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Abstract
Alterations in grey matter volume (GMV) and cortical thickness (CT) in Crohn’s disease (CD) patients has been previously 
documented. However, the findings are inconsistent, and not a true representation of CD burden, as only CD patients in 
remission have been studied thus far. We investigate alterations in brain morphometry in patients with active CD and those in 
remission, and study relationships between brain structure and key symptoms of fatigue, abdominal pain, and extraintestinal 
manifestations (EIM). Magnetic Resonance Imaging brain scans were collected in 89 participants; 34 CD participants with 
active disease, 13 CD participants in remission and 42 healthy controls (HCs); Voxel based morphometry (VBM) assessed 
GMV and white matter volume (WMV), and surface-based analysis assessed cortical thickness (CT). We show a signifi-
cant reduction in global cerebrospinal fluid (CSF) volume in CD participants compared with HCs, as well as, a reduction 
in regional GMV, WMV and CT in the left precentral gyrus (motor cortex), and an increase in GMV in the frontal brain 
regions in CD compared with HCs. Atrophy of the supplementary motor area (SMA) was associated with greater fatigue in 
CD. We also show alterations in brain structure in multiple regions in CD associated with abdominal pain and extraintestinal 
inflammations (EIMs). These brain structural alterations likely reflect neuroplasticity to a chronic systemic inflammatory 
response, abdominal pain, EIMs and fatigue. These findings will aid our understanding of the cross-linking between chronic 
inflammation, brain structural changes and key unexplained CD symptomatology like fatigue.

Keywords Crohn’s disease · Brain volume · Cortical thickness · Intestinal inflammation · Gut-brain axis · Chronic 
inflammation · Fatigue

Introduction

Crohn’s disease (CD) patients experience a host of debili-
tating symptoms, fatigue is a common symptom in active 
disease, and the second most frequent complaint after 
extra-intestinal manifestations (EIM) in patients in remis-
sion (Singh et al., 2011). Together with abdominal pain and 
stool frequency (Pariente et al., 2011), fatigue and arthralgia 
are key variables in the Inflammatory Bowel Disease (IBD) 
Disability index. These key symptoms are understudied, par-
ticularly in relation to their influences on the Central Nerv-
ous System (CNS) (Peyrin-Biroulet et al., 2012). Fatigue 
is mediated via the integration of the CNS and peripheral 
musculoskeletal systems (Giulio et  al., 2006), whereby 
physiological perturbations occurring in the brain and spi-
nal cord (central fatigue) or at the neuromuscular junction 
and the skeletal muscle (peripheral fatigue) result in acute 
and transient decrements in performance. Pro-inflammatory 
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cytokines are involved in symptom generation of central 
fatigue (Borren et al., 2019), possibly via increasing blood-
brain barrier (BBB) permeability, propagating inflamma-
tory signals within the brain via activation of endothelial, 
glial cells and macrophage, resulting in neuronal cell death 
(Jones et al., 2006). Systemic inflammation may be linked 
with demyelinating complications reflected in morphomet-
ric changes in the brain of CD patients (Zikou et al., 2014). 
Intestinal inflammation and abdominal pain may activate 
central sensitization pathways that convey visceral nocicep-
tive afferent signals from the gut to the brain (Jones et al., 
2006; Hubbard et al., 2016), affecting symptom perception 
and gut function (Jones et al., 2006), with high levels of 
somatization strongly associated with fatigue severity and 
impact in inflammatory bowel disease (IBD) patients (Rat-
nakumaran et al., 2018).

To date, brain morphometry studies relate to CD patients 
in remission. Using MRI, alterations have been reported in 
cortical grey matter volume (GMV) (Agostini et al., 2013, 
2017; Bao et al., 2015; Erp et al., 2017; Thomann et al., 
2020), sub-cortical GMV (Bao et al., 2015; Nair et al., 2016) 
cortical thickness (CT) (Bao et al., 2015; Nair et al., 2016; 
Thomann et al., 2016) cortical surface area (CSA) (Nair 
et al., 2016; Thomann et al., 2016) and cortical folding (Tho-
mann et al., 2016) across multiple brain regions involved in 
pain, emotion, and homeostasis in CD patients in remission 
compared to healthy controls (HCs), and GMV has been 
negatively correlated with disease duration (Agostini et al., 
2013; Bao et al., 2015) (see Supplementary Table S1). A 
recent meta-analysis of voxel based morphometry (VBM) 
in CD participants in remission showed a significant reduc-
tion in GMV in medial frontal gyrus (MFG) compared with 
HCs (Yeung, 2021). Diffusion Tensor Imaging (DTI) has 
reported alterations in white matter (WM) fibre integrity 
in CD patients in remission (Zikou et al., 2014; Hou et al., 
2020), suggested to result from cerebral small vessel vas-
culitis and neurotoxic effects of proinflammatory cytokines 
(Dolapcioglu & Dolapcioglu, 2015). There are few studies 
of the relationship of fatigue, abdominal pain and EIM with 
brain morphometry in CD. CD patients in remission with 
fatigue are reported to have reduced GMV in left superior 
frontal gyrus (SFG, a region involved in working memory) 
compared to HCs without fatigue (du Boisgueheneuc et al., 
2006). Abdominal pain in CD participants has been asso-
ciated with reduced GMV in the insula and anterior cin-
gulate cortex (ACC) compared to CD participants without 
abdominal pain and HCs (Bao et al., 2017). CD patients with 
extraintestinal manifestations (EIMs) exhibit altered cortical 
folding of the ACC and SFG relative to CD without EIMs 
(Thomann et al., 2016).

This study aims to compare brain morphometry in CD 
participants with both active disease and in remission 
with HCs, and to investigate relationships between global/

regional GMV, white matter volume (WMV), cerebrospi-
nal fluid (CSF) volume and CT with symptoms of fatigue, 
abdominal pain, and extraintestinal manifestations (EIM).

Methods and materials

Study design

This study was a case-control study of CD participants 
against HCs., with approval from the National Research 
Ethics Service [NRES] Committee East Midlands [14/
EM/0192], (clinicaltrials.gov [NCT02772458]). CD par-
ticipants were identified through a clinical database search, 
expression of interest list and recruited from IBD Clinics 
at Nottingham University Hospitals. HCs were recruited 
through participant databases, study fliers and social media. 
All CD participants and HCs gave informed consent. CD 
participants disease activity was defined through objective 
markers of inflammation: recent ileocolonoscopy (Lamb 
et al., 2019), CT, magnetic resonance enterography [MRE] 
showing active inflammatory and uncomplicated disease [not 
stricturing or penetrating behaviour], else FCP > 250 µg/g or 
CRP > 5 g/dL (Mosli et al., 2015). CD clinical symptoms 
were measured at inclusion using the Harvey-Bradshaw 
Index [HBI] score(Harvey, 1980) Stable doses of immu-
nosuppressive agents or biological agents were permitted. 
Depression and anxiety symptoms were measured using the 
Hospital Anxiety and Depression Scale (HADS) (Zigmond 
& Snaith, 1983). See Supplementary Material for exclusion 
criteria and additional clinical measures.

Image acquisition

Structural brain MRI images were collected as part of a wider 
MRI protocol including functional MRI brain responses 
to a test meal. Participants were scanned on a 3T Philips 
Achieva scanner (Philips Medical Systems, Best, Neth-
erlands) with a 32-channel receive head coil. Brain scans 
were acquired with a  T1-weighted MPRAGE sequence ori-
entated along the AC-PC line  (1mm3,TE/TR = 8.3/3.8ms,flip 
angle = 8°,SENSE = 2,160 slices,256 × 256 matrix).

Imaging data analysis

Voxel-based morphometry (VBM) to assess GMV, WMV 
and CSF volume, and surface-based analysis (SBA) to 
assess CT were conducted. Preprocessing for both analy-
ses was conducted in CAT12 (Computational Anatomy 
Toolbox) (version 12.6;http:// www. neuro. uni- jena. de/ 
cat/) within SPM12 (version 7771;http:// www. fil. ion. ucl. 
ac. uk/ spm/ softw are/ spm12/) using MATLAB version 9.7 
(R2019b,MathWorks) (See Supplementary Material).
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A first level analysis was performed using a general lin-
ear model (GLM) implemented in SPM12. An independ-
ent t-test was performed to evaluate differences in regional 
GMV, WMV and CT between CD and HCs, CD with versus 
without abdominal pain, and CD with versus without EIM. 
A correlation analysis was performed between IBD fatigue 
scores, disease duration, HBI and regional GMV, WMV and 
CT. For VBM analysis, TIV, sex, and age were included as 
normalized covariates-of-no-interest in the GLM to remove 
the effects of brain size, sex and age from the data. For CT 
analysis, age and sex were included as nuisance variables.

Uncorrected analyses were performed at P < 0.001, clus-
ter size k > 10, and family wise error (FWE) correction for 
multiple comparisons was performed with clusters con-
sidered significant at P < 0.05. Statistical inferences were 
deduced using nonparametric permutations (5,000) and a 
Threshold-Free Cluster Enhancement (TFCE) (Smith & 
Nichols, 2009) correction applied to t-statistic maps (https:// 
www. fil. ion. ucl. ac. uk/ spm/ ext/# TFCE).

Non‑imaging data analysis

Analysis was performed using SPSS Statistics version 27.0. 
Variables were tested for normality using a Shapiro-Wilk 
test. Normal data are expressed as mean ± standard error 
of mean (SEM) and non-parametric data as median (inter-
quartile range, IQR). Correlation between variables were 
evaluated using a Spearman for non-parametric data and 
Pearson’s correlation for parametric data.

Results

Participant characteristics

47 CD participants, 34(72%) with active disease and 
13(28%) in remission, and 42 HCs were studied (See 
Table 2 and S3). A consort diagram of recruitment is shown 
in Fig. 1. Time between the evaluation of active CD and 
study visit was 2 (1–8) months. Across all CD participants, 
age was 31.0(18–68)years (median,range) with a disease 
duration of 7.5(1–40)years, and C-reactive protein (CRP) 
of 5(5-224)mg/dl, faecal calprotectin (FCP) 434(18-1800)
µg/g, Harvey-Bradshaw Index (HBI) 3(0–9), IBD fatigue 
score 12.0 (0–15), abdominal pain score 2.0(0–50), TNFα 
3.96(0-1234)pg/ml, IL-6 34.8(0-259)pg/ml and IL-1β 
1.25(0-1955)pg/ml. HCs were age-matched (30.5(19–65) 
years). As expected, age and disease duration were signifi-
cantly positively correlated in CD participants (P = 0.022) 
and IBDF, abdominal pain, and HBI were significantly inter-
correlated (P < 0.001). There was no significant difference 
in circulating cytokines IL-6, IL-1β, or TNF-α serum levels 
between CD and HC groups. Twelve CD participants had 

EIMs. No participants had high or severe depression scores, 
or significant history of psychiatric disorders.

Altered global structural morphometry in CD 
compared with HC

No significant difference between CD participants and HCs 
was found in absolute total intracranial volume (TIV), GMV 
or WMV, or GMV and WMV when adjusted for TIV alone 
or TIV, age and sex. A significant reduction in CSF vol-
ume was evident in CD compared to HCs (CD:231 ± 4.9 ml 
(mean ± SEM), HC:258 ± 5.3ml, P < 0.001) which persisted 
after adjusting for TIV, age and sex. No significant difference 
was found in global CT or age and sex adjusted CT between 
CD participants and HCs (Supplementary Table S4). Abso-
lute global CT negatively correlated with abdominal pain 
(Spearman rho=-0.35,p = 0.013) and IBDF (Spearman 
rho=-0.34,p = 0.034). After controlling for age and sex, 
correlation between abdominal pain and CT remained sig-
nificant (P = 0.025), correlation between IBDF and CT was 
not (P = 0.067). GMV, WMV, and CSF were not associated 
with fatigue or abdominal pain.

Altered regional structural morphometry in CD 
compared with HC

A significant reduction in GMV, WMV and CT was evident 
in left precentral gyrus in CD compared to HCs. Conversely, 
CD participants had significantly greater GMV in left lateral 
occipital cortex (LOC), left superior frontal gyrus (SFG), left 
planum polare, right orbital frontal cortex (OFC), left ACC and 
left parietal operculum cortex, as well as greater WMV in right 
frontal medial cortex and greater CT in the left middle temporal 
gyrus, left lingual gyrus and left hippocampus in CD compared 
to HCs. No significant differences were found in any GMV, 
WMV regions of interest (ROI) between active and remission 
CD groups before or after adjusting for age, TIV and sex, simi-
larly no significant differences were found in CT (ROI) between 
active and remission CD groups. Figure 1 shows brain regions 
with significantly altered regional GMV and WMV, and CT in 
CD (n = 47) compared to HCs (n = 42), Table 1.

Negative association of fatigue with regional brain 
volume loss and cortical thinning

Higher fatigue scores were associated with a reduction in GMV 
in right supplementary motor area (SMA) as well as in WMV 
in left cerebellum. Higher fatigue scores were associated with 
cortical thinning in multiple regions (right para-hippocampal 
gyrus, frontal pole, left temporal fusiform gyrus, OFC, inferior 
temporal gyrus, post central gyrus and MFG). Figure 2 shows 
brain regions with significantly reduced GMV, WMV and CT 
with greater fatigue in CD (n = 39), Table 2.
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Comparison of regional GMV, WMV, 
and CT between CD participants 
with and without abdominal pain

CD participants with abdominal pain showed a reduction in 
GMV in left inferior temporal gyrus and frontal pole, as well 

as cortical thinning in the left precentral gyrus, left tempo-
ral pole, left inferior temporal gyrus, right middle temporal 
gyrus, right frontal pole and right temporal fusiform cortex 
compared with CD participants without abdominal pain. 
Conversely, CD participants with abdominal pain showed 
greater WMV in right temporal pole, right precentral gyrus, 
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Fig. 1  Altered grey matter volume (GMV), white matter volume 
(WMV) and cortical thickness (CT) in CD compared to HCs. GMV 
and WMV data assessed using age, TIV and sex, CT data assessed 
using age and sex as covariates of no interest. All data displayed at 
P < 0.001, uncorrected on a  T1-weighted normalized anatomical 

image. OFC = orbital frontal cortex, LOC = Lateral occipital cortex, 
SFG = Superior frontal gyrus, ACC = anterior cingulate cortex. Note: 
left superior frontal gyrus, left planum polare, left lateral occipi-
tal, and right orbital frontal gyrus survived TFCE FWE corrections 
(P < 0.05) – see Table 1
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left postcentral gyrus, left MFG, left cerebellum and left 
precentral gyrus compared with CD participants with-
out abdominal pain. There was a significant group effect 
between pain vs. no pain groups across all GMV, WMV 
and CT ROIs. Additionally, a group effect between active 
vs. remission CD groups in the WMV left postcentral gyrus, 
WMV left precentral gyrus and CT right MFG was pre-
sent. There were no significant interaction effects between 
the (CD abdominal pain vs. CD no abdominal pain) (active 
vs. remission) CD groups, indicating differences observed 
between the CD abdominal pain group were not influenced 
by disease status. Figure 3 shows areas with significant 
alterations in GMV, WMV, and CT in CD participants 
with (n = 27) compared to without abdominal pain (n = 20), 
Table 3.

Comparison of regional GMV and CT between CD 
with and without EIM

CD participants with EIMs had lower GMV in the left post-
central gyrus, left central opercular cortex, bilateral precu-
neus, right MFG, right middle temporal gyrus, as well as 
cortical thinning in the left OFC, right LOC and left para-
hippocampal gyrus compared to CD participants without 
EIMs. Conversely, CD participants with EIM had greater 
WMV in the left LOC, left superior parietal lobule, left 
occipital pole as well as greater CT in the right frontal pole 
compared with CD participants without EIM. Figure 4 shows 
those areas with significant alterations in GMV, WMV and 
CT in CD participants without EIM (n = 35) compared with 
CD participants with EIM (n = 12), Table 4.

Discussion

Brain CSF volume was significantly reduced in CD com-
pared with HCs. CSF flow to the brain is essential for protein 
clearance to prevent accumulation of toxic protein aggre-
gates (Puy et al., 2016). Impaired CSF flow is suggested 
to result in cognitive deficits in the elderly (Attier-Zmudka 
et al., 2019). In other systemic inflammatory diseases such 
as rheumatoid arthritis, pro-inflammatory cytokines in CSF 
have positively correlated with fatigue (Lampa et al., 2012), 
and TNF blockade shown to reduce CSF protein levels 
(Estelius et al., 2019). In chronic fatigue syndrome (CFS), 
higher fatigue scores associate with reduced CSF volume 
(Finkelmeyer et al., 2018). The reduced CSF in CD partici-
pants may be attributed to systemic inflammation leading 
to fatigue symptoms. However, we did not show a signifi-
cant correlation between reduced CSF volume and fatigue 
scores, or any significant differences in serum cytokine lev-
els between CD and HCs, although prior studies suggest 
cytokines increase in CSF during systemic inflammation 
(Engler et al., 2017; Herrick & Tansey, 2021).

Assessment of regional brain volumes showed reduced 
GMV, WMV and CT in CD participants compared with HCs 
in left precentral gyrus, the primary motor cortex implicated 
in motor function, which is in line with previously reported 
studies in CD (Zikou et al., 2014; Bao et al., 2015). Reduced 
WMV in the precentral gyrus has been reported in patients 
with CFS (Finkelmeyer et al., 2018). Atrophy of the left pre-
central gyrus, evidenced by reduced GMV, WMV and corti-
cal thinning, may be related to fatigue symptoms observed in 
CD patients. CD patients also showed significantly greater 

Table 1  Regions showing GMV, WMV and CT alterations in CD participants compared to HCs

Metric MNI regions Hemisphere MNI coordi-
nates

T value 
(peak 
level)

Uncorrected 
p (peak 
level)

Uncor-
rected 
cluster size

TFCE FWE 
corrected P

TFE Cluster size

x y z

CD < HC GMV precentral gyrus L -46 -9 44 3.46 < 0.001 56
WMV precentral gyrus L -48 -10 68 4.73 < 0.001 797
CT precentral gyrus L -28 -10 48 3.25 0.001 34

CD > HC GMV superior frontal gyrus L -14 14 60 4.15 < 0.001 799 0.035 1012
planum polare L -42 -36 6 4.03 < 0.001 2237 0.048 10
lateral occipital L -44 -62 62 4.6 < 0.001 829 0.04 196
orbital frontal cortex R 14 4 -15 5.96 < 0.001 5782 < 0.001 34,316
anterior cingulate L -10 26 12 4.13 < 0.001 444
parietal operculum R 45 -36 21 3.61 <0.001 129

WMV lateral occipital L -40 -63 62 5.41 < 0.0001 734
frontal medial R 3 36 -22 3.92 < 0.0001 1069
lateral occipital L -60 -69 -14 4.18 < 0.0001 272

CT mid temporal gyrus L -57 -55 -10 3.5 < 0.0001 75
lingual gyrus L -19 -59 -7 3.37 0.001 102
hippocampus L -13 -39 -5 3.26 0.001 32
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Fig. 2  Areas of a  GMV loss, b  WMV loss and c  cortical thinning 
correlated with increased IBD fatigue score in CD participants dis-
played on a  T1-weighted normalized anatomical image (P < 0.001, 
uncorrected), no regions survived TFCE FWE corrections (P < 0.05). 

GMV and WMV data assessed using age, TIV and sex, CT data 
assessed using age and sex as covariates of no interest. SMA = sup-
plementary motor area

Table 2  Anatomical regions 
showing an association between 
GMV and CT with IBD fatigue

Measure MNI regions MNI coordinates Uncorrected p 
(peak level)

T value 
(peak 
level)x y z

GMV Right SMA 10 -12 66 < 0.0001 4.1
WMV Left cerebellum -52 -42 -39 < 0.0001 6.01
CT Right para-hippocampal gyrus 27 -1 -37 < 0.0001 4.54

Left temporal fusiform gyrus -38 -21 -25 < 0.0001 4.33
Right frontal pole 23 53 -5 < 0.0001 4.08
Left inferior temporal gyrus -53 -27 -32 < 0.0001 3.81
Left postcentral gyrus -12 -38 54 < 0.0001 3.58
Left midfrontal gyrus -42 22 39 < 0.0001 3.5
Right frontal pole 30 43 -13 < 0.0001 3.58
Left orbitofrontal cortex -30 30 1 < 0.0001 3.63
Left temporal fusiform gyrus -35 -5 -44 < 0.0001 3.38
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Fig. 3  Areas with GMV, WMV and CT alterations in CD partici-
pants with abdominal pain compared with CD without abdominal 
pain. GMV and WMV data assessed using age, TIV and sex, CT data 

assessed using age and sex as covariates of no interest. Maps dis-
played on a  T1-weighted normalized anatomical image at uncorrected 
P < 0.001, no regions survived TFCE FWE corrections (P < 0.05)
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GMV relative to HCs in left SFG, a region implicated in 
working memory, with alterations likely resulting in cog-
nitive deficits (du Boisgueheneuc et al., 2006). We show 
increased GMV in the left planum temporale within the 
superior temporal gyrus (STG), an area implicated in lan-
guage function (Shapleske et al., 1999) and left ACC in CD 
compared with HCs. Structural, functional and metabolic 
alterations in ACC have been reported in CD, and attrib-
uted to stress, pain, negative emotions and changes in gut 
microbiota (Bao et al., 2017; Liu et al., 2018; Lv et al., 2018; 
Kong et al., 2021, 2022; Li et al., 2021). Further, we show 
increased GMV in the right parietal operculum, a region 
implicated in pain (Horing et al., 2019), as well as cortical 
thickening in the left middle temporal gyrus in CD partici-
pants relative to HCs, which is in agreement with Nair et al. 
(Nair et al., 2016).

Significant alterations were also seen in the sensorimo-
tor network where greater fatigue scores correlated with 
reduced GMV in right SMA. GM atrophy of SMA may be 
linked with symptoms of fatigue due to an attenuation of a 
central drive to peripheral neuromuscular activity. Repeti-
tive transcranial magnetic stimulation of SMA has been 
shown to increase the recovery rate from central fatigue 
(Sharples et al., 2016). We show that increased fatigue was 
also associated with decreased CT in left postcentral gyrus, 
a somatosensory region, as well as reduced WMV in left 
cerebellum, a region involved in sensory-motor process-
ing, cognitive and emotional functioning (Schmahmann, 
2019), also implicated in chronic fatigue syndrome (CFS) 
(Barnden et al., 2011). Further, we show a negative cor-
relation between fatigue and CT in right para-hippocampal 
gyrus, a region showing reduced functional connectivity 

with greater fatigue scores in CFS patients (Boissoneault 
et al., 2016). Increase in fatigue also associated with reduced 
CT in left temporal fusiform gyrus and left inferior temporal 
gyrus, right frontal pole (anterior part of prefrontal cortex), 
left MFG and left orbitofrontal cortex (OFC). In patients 
with CFS, frontal regions are related to attentional resources 
(i.e. exertion of extra mental effort to improve task perfor-
mance) (Mizuno et al., 2015). Atrophy of frontal regions 
associated with increased fatigue may result in attentional 
deficits and cognitive fatigue leading to enhanced perception 
of fatigue in CD.

A decrease in global CT was associated with an increase 
in abdominal pain. Further, CD with abdominal pain had 
reduced regional GMV in left inferior temporal gyrus and 
left frontal pole compared to CD without abdominal pain. 
Cortical thinning was found in CD with abdominal pain 
compared with those without in temporal regions, left pre-
central gyrus and the right frontal pole, in contrast to regions 
previously reported by Bao et al. (Bao et al., 2017). Nota-
bly, GMV alterations implicated in pain processing are not 
solely limited to regions of the pain matrix, (Smallwood 
et al., 2013; Torta et al., 2014)., with controversy regarding 
the direction of change (increase or decrease) (Smallwood 
et al., 2013; Torta et al., 2014). Brain structural alterations 
associated with pain maybe linked to an imbalance in neu-
rotransmitters (Lv et al., 2018), ongoing nociceptive inputs, 
heightened attention to nociceptive and unpleasant sensory 
stimuli leading to use-dependent plasticity effects (May, 
2008; Pomares et al., 2017).

The presence of EIM in CD is an indicator of greater 
inflammatory burden and systemic disease. CD par-
ticipants with EIMs had reduced GMV in sensorimotor 

Table 3  Anatomical regions showing GMV, WMV and CT alterations in CD participants with abdominal pain compared with CD without 
abdominal pain. MFG = middle frontal gyrus

Measure Hemisphere MNI regions MNI coordinates Uncorrected p 
(peak level)

T value 
(peak level)

Cluster size

x y z

Abdominal 
pain < No 
abdominal 
pain

GMV L inferior temporal gyrus -63 -54 -30 < 0.0001 4.18 385
L frontal pole -21 74 -9 < 0.0001 4.13 36

CT L precentral gyrus -56 2 36 < 0.0001 4.1 433
L temporal pole -53 5 -31 < 0.0001 4.68 358
L inferior temporal gyrus -42 -3 -44 < 0.0001 4.07 317
R mid temporal gyrus 59 -12 -18 < 0.0001 4 285
R frontal pole 40 47 19 < 0.0001 3.57 109
R temporal fusiform cortex 34 -4 -44 0.001 3.44 62

Abdominal 
pain > No 
abdominal 
pain

WMV R temporal pole 40 21 -48 < 0.0001 5.21 1037
R precentral gyrus 60 16 28 < 0.0001 5.31 489
L postcentral gyrus -64 -2 27 < 0.0001 4.84 145
L midfrontal gyrus -38 8 51 < 0.0001 3.79 142
L cerebellum -9 -72 -62 < 0.0001 3.99 126
L precentral gyrus -52 9 26 < 0.0001 3.63 57
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regions of left postcentral gyrus, left central operculum 
and bilateral precuneus, right middle frontal and right mid-
dle temporal gyrus, as well as cortical thinning in the left 
orbital frontal gyrus, right LOC compared with CD with-
out EIM. We also show greater WMV and CT in the left 
occipital regions and right frontal pole respectively. Our 
findings are in contrast to a previous study examining brain 
structure in relation to EIMs in CD, where no difference in 
CT was reported (Thomann et al., 2016). EIM-associated 

brain structural alterations are possibly linked to a chronic 
inflammatory response and disease burden.

This study has some limitations. There is a variation in 
disease duration and severity of inflammation and medica-
tion use across the CD group. The cross-sectional nature 
of this study means chronic symptoms are only assessed at 
a single time point, longitudinal studies are warranted to 
assess the time course of brain structural changes in CD. 
Our structural differences may represent neural correlates 

Fig. 4  Regions showing alterna-
tions in GMV, WMV and CT 
in CD participants with EIM 
compared with CD participants 
without EIM. GMV and WMV 
data assessed using age, TIV 
and sex, CT data assessed using 
age and sex as covariates of 
no interest. Maps displayed 
on a T1- weighted normalized 
anatomical image at uncor-
rected P < 0.001, no regions 
survived TFCE FWE correc-
tions (P < 0.05). MTG = middle 
temporal gyrus, LOC = lateral 
occipital cortex, MFG = mid-
frontal gyrus
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of different disease courses (e.g. mild vs. complicated), 
however we were underpowered to study brain structural 
differences based on disease course.

Conclusion

This is the largest study to date in patients with active CD. 
We show a significant reduction in global CSF volume, 
and regional GMV, WMV and CT in the motor cortex, and 
an increase in GMV in frontal brain regions in CD com-
pared with HCs. Alterations in brain structure in multiple 
regions in CD associated with fatigue, abdominal pain 
and EIMs, may reflect neuroplasticity effects to a chronic 
systemic inflammatory response and chronic symptom 
stimuli, explaining the persistence of fatigue symptoms 
in CD patients in remission.
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