Skip to main content

Advertisement

Log in

18F-FDG PET and a classifier algorithm reveal a characteristic glucose metabolic pattern in adult patients with moyamoya disease and vascular cognitive impairment

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Vascular cognitive impairment (VCI) is a critical issue in moyamoya disease (MMD). However, the glucose metabolic pattern in these patients is still unknown. This study aimed to identify the metabolic signature of cognitive impairment in patients with MMD using 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) and establish a classifier to identify VCI in patients with MMD. One hundred fifty-two patients with MMD who underwent brain 18F-FDG PET scans before surgery were enrolled and classified into nonvascular cognitive impairment (non-VCI, n = 52) and vascular cognitive impairment (VCI, n = 100) groups according to neuropsychological test results. Additionally, thirty-three health controls (HCs) were also enrolled. Compared to HCs, patients in the VCI group exhibited extensive hypometabolism in the bilateral frontal and cingulate regions and hypermetabolism in the bilateral cerebellum, while patients in the non-VCI group showed hypermetabolism only in the cerebellum and slight hypometabolism in the frontal and temporal regions. In addition, we found that the patients in the VCI group showed hypometabolism mainly in the left basal ganglia compared to those in the non-VCI group. The sparse representation-based classifier algorithm taking the SUVr of 116 Anatomical Automatic Labeling (AAL) areas as features distinguished patients in the VCI and non-VCI groups with an accuracy of 82.4%. This study demonstrated a characteristic metabolic pattern that can distinguish patients with MMD without VCI from those with VCI, namely, hypometabolic lesions in the left hemisphere played a more important role in cognitive decline in patients with MMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and materials of this study are available from the corresponding author on reasonable request.

References

  • Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177. https://doi.org/10.1016/j.tics.2004.02.010

    Article  PubMed  Google Scholar 

  • Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177–185. https://doi.org/10.1016/j.tics.2013.12.003

    Article  PubMed  Google Scholar 

  • Blazhenets, G., Ma, Y., Sörensen, A., Schiller, F., Rücker, G., Eidelberg, D., … Meyer, P. T. (2020). Predictive value of (18)F-Florbetapir and (18)F-FDG PET for Conversion from mild cognitive impairment to Alzheimer Dementia. Journal of Nuclear Medicine, 61(4), 597–603. https://doi.org/10.2967/jnumed.119.230797

  • Blum, D., la Fougère, C., Pilotto, A., Maetzler, W., Berg, D., Reimold, M., & Liepelt-Scarfone, I. (2018). Hypermetabolism in the cerebellum and brainstem and cortical hypometabolism are independently associated with cognitive impairment in Parkinson’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 45(13), 2387–2395. https://doi.org/10.1007/s00259-018-4085-1

    Article  CAS  PubMed  Google Scholar 

  • Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–641. https://doi.org/10.1016/s0896-6273(02)00830-9

    Article  CAS  PubMed  Google Scholar 

  • Canosa, A., Pagani, M., Cistaro, A., Montuschi, A., Iazzolino, B., Fania, P., … Chiò, A. (2016). 18F-FDG-PET correlates of cognitive impairment in ALS. Neurology, 86(1), 44–49. https://doi.org/10.1212/wnl.0000000000002242

  • Cao, H., Duan, J., Lin, D., Shugart, Y. Y., Calhoun, V., & Wang, Y. P. (2014). Sparse representation based biomarker selection for schizophrenia with integrated analysis of fMRI and SNPs. NeuroImage, 102 Pt 1, 220–228. https://doi.org/10.1016/j.neuroimage.2014.01.021

    Article  PubMed  Google Scholar 

  • Chen, J., Yang, S., Wang, Z., & Mao, H. (2021). Efficient sparse representation for learning with high-dimensional data. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/tnnls.2021.3119278

    Article  PubMed  Google Scholar 

  • Chen, T., Zhang, C., Liu, Y., Zhao, Y., Lin, D., Hu, Y., … Li, G. (2019). A gastric cancer LncRNAs model for MSI and survival prediction based on support vector machine. BMC Genomics, 20(1), 846. https://doi.org/10.1186/s12864-019-6135-x

  • de Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H., … Fowler, J. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10966–10971. https://doi.org/10.1073/pnas.191044198

  • Dolui, S., Li, Z., Nasrallah, I. M., Detre, J. A., & Wolk, D. A. (2020). Arterial spin labeling versus (18)F-FDG-PET to identify mild cognitive impairment. Neuroimage Clin, 25, 102146. https://doi.org/10.1016/j.nicl.2019.102146

    Article  PubMed  Google Scholar 

  • Falkenberg, L. E., Westerhausen, R., Specht, K., & Hugdahl, K. (2012). Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control. Proceedings of the National Academy of Sciences of the United States of America, 109(13), 5069–5073. https://doi.org/10.1073/pnas.1115628109

    Article  PubMed  PubMed Central  Google Scholar 

  • Fellows, R. P., & Schmitter-Edgecombe, M. (2019). Symbol digit modalities test: regression-based normative data and clinical utility. Archives of Clinical Neuropsychology: the Official Journal of the National Academy of Neuropsychologists, 35(1), 105–115. https://doi.org/10.1093/arclin/acz020

    Article  PubMed  Google Scholar 

  • Festa, J. R., Schwarz, L. R., Pliskin, N., Cullum, C. M., Lacritz, L., Charbel, F. T., … Lazar, R. M. (2010). Neurocognitive dysfunction in adult moyamoya disease. Journal of Neurology, 257(5), 806–815. https://doi.org/10.1007/s00415-009-5424-8

  • Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S., & Turner, R. (1995). Analysis of fMRI time-series revisited. NeuroImage, 2(1), 45–53. https://doi.org/10.1006/nimg.1995.1007

    Article  CAS  PubMed  Google Scholar 

  • Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., … Seshadri, S. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke, 42(9), 2672–2713. https://doi.org/10.1161/STR.0b013e3182299496

  • Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). (2012). Neurologia Medico-Chirurgica (Tokyo), 52(5), 245–266. https://doi.org/10.2176/nmc.52.245

  • Guo, Q., Hong, Z., & Shi, W. (1991). Boston naming test in Chinese elderly, patient with mild cognitive impairment and Alzheimer’s dementia. Chinese Mental Health Journal.

  • Guo, Q., Lv, C., & Hong, Z. (2001). Reliability and validity of auditory verbal learning test on Chinese elderly patients. Journal of Chinese Mental Health, 15, 13–15.

  • Guo, Q. H., Zhou, B., Zhao, Q. H., Wang, B., & Hong, Z. (2012). Memory and executive screening (MES): a brief cognitive test for detecting mild cognitive impairment. BMC Neurology, 12, 119. https://doi.org/10.1186/1471-2377-12-119

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosoda, C., Nariai, T., Ishiwata, K., Ishii, K., Matsushima, Y., & Ohno, K. (2010). Correlation between focal brain metabolism and higher brain function in patients with Moyamoya disease. International Journal of Stroke: Official Journal of the International Stroke Society, 5(5), 367–373. https://doi.org/10.1111/j.1747-4949.2010.00461.x

    Article  PubMed  Google Scholar 

  • Kang, C. G., Chun, M. H., Kang, J. A., Do, K. H., & Choi, S. J. (2017). Neurocognitive dysfunction according to Hypoperfusion Territory in patients with Moyamoya Disease. Annals of Rehabilitation Medicine, 41(1), 1–8. https://doi.org/10.5535/arm.2017.41.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapitán, M., Ferrando, R., Diéguez, E., de Medina, O., Aljanati, R., Ventura, R., … Buzó, R. (2009). [Regional cerebral blood flow changes in Parkinson’s disease: correlation with disease duration]. Revista Espaola de Medicina Nuclear, 28(3), 114–120.

  • Karzmark, P., Zeifert, P. D., Bell-Stephens, T. E., Steinberg, G. K., & Dorfman, L. J. (2012). Neurocognitive impairment in adults with moyamoya disease without stroke. Neurosurgery, 70(3), 634–638. https://doi.org/10.1227/NEU.0b013e3182320d1a

    Article  PubMed  Google Scholar 

  • Karzmark, P., Zeifert, P. D., Tan, S., Dorfman, L. J., Bell-Stephens, T. E., & Steinberg, G. K. (2008). Effect of moyamoya disease on neuropsychological functioning in adults. Neurosurgery, 62(5), 1048–1051. discussion 1051 – 1042. https://doi.org/10.1227/01.neu.0000325866.29634.4c

  • Kazumata, K., Tha, K. K., Narita, H., Kusumi, I., Shichinohe, H., Ito, M., … Houkin, K. (2015). Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease. Stroke, 46(2), 354–360. https://doi.org/10.1161/strokeaha.114.007407

  • Kazumata, K., Tokairin, K., Ito, M., Uchino, H., Sugiyama, T., Kawabori, M., … Houkin, K. (2020). Combined structural and diffusion tensor imaging detection of ischemic injury in moyamoya disease: relation to disease advancement and cerebral hypoperfusion. Case Report Journal of Neurosurgery, 134(3), 1155–1164. https://doi.org/10.3171/2020.1.Jns193260

  • Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage, 20(4), 2091–2099. https://doi.org/10.1016/j.neuroimage.2003.08.006

    Article  PubMed  Google Scholar 

  • Kim, J. M., Lee, S. H., & Roh, J. K. (2009). Changing ischaemic lesion patterns in adult moyamoya disease. Journal of Neurology, Neurosurgery and Psychiatry, 80(1), 36–40. https://doi.org/10.1136/jnnp.2008.145078

    Article  PubMed  Google Scholar 

  • Kronenburg, A., van den Berg, E., van Schooneveld, M. M., Braun, K. P. J., Calviere, L., van der Zwan, A., & Klijn, C. J. M. (2018). Cognitive functions in children and adults with Moyamoya Vasculopathy: a systematic review and Meta-analysis. Journal of Stroke, 20(3), 332–341. https://doi.org/10.5853/jos.2018.01550

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei, Y., Guo, Q., Li, Y., Jiang, H., Ni, W., & Gu, Y. (2014a). Characteristics of cognitive impairment in adults with cerebral ischemia. Zhonghua Yi Xue Za Zhi94(13), 984–989.

  • Lei, Y., Li, Y., Ni, W., Jiang, H., Yang, Z., Guo, Q., … Mao, Y. (2014b). Spontaneous brain activity in adult patients with moyamoya disease: a resting-state fMRI study. Brain Research, 1546, 27–33. https://doi.org/10.1016/j.brainres.2013.12.022

  • Lei, Y., Song, B., Chen, L., Su, J., Zhang, X., Ni, W., … Mao, Y. (2020). Reconfigured functional network dynamics in adult moyamoya disease: a resting-state fMRI study. Brain Imaging and Behavior, 14(3), 715–727. https://doi.org/10.1007/s11682-018-0009-8

  • Lei, Y., Su, J., Jiang, H., Guo, Q., Ni, W., Yang, H., … Mao, Y. (2017). Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging and Behavior, 11(1), 176–184. https://doi.org/10.1007/s11682-016-9518-5

  • Meyer, P. T., Frings, L., Rücker, G., & Hellwig, S. (2017). (18)F-FDG PET in parkinsonism: Differential diagnosis and evaluation of cognitive impairment. Journal of Nuclear Medicine, 58(12), 1888–1898. https://doi.org/10.2967/jnumed.116.186403

    Article  CAS  PubMed  Google Scholar 

  • Nakagawara, J., Osato, T., Kamiyama, K., Honjo, K., Sugio, H., Fumoto, K., … Nakamura, H. (2012). Diagnostic imaging of higher brain dysfunction in patients with adult moyamoya disease using statistical imaging analysis for [123I]iomazenil single photon emission computed tomography. Neurologia Medico-Chirurgica (Tokyo), 52(5), 318–326. https://doi.org/10.2176/nmc.52.318

  • Rektor, I., Bares, M., Brázdil, M., Kanovský, P., Rektorová, I., Sochurková, D., … Daniel, P. (2005). Cognitive- and movement-related potentials recorded in the human basal ganglia. Movement Disorders, 20(5), 562–568. https://doi.org/10.1002/mds.20368

  • Riva, D., Taddei, M., & Bulgheroni, S. (2018). The neuropsychology of basal ganglia. European Journal of Paediatric Neurology: Ejpn: Official Journal of the European Paediatric Neurology Society, 22(2), 321–326. https://doi.org/10.1016/j.ejpn.2018.01.009

    Article  PubMed  Google Scholar 

  • Schubert, G. A., Czabanka, M., Seiz, M., Horn, P., Vajkoczy, P., & Thomé, C. (2014). Perfusion characteristics of Moyamoya disease: an anatomically and clinically oriented analysis and comparison. Stroke, 45(1), 101–106. https://doi.org/10.1161/strokeaha.113.003370

    Article  PubMed  Google Scholar 

  • Silverman, D. H. (2004). Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. Journal of Nuclear Medicine, 45(4), 594–607.

    PubMed  Google Scholar 

  • Su, J. B., Xi, S. D., Zhou, S. Y., Zhang, X., Jiang, S. H., Xu, B., … Gu, Y. X. (2019). Microstructural damage pattern of vascular cognitive impairment: a comparison between moyamoya disease and cerebrovascular atherosclerotic disease. Neural Regeneration Research, 14(5), 858–867. https://doi.org/10.4103/1673-5374.249234

  • Suzuki, J., & Takaku, A. (1969). Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Archives of Neurology, 20(3), 288–299. https://doi.org/10.1001/archneur.1969.00480090076012

    Article  CAS  PubMed  Google Scholar 

  • Van Heertum, R. L., Greenstein, E. A., & Tikofsky, R. S. (2004). 2-deoxy-fluorglucose-positron emission tomography imaging of the brain: current clinical applications with emphasis on the dementias. Seminars in Nuclear Medicine, 34(4), 300–312. https://doi.org/10.1053/j.semnuclmed.2004.03.003

    Article  PubMed  Google Scholar 

  • Vicente, J. S., Prudencio, L. F., Torre, J. R. I., & Madrid, J. I. R. (2018). Mismatch in brain perfusion and metabolism detected with (99m)Tc-hexamethyl propylene amine oxime single photon emission computed tomography and (18)F-fluorodeoxyglucose positron emission tomography in moyamoya disease. Indian Journal of Nuclear Medicine, 33(2), 154–157. https://doi.org/10.4103/ijnm.IJNM_2_18

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen, D., Jia, P., Lian, Q., Zhou, Y., & Lu, C. (2016). Review of sparse representation-based classification methods on EEG Signal Processing for Epilepsy Detection, brain-computer interface and cognitive impairment. Frontiers in Aging Neuroscience, 8, 172. https://doi.org/10.3389/fnagi.2016.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Wityk, R. J., Hillis, A., Beauchamp, N., Barker, P. B., & Rigamonti, D. (2002). Perfusion-weighted magnetic resonance imaging in adult moyamoya syndrome: characteristic patterns and change after surgical intervention: case report. Neurosurgery, 51(6), 1499–1505, discussion 1506.

  • Zhao, Q., Guo, Q., Li, F., Zhou, Y., Wang, B., & Hong, Z. J. P. O. (2013). The Shape Trail Test: application of a new variant of the Trail making test. PLoS One8(2), e57333.

  • Zhao, Q., Guo, Q., Shi, W., Zhou, Y., & Hong, Z. J. C. (2007). Category verbal fluency test in identification and differential diagnosis of dementia. Chinese Journal of Clinical Psychology, 3, 241–245.

    Google Scholar 

Download references

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (NSFC) (81771237).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the scientific process leading to this manuscript. Ruiyuan Weng, Shuhua Ren, and Jiabin Su contributed equally to the article. Qi Huang and Yuxiang Gu are cocorresponding authors. Ruiyuan Weng, Jiabin Su, Shuhua Ren, and Qi Huang contributed to the conception and design. Shuhua Ren, Chunlei Yang, Weiping Xiao, Xinjie Gao, Xin Zhang, and Haniang Jiang were responsible for the acquisition of clinical data and PET data. Qi Huang and Yihui Guan analyzed the data. Ruiyuan Weng, Jiabin Su, Wei Ni, and Yuxiang Gu interpreted the results and drafted the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yuxiang Gu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Ethics approval

This study was approved by the independent Ethics Committee of Huashan Hospital, Fudan University.

Consent to participate

All subjects agreed to participate in the experiment.

Consent for publication

All of the authors agreed to submit the paper for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13.1 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, R., Ren, S., Su, J. et al. 18F-FDG PET and a classifier algorithm reveal a characteristic glucose metabolic pattern in adult patients with moyamoya disease and vascular cognitive impairment. Brain Imaging and Behavior 17, 185–199 (2023). https://doi.org/10.1007/s11682-022-00752-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00752-4

Keywords

Navigation