dependency measure, 
and makes no assumptions about the parametric form of the 
dependencies by directly estimating the underlying joint den-
sity. To this end, a nearest-neighbor conditional mutual infor-
mation estimator is used, in conjunction with a local permuta-
tion scheme proposed by Runge (2018b). The non-dependence 
on a parameterization improves the estimation of conditional 
independence in cases where the signals present, for example, 
multiplicative noise. Usually, both in most causal relationship 
detection methods and in fMRI signal simulators, additive white 
noise is assumed for simplicity. However, aside from the thermal 
noise, which can be modeled by independent homoscedastic 
Gaussian process, the fMRI noise is generally heteroscedastic, 
temporally correlated, and nonstationary, with most of the power 
in the low frequencies.

The non-parametric and model-free methods allow the 
detection of non-linear relationships in complex systems, 
but they are based on weaker theoretical results. In all 
cases, even in the linear one, the statistical significance 
of conditional independence tests was computed using a 
block-shuffle permutation test (Mader et al., 2013). This 
prevents the assumption that the samples are independent 
and identically distributed, as required by analytic meth-
ods, because the time series are usually autocorrelated. 
Runge (2018a) graphically illustrates the advantages and 
shortcomings of each of the methods for estimating con-
ditional independence from simulated data, assuming lin-
ear and nonlinear relationships with a common driver and 
using both additive and multiplicative noise. The choice of 
each of the methods has, therefore, direct consequences on 
the causal relationships obtained. In the above equations, 
if Z was a common driver for the variables  Xi

t-λ and  Xj
t, 

and the dependence of  Xi
t-λ on Z and  Xj

t on Z were not 
detected, spurious causality between  Xi

t-λ and  Xj
t could 

be inferred. On the other hand, if a relationship between 
 Xi

t-λ and  Xj
t actually exists, its detection again depends on 

the method chosen. For example, if the relationship is not 
linear and a partial correlation is used, the dependence of 
these variables could not be established.

ri = Xi
t−λ − f̂i(Z), rj = Xi

t − f̂j (Z)
In this study, a two-sided significance level of 0.01 and 

a maximum time lag of T = 2 (3.2 s) were chosen (parent 
processes that occurred after this time and those with a 
probability of more than 1% were neglected). T was esti-
mated from the observation of the decay of the unconditional 
lagged dependencies, retaining those lags for which absolute 
values are clearly larger than the remainder. In addition, in 
some experiments longer maximum delay times, up to 5, 
were tested without finding differences in the results.

As in any applied statistical method, several assump-
tions must be considered. In this case, the most important 
assumptions are time-order, causal sufficiency, the causal 
Markov condition, and faithfulness. Time-order means 
that causes precede effects. Causal sufficiency assumes 
that all direct common drivers are in the set of observed 
time series, in other words, there are no other unobserved 
processes that directly or indirectly influence any other pair 
of the studied processes. Causal Markov condition implies 
that once  Xi

t parent values are known, all other variables 
in the past are not relevant for predicting the value of 
 Xi

t. Faithfulness, together with causal Markov condition, 
guarantees that a measured statistical dependence is due to 
some, direct or indirect, causal mechanism and, conversely, 
a measured independence implies that there is no direct 
causal mechanism.

Although not all these conditions are fully satisfied in the 
time series studied here, the above methods have multiple 
advantages to study causal relationships, particularly when 
compared with other simpler and more commonly used 
methods. The causal discovery algorithms are designed to 
obtain as many true causal relationships as possible while 
controlling the number of false positives, being robust to the 
influence of common drivers and autocorrelation of the time 
series (Runge et al., 2014).

Results

 Functional relationships with statistical values (p < 0.01) 
are shown in Figs. 2, 3, 4, and 5, where the lines indicate 
undefined relationships that do not allow the identifica-
tion of the nucleus that causes the functional relationships 
(causative centers), and the arrows indicate causality rela-
tionships from the causative to the response nucleus. A 
detailed description of each statistical analysis is shown 
in Table 2. Figure 2 shows the undefined relationships, 
and the contemporaneous, single-delayed and double-
delayed causality found between the motor thalamus (M-
Tal) and the BGmC nuclei during the resting (top) and 
motor (bottom) tasks. The functional relationships were 
identified with the PC (left), GPDC (middle) and CMIknn 
(right) methods, and only the functional associations with 
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statistical values (p < 0.01) are shown here and in the fol-
lowing figures. PC showed M-Tal undefined relationships 
with Cau, Put, GPe and STN which were observed dur-
ing both the resting and motor tasks. In addition, M-Tal 
showed an undefined relationship with S1 during the 

resting-task and with M1 during the motor-task. M-Tal 
induced a single-delayed causality on Put activity and a 
double-delayed causality/response (interactive relation-
ship) interaction with the Cau. These causality relation-
ships were observed during resting and vanished during 

Table 2  Statistical values of 
each functional link computed 
with the partial correlation 
(PC), gaussian process 
regression and distance 
correlation (GPDC), and 
conditional mutual information 
test (CMIknn) methods

Only those relationships with p-values < 0.01 are shown. Quantities without any symbol on the right cor-
respond to relationships in which causality has not been determined. When causality is detected, the * indi-
cates that the thalamic nucleus is the causative center, and the < symbol indicates that the thalamic nucleus 
is the response. All the statistical values in this table were normalized between 0 and 1, a procedure that 
facilitates the comparison of the results obtained with the three methods. M-Tal: motor thalamus, IL-Tal: 
intralaminar thalamus, MD-Tal: Medial-dorsal thalamus, M1: primary motor cortex, S1: primary somato-
sensory cortex, Put: putamen, GPe: external globus pallidum, STN: subthalamic nucleus, GPi: internal 
globus pallidum, SN: substantia nigra, Tal: motor thalamus

I-Method Lag M1 S1 Cau Put GPe STN GPi SN

M-Tal
(resting)

PC 0
1
2
2

-0.306 0.630

  -0.529<
-0.391*

1.000
-0.148*

0.562 0.205

GPDC 0
1
2

0.148 0.148 0.519

0.333<

0.870

0.037*

0.111
0.056<

0.056<
CMIknn 0

2
0.188* 0.438* 0.375

0.188*
0.688 0.313 0.313 0.375

M-Tal
(motor)

PC 0 -0.364 0.791 0.986 0.208 0.205
GPDC 0

2
2

0.093 0.815
0.241<
0.167*

0.981 0.407

0.056*

0.222

CMIknn 0
2

0.188* 0.313
0.188*

0.500 0.375 0.438

IL-Tal
(resting)

PC 0 0.673 0.983 0.505 0.632
GPDC 0

2
0.778 0.778 0.029

0.037*
0.010 0.017

CMIknn 0 0.375 0.375 0.375 0.250 0.438 0.250*
IL-Tal
(motor)

PC 0
2

0.761
-0.306

0.909 0.558 0.626

GPDC 0
2 0.056* 0.056*

0.500
0.204*

0.722 0.667
0.056*

0.130 0.444

CMIknn 0 0.375 0.375 0.325 0.313 0.313
MD-Tal
(resting)

PC 0
1
2 0.192<

-0.347*
  -0.515<

0.777
0.329<

GPDC 0
1
2 0.074

0.204
0.111*
0.130<

1.000
0.037*

0.093
0.056*

0.056
0.037< 0.185<

CMIknn 0
1
2 0.250

0.250*
1.000 0.313<

MD-Tal
(motor)

PC 0
1
2 -0.391<

0.724
0.222*

GPDC 0
1
2
2

0.074

0.111<

0.241

0.111<
0.111*

0.926
0.037*

0.037
0.019*

0.148*

0.056 0.037
0.074*

0.056
0.074<

CMIknn 0
2

0.188*
0.250*

0.563 0.188<
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motion. GPDC showed an M-Tal undefined relationship 
with M1, Cau, Put and GPe which was observed dur-
ing both the resting and motor tasks. In addition, M-Tal 

showed an undefined relationship with S1 during the 
resting-task and with STN during the motor-task. M-Tal 
induced a double-delayed causality on Put (during the 

Fig. 2  Undefined and causality 
relationships between the motor 
thalamus and the basal ganglia 
motor circuit during the resting-
task (top) and the motor-task 
(bottom). Only the functional 
connections with statistical 
value (p < 0.01) are shown. 
PC: partial correlation, GPDC: 
Gaussian process regression and 
distance correlation, CMIknn: 
conditional mutual information 
test. M-Tal: motor thalamus, 
M1: primary motor cortex, S1: 
primary somato-sensory cortex, 
Put: putamen, GPe: external 
globus pallidum, STN: subtha-
lamic nucleus, GPi: internal 
globus pallidum, SN: substantia 
nigra, Tal: motor thalamus

Fig. 3  Undefined and causal-
ity relationships between the 
intralaminar thalamus and the 
basal ganglia motor circuit 
during the resting-task (top) and 
the motor-task (bottom). Only 
the functional connections with 
statistical value (p < 0.01) are 
shown. PC: partial correla-
tion, GPDC: Gaussian process 
regression and distance cor-
relation, CMIknn: conditional 
mutual information test. IL-Tal: 
intralaminar thalamus, M1: pri-
mary motor cortex, S1: primary 
somato-sensory cortex, Put: 
putamen, GPe: external globus 
pallidum, STN: subthalamic 
nucleus, GPi: internal globus 
pallidum, SN: substantia nigra, 
Tal: motor thalamus
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Fig. 4  Undefined and causal-
ity relationships between the 
medial-dorsal thalamus and 
the basal ganglia motor circuit 
during the resting-task (top) 
and the motor-task (bottom). 
Only the functional connections 
with statistical value (p < 0.01) 
are shown. MD-Tal: Medial-
dorsal thalamus, PC: partial 
correlation, GPDC: Gaussian 
process regression and distance 
correlation, CMIknn: condi-
tional mutual information test. 
M1: primary motor cortex, S1: 
primary somato-sensory cortex, 
Put: putamen, GPe: external 
globus pallidum, STN: subtha-
lamic nucleus, GPi: internal 
globus pallidum, SN: substantia 
nigra, Tal: motor thalamus

Fig. 5  Summary of the thalamic nuclei and the basal ganglia motor 
circuit during the resting-task (top) and the motor-task (bottom). Only 
the functional connections with statistical value (p < 0.01) are shown. 
Linear relationships are shown with continuous lines, non-linear 
relationships with discontinuous lines, and more complex relation-
ships with dotted lines. M-Tal: motor thalamus, IL-Tal: intralami-

nar thalamus, MD-Tal: Medial-dorsal thalamus, PC: partial correla-
tion, GPDC: Gaussian process regression and distance correlation, 
CMIknn: conditional mutual information test. M1: primary motor 
cortex, S1: primary somato-sensory cortex, Put: putamen, GPe: 
external globus pallidum, STN: subthalamic nucleus, GPi: internal 
globus pallidum, SN: substantia nigra, Tal: motor thalamus
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motor tasks), Cau (motor-task) and GPe (during the motor-
tasks) activity, a single-delayed response to STN activ-
ity (resting-task), and a double-delayed response to Cau 
(resting- and motor-tasks) and SN (resting-task) activity. 
CMIknn showed an M-Tal undefined relationship with 
Cau, Put, GPe and STN (observed during both the rest-
ing and motor tasks) and with SN (resting-task). M-Tal 
induced a double-delayed causality on the Cau activity 
(resting and motor tasks), and a contemporaneous causal-
ity on the M1 (resting and motor tasks) and S1 (resting-
task) activity.

Figure 3 shows the undefined and causality relationships 
(p < 0.01) of the intralaminar thalamus (IL-Tal) with the 
BGmC areas during the resting (top) and motor (bottom) 
tasks. IL-Tal showed undefined relationships with the Cau, 
Put, GPe, STN and GPi which were observed with PC, 
GPDC and CMIknn during both the resting and motor 
tasks. During the resting-task, IL-Tal also induced a dou-
ble-delayed causality on GPe activity (GPDC) and a con-
temporaneous causality on SN activity (MCIknn). During 
the motor-task, IL-Tal induced a double-delayed causality 
on Cau activity (PC and GPDC) and on S1, M1 and GPe 
activity (GPDC).

Figure 4 shows the functional relationships (p < 0.01) of 
the mediodorsal thalamus (MD-Tal) with BGmC areas dur-
ing the resting (top) and motor (bottom) tasks. PC showed an 
undefined relationship of the MD-Tal with the Put (resting 
and motor tasks), and induced a single-delayed causality 
on Cau (resting-task) and GPe (motor-task) activity. MD-
Tal showed a double-delayed response to Cau (resting and 
motor tasks), M1 (motor tasks) and S1 (resting tasks) activ-
ity. GPDC showed massive interactions of the MD-Tal with 
all BG and with the M1. MD-Tal showed undefined relation-
ships with the Cau, Put, GPe and STN (resting and motor 
tasks) and with the M1, GPi and SN (motor-task). MD-Tal 
induced a single-delayed causality on Cau (resting tasks), 
and on Put and GPe (resting and motor tasks) activity, and 
showed a single-delayed response to SN (resting and motor 
tasks) and STN (resting-task) activity, and a double-delayed 
response to M1 and Cau (resting and motor tasks) activ-
ity. CMIknn showed undefined relationships between MD-
Tal and Put. MD-Tal induced a contemporaneous causality 
on the S1 (resting-task), and showed a contemporaneous 
response to the GPe (resting-task) and to the SN (motor-
task). In addition, MD-Tal induced a single-delayed cau-
sality (resting-task) and a double-delayed causality (motor-
task) on the Cau.

Figure 5 simplifies these functional connectivities by 
grouping the different analytical methods and showing 
the estimated nature of each relationship according to the 
method used for its identification. PC identifies linear rela-
tionships. GPDC identifies linear and non-linear relation-
ships, and is less sensitive than PC for linear relationships 

but much more sensitive for non-linear relationships. 
CMIknn can detect linear, non-linear and more complex 
relationships, and is less sensitive than PC for linear relation-
ships and than GPDC for non-linear relationships, but is the 
only method that can detect more complex functional inter-
actions (e.g. chaotic interactions with phase-transitions). In 
addition, the combination of the CMIknn method (for detect-
ing independence between nodes) and the PCMCI + algo-
rithm was able to detect causality between centers whose 
BOLD-signal fluctuations were synchronized in the same 
time-intervals (Runge, 2018a). Taking these facts into 
account, Fig. 5 shows the linear, non-linear and complex 
relationships between the three thalamic nuclei studied and 
the BGmC nuclei.

The M-Tal showed four undefined linear relationships 
(with the Cau, Put, GPe and STN) which did not change 
with the task (permanent relationships), and an unde-
fined complex relationship with the SN, observed during 
the resting-task but not during the motor-task. The M-Tal 
induced a contemporaneous complex causality on M1 (rest-
ing and motor tasks) and S1 (resting-task) activity and a 
single-delayed linear causality on Put activity during the 
resting-task which was detected as a non-linear causality 
during the motor-task. The M-Tal showed a single-delayed 
non-linear response to the STN and a double-delayed non-
linear response to the SN during the resting-task which van-
ished during the motor-task. Finally, the M-Tal showed a 
double-delayed linear interactive relationship with the Cau 
during the resting-task which became a non-linear interac-
tion during the motor-task.

The IL-Tal showed five undefined linear relationships 
(with the Cau, Put, GPe, STN and GPi), and induced a 
non-linear double-delayed causality action on GPe activity 
which did not change with the task. The resting-task pro-
duced a contemporaneous complex causality of the IL-Tal 
on SN activity which was not observed during the motor-
task. On the other hand, the motor-task produced a double-
delayed non-linear causality of IL-Tal activity on M1 and 
S1 activity which was not observed during the resting-task.

Most MD-Tal interactions with the BGmC centers were 
of a non-linear nature, even those rapid actions classified 
as undefined relationships. Although non-linear relation-
ships should also be detected by CMIknn-based methods, 
they were only detected by those based on GPDC. The 
MD-Tal showed an undefined linear relationship with Put 
and undefined non-linear relationships with the Cau, GPe 
and STN during the resting tasks. These relationships 
persisted during the motor-task. In addition, the motor-
task induced undefined non-linear relationships with the 
M1 and GPi which were not observed during the resting-
task. The MD-Tal induced a non-linear causality action 
on Put (single-delayed) and GPe (double-delayed) activity 
during the resting-task, and a linear causality on the Cau 
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(single-delayed) during both tasks (although the single-
delayed linear action on Cau observed during the resting-
task became a double-delayed non-linear action during 
the motor-task). MD-Tal induced a contemporaneous com-
plex causality on S1 activity during the motor-task but not 
during the resting-task. On the other hand, the MD-Tal 
showed a response to GPe (complex contemporaneous 
causality), and STN (non-linear single-delayed causality) 
activity during the resting-task but not during the motor-
task. Finally, the MD-Tal worked as response center for the 
SN, showing a complex contemporaneous response during 
the motor-task and a single-delayed non-linear response 
during both the resting and the motor tasks.

Discussion

Present data show that the analysis of fcMRI data with 
the causality methods is a useful procedure to advance the 
understanding of the neuronal networks of human BG. The 
combination of three independent statistical procedures 
provided an exhaustive (identifying the functional con-
nectivity regardless of its linear, non-linear or complex 
nature) and selective (avoiding the spurious relationship 
generated by the closed-loop arrangement of BG) view 
of the functional connectivity of the thalamus with the 
BGmC. Causality relationships were observed in a portion 
of the functional connectivity, showing the nature (linear, 
non-linear or complex), the time-dynamic (contemporane-
ous, single-delayed and double-delayed) and the causa-
tive/response centers of each functional relationship. The 
causality relationships changed with the task, providing a 
new view of the thalamic action on the BGmC dynamics 
in the human brain.

Advantages and disadvantages of present methods

The identification of causes and effects is one of the key 
facts in the development of experimental sciences. It is 
generally considered that a fact X is the cause of a fact Y 
when the repeated manipulation of X has the same effect 
on Y (“experimental causality”). This direct experimental 
manipulation can rarely be performed in the case of the 
human brain, particularly in the case of the BG which are 
located deep below the brain cortex. Present methods used 
the relative fluctuation of the different BG (BOLD time-
series) to estimate the cause/effect relationships involved in 
the functional interaction of their nuclei. This is a “statistical 
causality” which identifies causation when the probability 
of X→Y transitions is higher than expected at random. This 
cause/effect relationship is more easily identified when the X 
(cause) and Y (effect) are found in successive time-windows, 

but when they appear in the same time-window (simultane-
ity window) the time lag between X and Y cannot be used 
to identify the cause and the effect in this statistical asso-
ciation. The BOLD-signal had a time-resolution of 1.6 sec 
(simultaneity window in this study), and when the phase-
shift of BOLD-waves of two nuclei is less than the sim-
ultaneity window the statistical causality (causation) of 
their functional relationships cannot be established by the 
time precedence. However, a new procedure has recently 
been introduced to estimate cause/effect relationships even 
in fluctuations with a phase-shift shorter than the simulta-
neity window (Runge, 2018a, b; Runge et al., 2019a; Sag-
gioro et al., 2020). Here, these methods identified a num-
ber of cause/effect relationships between the thalamic and 
BG nuclei, some of which were found using simultaneous 
BOLD-fluctuations (contemporaneous causality) and others 
using non-simultaneous BOLD-fluctuations (single-delayed 
and double-delayed causality). Conceptually, the causality 
studied here corresponds to the bivariate Granger causality, 
bivariate transfer entropy, conditional mutual information 
and phase transfer entropy computed with other methods. 
Contemporaneous causality could not be identified in all 
the simultaneous BOLD-fluctuations with statistical value 
(undefined relationships), a methodological limitation that 
future studies could overcome with new analytical methods 
or using fcMRI recordings with a higher time-resolution.

Another limitation of present methods is caused by some 
of the physiological characteristics of the BG. These meth-
ods require a number of preconditions (stationarity, causal 
sufficiency, faithfulness, etc.) that cannot always be verified 
in brain studies. Although special precautions were taken 
here to prevent artefactual interactions and spurious cau-
salities (e.g. non-parametric significance tests, long time-
series, etc.), misidentifications cannot be completely ruled 
out (Runge, 2018a). Present methods can identify individual 
interactions between two centers but not multiple simul-
taneous interactions between the different centers of the 
same network (functional multinuclear ensembles), which 
is another limitation of the present study. The independ-
ent component analysis (Damoiseaux et al., 2006; Fox & 
Raichle, 2007; Goebel et al., 2006) and data-driven sparse 
GLM (Lee et al., 2011; Su et al., 2016) can work with mul-
tiple regions at the same time, but they mainly use linear 
interactions and may be not sensitive to some of the non-
linear relationships previously observed in the BG (Marceg-
lia et al., 2006; Rodriguez-Sabate et al., 2017a; Rodriguez 
et al., 2003a, b, c; Schroll & Hamker, 2013), and which in 
the present study were found in a high percentage of the 
thalamus-BGmC relationships. Some new multifactorial 
methods recently introduced to study the interaction of 
multiple brain regions may work with non-linear signals, 
but they do not provide an identification of BG interactions 
as exhaustive as the present method does, and they do not 
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identify causal relationships (Rodriguez-Sabate et al., 2020; 
Rodriguez-Sabate et al., 2017a). Present methods provide 
an exhaustive identification of the functional relationships 
between the thalamus nuclei and the main centers of the 
BGmC, most of which showed non-linear dynamics and 
cause/effect relationships.

The joint application of present analytical methods offers an 
additional advantage, it provides information about the basic 
characteristics of the functional relationships. The most sensi-
tive method for linear relationships is the PC. GPDC identifies 
both linear and non-linear relationships but it is more sensitive 
for non-linear and less sensitive for linear relationships than 
the PC. Therefore, the functional relationships have been clas-
sified as linear relationships when they were detected by PC, 
and as non-linear relationships when they were detected by 
GPDC but not by PC. CMIknn identifies linear, non-linear and 
more complex functional relationships. This technique is much 
less sensitive for detecting linear and non-linear relationships 
and much more time-demanding than the other two methods, 
but it can identify complex relationships undetectable by the 
other methods. Thus, the functional relationships not detected 
by PC and GPDC were identified as complex relationships 
by CMIknn. The integrated application of the three methods 
proved to be useful to identify functional BG interactions not 
observed by other methods, reducing the possibility of incor-
porating spurious causality into the BG model.

Causality and thalamus‑BGmC structural 
connectivity

Thalamic nuclei are directly involved in the segregation of 
the information processed by the BGmC, with each thalamic 
nucleus showing particular structural connections and differ-
ent physiological functions. The M-Tal receives projections 
from the GPi and SNr and sends projections to the motor 
cortex, thus closing the three cortico-subcortical loops of 
BG, the direct, indirect and hyperdirect loops (Levy et al., 
1997; Parent & Hazrati, 1995; Sherman, 2016). A significant 
portion of the M-Tal neurons also project to the striatum 
where they may interact with striatal inputs coming from 
the motor cortex (Haber & McFarland, 2001; McFarland & 
Haber, 2000, 2001). The IL-Tal receives massive projec-
tions from the GPi and SNr (together with those coming 
from the superior colliculus, pedunculopontine nucleus, 
locus coeruleous, amygdala and other nuclei) (Groenewegen 
& Berendse, 1994; Sidibe et al., 1997, 2002; Smith et al., 
2004), and sends projections to the caudate and Put (together 
with those going to the motor cortex and to different sub-
cortical areas such as the nucleus accumbens) (Berendse 
& Groenewegen, 1991; Mandelbaum et al., 2019; Parent 
& Parent, 2005; Smith et al., 2004). IL-Tal neurons are 
involved in the cortico-subcortical loops of BG by receiv-
ing collaterals of the axons of the GPi/SN neurons that 

project to the M-Tal and by modulating the striatal action 
of the cortico-striatal projections (Parent & Hazrati, 1995; 
Sidibe et al., 1997, 2002). In addition, the IL-Tal generates 
different subcortical BG loops (e.g. the IL-Tal → Put → 
GPi → IL-Tal motor loop, the IL-Tal → Cau → SNr → 
IL-Tal associative loop and the IL-Tal → accumbens → 
GPi → IL-Tal limbic loop) (Galvan & Smith, 2011; Sidibe 
et al., 1997, 2002; Smith et al., 2009, 2004). The MD-Tal 
receives inputs from the GPi and SNr and sends outputs to 
the striatum (Ilinsky et al., 1985; Percheron et al., 1996), 
although most of its projections go to the prefrontal cortex 
(Delevich et al., 2015; Heidbreder & Groenewegen, 2003). 
In addition to these multicenter pathways, the M-Tal, IL-Tal 
and MD-Tal present reciprocal modulatory interactions with 
the brain cortex (glutamatergic neurons of these thalamic 
nuclei innervate glutamatergic neurons of the brain cortex 
that project to the glutamatergic neurons of the thalamus) 
(Harris & Shepherd, 2015; Jeong et al., 2016; Lusk et al., 
2020; Mandelbaum et al., 2019; Sherman, 2016).

Taken together, all these pathways form a complex net-
work where the information may flux by different routes 
at the same time and may be continuously recirculating by 
feed-back reentrant connections. These thalamus-BG net-
works may use information arriving from different sources 
to perform different functions (Galvan & Smith, 2011; 
Haber & Calzavara, 2009; Kimura et al., 2004; McHaffie 
et al., 2005; Rodriguez-Sabate et al., 2015). This complex 
structural organization, the reentrant wiring of the BG, and 
the non-linear (or complex) dynamics previously reported 
in the BG (Marceglia et  al., 2006; Rodriguez-Sabate, 
2017b; Rodriguez et al., 2003a, b, c; Schroll & Hamker, 
2013) and observed here in many of the thalamus-BG rela-
tionships make the understanding of the thalamus-BGmC 
interaction a challenging task. No particular physiological 
functions have been identified in each of the thalamus-
BGmC networks at the moment, and present data cannot 
do that. However, present data provide an extensive list of 
functional interactions between the thalamic nucleus and 
the main nuclei the BGmC, showing cause/effect relation-
ships in most cases.

The functional connectivity of the thalamus 
and BGmC according to the causality methods

The causality methods indicated four key facts: 1. BGmC 
nuclei present a different functional relationship with the 
M-Tal, IL-Tal and MD-Tal; 2. more than 60% of these thal-
amus-BGmC relationships showed non-linear or complex 
dynamics (35 of the 57 relationships found); 3. the motor 
tasks induced rapid modifications of the thalamus-BG inter-
actions. 4. the thalamic nuclei present functional relation-
ships with BGmC nuclei that have direct structural connec-
tions with the thalamus (M1, S1, Cau, Put, GPi and SNr), 



13Brain Imaging and Behavior (2024) 18:1–18 

1 3

but also with other BG nuclei that do have these connections 
(GPe, STN). These findings provide new perspectives of the 
thalamus - BG interactions, many of which may be sup-
ported by indirect functional relationships and not by direct 
excitatory/inhibitory interactions.

The dynamics of the thalamus-BG relationships have 
been mainly based on the excitatory/inhibitory interactivity 
of their nuclei, with each nucleus producing a local action on 
the next nucleus of the BG cortico-subcortical loop, and with 
the global dynamic of the BG being the result of these local 
interactions. Present data suggest that each thalamic nucleus 
can modulate the activity of most BGmC nuclei, even when 
they do not have direct structural connections. Thus, the tha-
lamic action on BGmC nuclei may be supported by direct 
or by indirect pathways (e.g. the IL-Tal can influence GPe 
activity by different routes including IL-Tal→Put→GPe, 
IL-Tal→Cau→GPe, and IL-Tal→M1→Put→GPe), with 
both actions being performed in time-intervals shorter than 
100–200 msec. These rapid actions may be at the basis of the 

undefined relationships or of the contemporaneous causality 
observed here. On the other hand, the delayed causations 
require temporal latencies greater than 1600–3200 msec, 
which suggests that they involve more indirect pathways (e.g. 
thalamic projections to the prefrontal cortex or the amyg-
dala), or they require many turns of one or several closed-
loop networks (e.g. IL-Tal→Put→GPe→STN→GPi→IL-
Tal ,  IL -Tal→Cau→GPe→  STN→GPi→IL -Tal , 
IL-Tal→M1→Put→GPe→STN→GPi →IL-Tal). The reen-
trant signaling has been proposed as a mechanism to facili-
tate the diffusion of information across the cerebral cortex 
and to facilitate the functional link of cortical areas without 
direct structural connections (Edelman & Gally, 2013). A 
key characteristic of BG networks is their circular arrange-
ment, which may be particularly suitable for the reentrant 
signaling. In this case, the thalamus-BG delayed causality 
could be the result of the recirculation of information, and 
several turns of thalamus-BG loops would be necessary for 
the delayed functional synchronization observed here.

Fig. 6  Summary of the rapid (top) and delayed (bottom) functional 
reconfigurations of the thalamus - basal ganglia interactions induced 
by the resting-task (left) and motor-task (right). Linear relationships 
are shown with continuous lines, non-linear relationships with dis-
continuous lines, and more complex relationships with dotted lines. 
PC: partial correlation, GPDC: Gaussian process regression and 

distance correlation, CMIknn: conditional mutual information test 
(based on nearest-neighbor). M-Tal: motor thalamus, IL-Tal: intral-
aminar thalamus, MD-Tal: Medial-dorsal thalamus, M1: primary 
motor cortex, S1: primary somato-sensory cortex, Put: putamen, 
GPe: external globus pallidum, STN: subthalamic nucleus, GPi: 
internal globus pallidum, SN: substantia nigra, Tal: motor thalamus
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Influence of the motor tasks on the thalamus‑BGmC 
functional connectivity

An interesting finding was the rapid reconfiguration of the func-
tional connectivity of the thalamus induced by the motor task. 
Figure 6 shows a summary of the reconfiguration of the rapid 
(top) and delayed (bottom) relationships induced by the motor-
task (right side) regarding the resting-task (left-side). In order 
to simplify the review of results, only the changes induced by 
the motor-task (vs. the resting-task) are shown in this figure.

The undefined relationships observed during the resting-task 
showed a preponderance of linear connectivity in the M-Tal 
and IL-Tal (with the Cau, Put, GPe and STN but not with the 
SN), and of non-linear connectivity in the MD-Tal (with the 
Cau, GPe and STN but not with the Put). The fact that all the 
undefined M-Tal and IL-Tal relationships found during the rest-
ing-tasks persisted during the motor-task (except the M-Tal vs. 
SN), and that no new undefined relationships appeared with the 
motor-task (except the MD-Tal vs. M1), suggest that the rapid 
connectivity is involved in the preservation of basic functions 
of BG which could be working in any physiological condition. 
Some of the rapid functional connections of the M-Tal and 
IL-Tal showed a causal relationship (contemporaneous cau-
sality). The M-Tal displayed a contemporaneous causality that 
modulated the activity of the M1 and S1, and which could be 
involved in the BG functions performed during resting (the M1 
and S1 modulating the muscle tone and body posture) (Mellone 
et al., 2016; Wright et al., 2007) or during the motor activ-
ity (the M1 executing voluntary actions). The M-Tal showed 
undefined rapid relationships with many BGmC areas which 
are probably supported by the direct structural connections of 
these areas (Ilinsky et al., 1985; Percheron et al., 1996), and 
which may be involved in the BG functions performed during 
the resting (the Cau, Put, GPe and STN) and the motor (the GPi, 
SN and M1) activity.

The delayed causality between the thalamic and BGmC 
nuclei also changed with the motor-tasks (Fig. 5 bottom). The 
M-Tal showed a double-delayed interactive relationship with 
the Cau and induced a single-delayed causality on Put activity 
during the resting-task. These were linear causalities which 
changed to non-linear causalities (Cau) or vanished (Put) 
during the motor-task. The IL-Tal induced a double-delayed 
causality on the GPe (non-linear) during the resting task that 
persisted during the motor task, which was then accompanied 
by a double-delayed causality on the Cau, M1 and S1 (non-
linear). The MD-Tal showed complex causality (Cau, Put and 
GPe) and response (Cau, STN, SN, M1) relationships dur-
ing the resting-task which did not change with the motor-task 
(except the loss of the STN→MD-Tal causality).

In summary, present data show that the motor tasks induce a 
broad action on the functional relationships of the thalamus and 

BGmC, inhibiting some interactions and activating others, and 
modifying the time-latency (rapid vs. delayed) and dynamics 
(linear, non-linear and complex) of different interactions. Future 
studies using other behavioral tests, faster fcMRI methods and 
new mathematical algorithms may help to identify the struc-
tural substrate and the physiological function of these functional 
interactions. These studies will need the inclusion of new brain 
areas (e.g. premotor cortex) (Delevich et al., 2015; Heidbreder 
& Groenewegen, 2003), new BG loops (e.g. prefrontal cortico-
subcortical loop) and particular motor functions (e.g. selection 
and timing of motor patterns) (Hunt & Aggleton, 1998; Lusk 
et al., 2020; Parnaudeau et al., 2018, 2015; Yu et al., 2010). 
New methodological approaches will probably facilitate the 
development of more realistic models of the human BG, thus 
helping to understand the pathophysiology of BG disorders and 
to develop new therapeutic strategies.
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