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Abstract
Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. 
Although brain structural investigations have demonstrated a continuous association between higher body weight and 
reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals 
from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether 
the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be 
found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spec-
trum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary 
reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In 
addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. 
Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found 
when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, 
but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity 
is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with 
higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced 
in the higher body weight range.
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Obesity is a widespread cause of disability with severe pub-
lic health implications (Mathers & Loncar, 2015). While 
diminished impulse control and altered valuation of reward-
ing food cues have been associated with dysfunctional eat-
ing behavior and obesity on a behavioral level (Maxwell et 
al., 2020), research also points toward aberrant neurobiolog-
ical mechanisms underlying weight gain and obesity during 
reward processing (Donofry et al., 2020; García-García et 
al., 2014).

Overweight and obesity have repeatedly been linked 
to brain functional aberrations in response to reward cues 
(García-García et al., 2014; Opel et al., 2015). The insula, 
orbitofrontal cortex (OFC), and striatum have consistently 
been identified as key regions implicated in reward pro-
cessing and obesity (Burger & Berner, 2014; Volkow et al., 
2011; Wang et al., 2004). The striatum, including nucleus 
accumbens, caudate, and putamen, has been described as 
part of the “hedonic pathway” through its dopaminergic 
pathways associated with reward anticipation and func-
tion during general hedonic representation, particularly 
in network with the insula, anterior cingulate cortex and 
other midbrain structures such as the ventral tegmental area 
(VTA). The orbitofrontal cortex (OFC) is equally part of the 
hedonic pathway of overeating and obesity due to its role 
in decision-making and value appraisal of specific rewards 
such as palatable food (Kenny, 2011; Lee & Dixon, 2017). 
The insula, which is mostly known for its role in interocep-
tion and the homeostatic regulation of hunger and satiety 
(Carnell et al., 2012) has recently been identified as a region 
in which the expression of obesity susceptibility genes was 
most strongly enriched (Ndiaye et al., 2020). Moreover, the 
insular cortex also plays a crucial role in emotional process-
ing as well as craving and feeding behavior, which makes 
this region especially interesting when examining reward 
processing in relation to body weight and obesity (Craig, 
2009; Elliott et al., 2000; Yokum et al., 2011).

Previous investigations consistently find overactivation 
of reward-related regions in participants with obesity com-
pared to participants within the normal weight range follow-
ing rewards cues (Han et al., 2021; Stice & Burger, 2019; 
Yokum et al., 2011). Of note, these effects are not limited 
to food rewards but can equally be detected in response to 
non-food rewarding stimuli (Opel et al., 2015). However, 
it remains unclear, whether an overactivation of the reward 
circuit in response to reward cues can be found through-
out the BMI range or if it is particular to clinical obesity. 
Evidence from brain structural investigations consistently 
reveals continuous body weight related gray matter atrophy 
and cortical thinning (Opel et al., 2017; Raji et al., 2010; 
Shaw et al., 2018). This association has been linked to a 
number of potential mechanisms associated with elevated 
body weight, such as fitness level, cardiac function or 

inflammation (Bobb et al., 2014; Hayes et al., 2014; Jef-
ferson, 2010), which suggests potential atrophic effects of 
increased adiposity on brain structure. This is in line with 
the food addiction model of overeating and obesity which 
describes these common findings as potential effects of 
a high-fat/sugar diet, the overconsumption of food, and 
the adipose state (Smith & Robbins, 2013). However, the 
model also describes a cognitive component as a potential 
mechanism for the development and maintenance of obe-
sity, related to motivation, response to rewarding cues and 
eating behavior. These cognitive processes may be particu-
larly aberrant in the highest weight range, where overeat-
ing and potential food addiction may be most pronounced 
(Smith & Robbins, 2013) and therefore especially relevant 
when investigating brain functional aberrations related to 
adiposity.

Most previous research on the relationship between body 
weight and neural reward processing has investigated small 
sample sizes (García-García et al., 2014; Han et al., 2021) 
and typically either compared individuals with obesity with 
a normal weight control group (Han et al., 2021; Opel et al., 
2015) or made no distinction between overweight and obese 
weight groups (García-García et al., 2014; Meng et al., 
2020). Studies that consider the entire BMI range in larger 
samples do not typically investigate whether the effects 
occur as a function of higher body weight, or whether they 
are driven by a particular weight group (Beyer et al., 2021; 
Bhutani et al., 2021). Nevertheless, a non-linear relation-
ship between reward sensitivity and body weight has long 
been discussed, though the direction of effects has not been 
uniform across investigations, with some authors describing 
blunted reward response in individuals with obesity (Davis 
& Fox, 2008; Horstmann et al., 2015) – hypothesizing that 
individuals overeat to compensate for the reduced neural 
reward response. Another investigation in adolescents with 
overweight and obesity found no association between con-
tinuous BMI and neural response to high vs. low calorie 
drinks but instead revealed overactivation in reward-related 
areas in association with insulin resistance (Feldstein Ewing 
et al., 2017). Insulin resistance as a common comorbidity 
of the obese state (Ye, 2013) may therefore also play a role 
in setting reward processing in individuals with obesity 
apart from overweight and normal weight. Verdejo-Román 
et al. (2017) found impaired reward learning during reward 
anticipation in participants with obesity compared to over-
weight and normal weight groups and a subsequent over-
activation of striatal areas after reward receipt, which the 
authors attribute to severity related neuroadaptations, fur-
ther underlining the unique role clinical obesity might have 
during reward processing. This is in line with food addic-
tion models which posit enhanced reward circuitry response 
along with impaired executive control circuitry function 
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and decreased inhibitory control over eating behavior in 
response to highly palatable foods as the neural basis for 
developing obesity (Smith & Robbins, 2013; Volkow et al., 
2013).

Although sparse, this evidence in concert with theoreti-
cal models of food addiction lends support to the hypoth-
esis that, in contrast to the linear association between body 
weight and brain structural aberrations, previously estab-
lished effects regarding an overactive reward circuit may 
be particularly pronounced in higher body weight ranges or 
even specific for clinical obesity, potentially due to second-
ary effects of the adipose state such as aberrant hormone 
levels, gut microbiome, but also due to cognitive processes 
regarding reward and feeding behavior (Devoto et al., 
2018; Dong et al., 2022; Murray et al., 2014; Reinehr et 
al., 2008; Stice & Burger, 2019). Our own group was previ-
ously able to show overactivation of the OFC, insula and 
putamen when contrasting participants with obesity with a 
normal weight control group in a sample of 29 participants 
per group (Opel et al., 2015). It is warranted to attempt rep-
lication of this study with a bigger sample size, while mov-
ing away from merely contrasting participants with normal 
weight and obesity. Although BMI cut-offs are well estab-
lished in clinical practice to categorize and quantify health 
risk (Weir & Jan, 2019), and previous research has relied on 
these categories to group participants, the established effects 
regarding enhanced reward response in obesity should also 
be investigated without predefined cut-offs. In this work, we 
therefore decided to conduct a number of analyses to test 
continuous BMI effects, weight class effects as well as a 
supplemental analysis to investigate a data-driven weight 
cut-off associated with stronger reward activation.

We hypothesized that
1) BMI as a continuous measure would be positively 

related to activation of reward-related areas (OFC, insula, 
VTA, striatum) during reward processing.

2) In line with the aforementioned evidence for obesity-
specific reward processing alterations, we further hypoth-
esized that this effect would mainly be driven by the group 
of participants with a BMI in the obese range.

3) Moreover, we expected the association between BMI 
and reward circuitry activation to follow a non-linear trend, 
with more pronounced activation in the highest BMI range.

Methods

Participants

Participants were recruited at the Department of Psychia-
try, University of Münster, Germany as part of the Mün-
ster Neuroimaging Cohort from October 16, 2009 – May 
19, 2017. The original subsample comprised 412 partici-
pants, 26 of which were excluded due to missing height 
and weight. Due to excessive head movement, 3 further 
subjects were excluded (exclusion criterion > 3  mm/3°), 
leaving a final sample of 383 participants (female n = 189; 
MAge = 39.21; MBMI = 24.64; see Table 1). All participants 
were free of mental disorders, which was verified with the 
Structured Clinical Interview for DSM-IV (Wittchen et al., 
1997). Any history of neurological (e.g., concussion, stroke, 
tumor, neuroinflammatory diseases) and medical (e.g., can-
cer, chronic inflammatory or autoimmune diseases, heart 
diseases, diabetes mellitus, infections) conditions as well as 
regular medication intake were exclusion criteria. BMI was 
calculated from self-reported height and weight.

Stimulus materials

A modified version of a commonly used card guessing para-
digm (Redlich et al., 2015) was used to detect brain activity 
related to reward processing. A detailed description of the 

Table 1  Sociodemographic and clinical characteristics of the whole sample and subsamples according to weight group. Number of available data, 
means, SD and range

N Mean (SD) SD Range
Age Whole sample 383 39.2 (11.3) 19–59 39.2 (11.3)

Normal weight 236 36.9 (11.8) 20–59 36.9 (11.8) 
overweight 113 43.2 (9.5) 21–59 43.2 (9.5) 
obese 34 41.9 (9.6) 19–56 41.9 (9.6) 

Sex (m/f) Whole sample 194/189
Normal weight 110/126 
overweight 67/46 
obese 17/17 

BMI Whole sample 383 24.6 (4.0) 18.2–42.2 24.6 (4.0)
Normal weight 236 22.1 (1.7) 18.2–24.9 22.1 (1.7)
overweight 113 27.2 (1.5) 25.1–29.9 27.2 (1.5)
obese 34 33.5 (2.9) 30.0–42.2 33.5 (2.9)

Note. SD, standard deviation.
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was conducted, including three groups according to 
WHO definition (normal weight: ≥ 18, < 25 kg/ m2; 
overweight: ≥ 25, < 30  kg/m2; obese: ≥ 30  kg/m2) 
(Weir & Jan, 2019) with age and sex as covariates.

4)	 Additional exploratory whole brain analyses for all 
models were performed to identify potential effects out-
side of the reward circuit with an uncorrected threshold 
of p < .001.

5)	 In order to investigate the association between BMI 
and insula activation further, an additional segmented 
regression analysis was performed, entering BMI as 
predictor, the extracted BOLD from the insula peak 
voxel as dependent variable and BMI = 30 as a sug-
gested cut-off point (see supplementary material for 
more detail regarding segmented regression).

6)	 Additional supplementary analyses were conducted to 
investigate childhood maltreatment and novelty seek-
ing, two potential confounders commonly associated 
with BMI (see supplementary material for more detail).

Results

1)	 The multiple regression analysis revealed a significant 
positive effect of BMI in the right (x = 36, y = 18, z = 
-14; t(379) = 4.66; k = 9; pFWE = 0.007) and left (x = -28, 
y = 18, z = -4; t(379) = 4.30; k = 3; pFWE = 0.029) insula.

2)	 When excluding the participants with obesity from 
analysis 1), no significant positive effects of BMI on 
reward response could be found.

3)	 When examining the weight groups separately with 
a one-way ANOVA, there was a main effect of group 
in the insula (x = 34, y = 18, z = -14; F(2, 378) = 11.42; 
k = 1; pFWE = 0.04). Participants with obesity exhib-
ited higher activation in the right (x = 34, y = 18, z = 
-14; t(378) = 4.78; k = 10; pFWE = 0.005) and left (x = 
-28, y = 20, z = -4; t(378) = 4.29; k = 6; pFWE = 0.033) 
insula compared to the normal weight group (con-
trast obese > normal weight, see Fig.  1). The group 
with obesity also showed higher activation in the right 
caudate (x = 12, y = 22, z = 2; t(378) = 4.27; k = 2; pFWE 
= 0.029) compared to the overweight group (contrast 
obese > overweight). There were no significant differ-
ences in activation between the overweight group com-
pared to lean participants (contrast overweight > normal 
weight) in our regions of interest either at an uncor-
rected voxel-threshold or after FWE-correction.

4)	 The exploratory whole-brain regression analysis 
revealed further positive associations between BMI 
and higher neural activation in a cluster comprising the 

pseudorandom block-design paradigm can be found in the 
supplementary material.

fMRI data acquisition and analysis

T2* functional data were acquired using a 3 Tesla scanner 
(Gyroscan Intera 3T, Philips Medical Systems, Best, NL), 
using a single-shot echoplanar sequence, with parameters 
selected to minimize distortion in the region of central inter-
est, while retaining adequate signal-to-noise ratio and T2* 
sensitivity. Pre-processing of our functional data included 
realignment, unwarping, and spatial normalization to MNI-
space as well as smoothing with a Gaussian kernel of 6 mm 
full-width at half-maximum as described in our previous 
work (Opel et al., 2015). To isolate neural response during 
the different blocks (control, win, lose), onsets and durations 
of the corresponding experimental conditions were mod-
elled using a canonical hemodynamic response function. 
This was done in the context of the general linear model 
including corrections for serial correlations and application 
of a high-pass filter of 128 s to remove low-frequency noise. 
For each subject, first-level analyses were conducted yield-
ing a contrast-image for the “win > control” condition. More 
details on fMRI the data acquisition can be found in the sup-
plementary material. Stimulus materials, fMRI procedure, 
preprocessing protocols, and first-level analyses remained 
unchanged from the procedures used by Opel et al. (2015), 
in order to ensure comparability for this replication attempt 
in a larger sample size.

Second-level analyses

The OFC, bilateral insula, nucleus accumbens, caudate, 
putamen and the VTA were combined as one single region-
of-interest (ROI) mask, in all analyses from steps 1) to 3). 
The mask was created with the Wake Forest University 
PickAtlas (Maldjian et al., 2003) using the AAL-atlas defi-
nitions (Tzourio-Mazoyer et al., 2002) with the bilateral 
labels: anterior, middle, posterior, and medial orbital frontal 
gyrus, insula, caudate, putamen, VTA. A statistical thresh-
old of p < .05, with voxel-level family wise error (FWE) cor-
rection, was used in the following analyses.

1)	 To address our hypothesis of BMI-associated altered 
reward processing, we performed a regression analysis, 
with BMI as covariate of interest and age and sex as 
nuisance regressors.

2)	 Analysis 1) was repeated with the same covariates, 
including only participants from the normal weight and 
overweight BMI range.

3)	 To investigate whether potential BMI effects were 
driven by a particular weight class, a one-way ANOVA 
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6)	 Childhood maltreatment and novelty seeking did not 
meaningfully confound results as is detailed in the sup-
plementary material.

Discussion

With this study, we aimed to shed light on the hitherto 
unanswered question whether brain functional responses 
to reward are associated with body weight over the entire 

precuneus (Table 2). Similarly, the exploratory whole-
brain ANOVA revealed additional clusters with higher 
activation (obese > normal weight; obese > overweight) 
in prefrontal, orbitofrontal, and striatal areas (Table 3). 
These effects were solely found at an uncorrected 
voxel-threshold of p < .001, and no significant clusters 
remained after FWE-correction.

5)	 The results from the segmented regression analysis 
remained inconclusive as the model did not reach sig-
nificance (see supplementary material).

Fig. 1  (a) Positive effect of BMI on neural responsiveness to reward in 
the insula. Results from the region-of-interest-analysis of the one-way 
ANOVA for the obesity > normal weight contrast are shown at MNI 
coordinates x = 36, y = 18, z = -14. Family-wise error corrected results 

at a voxel threshold of p < .05 are presented. Color bar: t-value. (b) 
Violin plot depicting the density and group means of extracted insula 
BOLD values (3 mm around the peak voxel) for each weight group 
from the ANOVA model
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to participants with a lean BMI and a negative association 
between D2 and BMI was only significant in the group 
with obesity in another investigation (Wang et al., 2001). 
More recent studies also argue against a linear relation-
ship between body weight and D2 receptor availability and 
instead suggest differential D2 binding potentials and dif-
fering levels of reward sensitivity dependent on the degree 
of obesity (Cosgrove et al., 2015; Horstmann et al., 2015). 
Although the direction of effects in obesity was not the same 
across these studies and evidence for an inversed U-shaped 
association between body weight and dopamine availabil-
ity was found, this nevertheless lends support to the the-
ory of non-linear weight class dependent effects in reward 
processing.

Aside from dopamine, reward-related neural activation 
alterations in clinically relevant obesity could be associated 
with peripheral hormone levels (particularly leptin, ghrelin 
and insulin) which are disturbed in obesity (Leigh & Mor-
ris, 2018) and play a role in homeostasis, feeding behavior 
and reward processing: The ventral striatum might become 
desensitized to leptin’s inhibitory effect after long-term 

weight spectrum or if reward circuit overactivation is more 
pronounced in clinical obesity.

We were able to replicate previous findings on the asso-
ciation of BMI and hyper-responsiveness of the insula to 
rewarding stimuli in a large sample of more than 380 par-
ticipants (Han et al., 2021; Opel et al., 2015). Moreover, this 
effect appeared to be driven by participants in the higher 
BMI range. Our results complement those by Verdejo-
Román et al. (2017) who found an obesity-specific over-
activation in striatal areas in response to food rewards. 
Individuals with obesity also displayed greater activation of 
the rostral-ventral pons and nucleus accumbens after mon-
etary reward feedback compared to overweight and normal 
weight groups in their investigation.

While most other previous studies did not investigate 
both continuous and weight group specific effects in fMRI, 
a non-linear relationship between body weight and other 
measures of neural reward has been found and discussed 
previously, especially in the context of dopamine receptor 
binding potential: Morbid obesity has been linked to less 
striatal dopamine (D2) receptor availability when compared 

Table 2  Exploratory whole-brain results of the regression analysis (positive effect of BMI) including age and sex as covariates
k MNI (at peak) Side T-value

x y z
Insula 56 36 18 -14 R 4.66
Insula 32 -28 18 -4 L 4.30
Precuneus 33 4 -60 24 R 3.91
Note. All reported whole-brain analyses with voxel-threshold p < .001 and minimum cluster volume threshold k ≥ 30. Coordinates based on MNI 
atlas. Abbreviations: BMI, body mass index; k, cluster size; L, left; MNI, Montreal Neurologic Institute; R, right.

Table 3  Overview of exploratory whole-brain analyses of the one-way ANOVE including age and sex as covariates
k MNI (at peak) Side T-value

x y z
Exploratory whole-brain results of the one-way ANOVA (obese > normal weight)
Insula/ Inferior frontal gyrus, orbital part 127 34 18 -14 R 4.78
Superior frontal gyrus 91 20 58 -4 R 4.36
Insula 62 -28 20 -4 L 4.29
Middle frontal gyrus / Superior frontal gyrus 103 -26 48 6 L 4.21
Caudate 34 -12 26 12 L 3.75
Inferior frontal gyrus, triangular 39 -38 32 22 L 3.46
Exploratory whole-brain results of the one-way ANOVA (obese > overweight)
Caudate 35 12 22 2 R 4.32
Superior frontal gyrus 74 18 58 -2 R 4.20
Insula 84 34 18 -14 R 3.93
Middle frontal gyrus 86 -26 46 8 L 3.63
Caudate 30 -12 22 6 L 3.54
Exploratory whole-brain results of the one-way ANOVA (overweight > normal weight)
Middle temporal pole 13 34 14 -32 R 4.04
Parahippocampal gyrus / Fusiform gyrus 10 -24 -8 -32 L 3.69
Superior frontal gyrus 12 -16 26 50 L 3.58
Note. All reported whole-brain analyses with voxel-threshold p < .001 and minimum cluster volume threshold k ≥ 30, minimum cluster volume 
for the overweight > normal weight contrast k ≥ 10. Coordinates based on MNI atlas. Abbreviations: BMI, body mass index; k, cluster size; L, 
left; MNI, Montreal Neurologic Institute; R, right.
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than that of the lean and overweight groups and our results 
should be interpreted with caution, especially in the con-
text of whether our findings are specific for clinical obesity, 
which cannot be answered definitively.

Another limitation is the use of self-reported height and 
weight which can be biased particularly in more extreme 
body weight ranges (Maukonen et al., 2018). Previous anal-
yses from a large-scale neuroimaging cohort revealed only 
marginal differences in effect sizes of brain structural asso-
ciations with BMI when correcting for self-report bias and 
comparing results with a different sample in which height 
and weight were directly measured (Opel et al., 2017). 
Although we analyzed brain functional alterations in this 
study, this may suggest that the use of self-reported data 
for BMI measures did not skew our results significantly. 
Evidence suggests that health risk estimates remain virtu-
ally unchanged whether they are based on self-reported or 
measured BMI (Stommel & Schoenborn, 2009) and a recent 
analysis of BMI self-report bias in large cohort studies such 
as the one this sample was derived from also concluded that 
self-reported BMI is a valid measure across genders and 
socio-demographic groups (Hodge et al., 2020). Neverthe-
less, critical assessment regarding the use of self-reported 
height and weight remains crucial when interpreting our 
results, particularly due to larger bias in obese weight 
groups.

Although our sample size of n = 383 was large compared 
to the median neuroimaging sample size of n = 25, a recent 
publication suggests that reproducible effects in this field 
require thousands of participants (Marek et al., 2022). The 
problem of inflated effect sizes and lack of reproducibility 
at small sample sizes is considerable and we encourage 
caution when interpreting our results, especially in light of 
the smaller number of individuals with obesity. However, 
it should be pointed out that this study in itself serves as a 
replication attempt of a previous investigation in a smaller 
sample (Opel et al., 2015). In light of the replication crisis 
in the field, this lends support to the robust nature of our 
results.

As a methodological limitation it should be pointed 
out that the preprocessing protocol used in this study has 
remained unchanged since the beginning of this long-
running cohort study in order to ensure comparability 
between participants. More recent investigations make 
use of protocols that allow for a greater degree of motion 
control (Maknojia et al., 2019). Although we adhered to an 
established protocol that was used in previous publications 
(Redlich et al., 2015; Zaremba et al., 2018) and provides 
good control for head motion, this limitation should be con-
sidered when interpreting our results.

Due to the cross-sectional nature of our investigation, no 
assumptions about causality can be made. It remains unclear 

dietary changes and with increased adiposity (Jastreboff 
et al., 2014). Leptin has also been associated with a higher 
reward response in the insula in participants with obesity 
compared to lean participants (Jastreboff et al., 2014). The 
ghrelin system, which is related to appetite control and met-
abolic regulation as well as reward response, has been found 
to be impaired in obesity (Reinehr et al., 2008). Low ghre-
lin levels in subjects with obesity predicted hyperactivity in 
the reward circuit compared to lean individuals in a recent 
investigation (Bogdanov et al., 2020).

However, some evidence also lends support to the theory 
of continuous body weight-dependent reward system aber-
rations. Reinehr and colleagues (2008) found low ghrelin 
levels in obesity to not increase after weight loss. This 
might signify a lasting consequence of the previous adipose 
state and therefore constitute a risk factor for not maintain-
ing weight loss, but it could also be evidence against the 
obesity-specificity of low ghrelin. Another investigation 
revealed that obesity-prone individuals fail to attenuate 
insula hyperactivity after ingesting a meal compared to their 
obesity-resistant counterparts, thus indicating neural over-
activation of the insula as a potential risk factor for obesity 
that may be present in non-obese individuals (Cornier et al., 
2013). A recent meta-analysis even revealed no differences 
between participants on the normal weight and the obese 
weight spectrum in reward processing and only reported 
age-related effects (Morys et al., 2020). Similarly inconsis-
tent results emerge when examining other measures of neu-
ronal function, such as functional connectivity (Beyer et al., 
2021; Geha et al., 2017).

Some limitations should be considered when interpret-
ing the results of this study. Due to exclusion criteria, par-
ticipants were free of eating disorders and somatic disorders 
commonly associated with adiposity, such as hypertension 
and diabetes. Although this allows the observation of uncon-
founded effects of adiposity, it does not reflect the clinical 
reality and our sample may even represent a particularly 
resilient subgroup of participants with obesity. However, 
brain structural aberrations associated with cardiovascu-
lar risk factors such as hypertension and hyperlipidemia 
can be found in asymptomatic patients, suggesting that the 
absence of cardiovascular symptoms may not necessarily be 
associated with brain health (Friedman et al., 2014). Nev-
ertheless, investigations on less homogeneous groups are 
needed when clinical applications of reward processing in 
obesity are researched in the future. Moreover, individuals 
with morbid obesity were difficult to recruit due to scan-
ner weight and circumference restrictions – an increasingly 
common problem in radiology (Carucci, 2013) – leading to 
a systematic exclusion of participants at the highest BMI 
range with more severe weight complications. The sample 
with obesity in our study was therefore significantly smaller 
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account when targeting obesity and overweight. Neural 
aberrations during reward processing in individuals with 
clinical obesity are likely to have behavioral consequences. 
Reward-based weight-loss interventions should therefore 
be considered when targeting patient these patient groups 
(Mason et al., 2016; Mata et al., 2017).

In conclusion, this study offers important new insights 
into the association between neural reward processing and 
body weight that could inform future longitudinal research 
and the development of targeted reward-related interven-
tions to tackle the ongoing obesity epidemic.
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whether alterations in reward processing among individuals 
with obesity are a risk factor for the development of adiposity 
or its sequelae. The food addiction model posits two compo-
nents involved in the development and maintenance of obesity: 
consequences of the overconsumption of high-fat/high-sugar 
foods as well as somatic factors such as inflammation asso-
ciated with neural atrophy on the one hand, and cognitive 
processes related to reward cues and reward learning incentiv-
izing the overconsumption of food on the other hand (Smith & 
Robbins, 2013). Longitudinal evidence has shown that higher 
activity in reward regions predicts future weight gain and is 
associated with poorer response to weight-loss interventions, 
which suggests that aberrant reward processing may con-
stitute a vulnerability for the development of obesity (Lin & 
Qu, 2020; Stice & Burger, 2019). Moreover, investigations on 
familial predisposition and genetic risk for obesity revealed 
that higher neural response to food cues could be detected in 
non-obese individuals at risk for obesity (Carnell et al., 2017; 
Kühn et al., 2016). However, other longitudinal investigations 
have also revealed obesity-specific resting state dysfunction 
in the OFC to recover after bariatric surgery (Li et al., 2018). 
After such a surgery, functional connectivity between regions 
related to cognitive control over food and bodily perception 
was reshaped and participants showed a reduction in reward-
driven behavior (Olivo et al., 2017), suggesting these aberra-
tions in reward processing to be byproducts of the obese state. 
Reward-based eating drive was associated with BMI, predicted 
earlier obesity onset and more weight gain as well as more fre-
quent weight fluctuations in another investigation, although 
no neural measures were available (Epel et al., 2014). More 
evidence on the longitudinal association of obesity and reward-
related neural activation is needed. In addition to longitudinal 
studies investigating weight changes over time, future research 
should focus on sampling broader age ranges. Adolescence has 
been described as a period of heightened reward sensitivity 
during which dopaminergic innervation from the VTA to the 
prefrontal cortex has been found to mature, and the foundation 
for future weight gain and obesity may be built (Lowe et al., 
2020). A recent longitudinal investigation in children found a 
negative association between BMI and gray matter in regions 
involved in reward evaluation over a period of 2 years. The 
authors hypothesize that structural changes in the PFC may 
lead to ensuing impairments in self-regulation that exacerbate 
weight gain, particularly pointing out the potential detrimental 
effects of remaining in the obese weight range for a long time 
(Jiang et al., 2022).

It is therefore of great interest to investigate reward pro-
cessing and body weight from childhood to adulthood to 
gain a clearer understanding of directionality of effects and 
mechanisms of action.

Considering the clinical application of these findings, 
it may be worthwhile to take reward-related behavior into 
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