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Abstract
Post-stroke neuroplasticity and cognitive recovery can be enhanced by multimodal stimulation via environmental enrich-
ment. In this vein, recent studies have shown that enriched sound environment (i.e., listening to music) during the subacute 
post-stroke stage improves cognitive outcomes compared to standard care. The beneficial effects of post-stroke music 
listening are further pronounced when listening to music containing singing, which enhances language recovery coupled 
with structural and functional connectivity changes within the language network. However, outside the language network, 
virtually nothing is known about the effects of enriched sound environment on the structural connectome of the recovering 
post-stroke brain. Here, we report secondary outcomes from a single-blind randomized controlled trial (NCT01749709) in 
patients with ischaemic or haemorrhagic stroke (N = 38) who were randomly assigned to listen to vocal music, instrumental 
music, or audiobooks during the first 3 post-stroke months. Utilizing the longitudinal diffusion-weighted MRI data of the 
trial, the present study aimed to determine whether the music listening interventions induce changes on structural white 
matter connectome compared to the control audiobook intervention. Both vocal and instrumental music groups increased 
quantitative anisotropy longitudinally in multiple left dorsal and ventral tracts as well as in the corpus callosum, and also 
in the right hemisphere compared to the audiobook group. Audiobook group did not show increased structural connectivity 
changes compared to both vocal and instrumental music groups. This study shows that listening to music, either vocal or 
instrumental promotes wide-spread structural connectivity changes in the post-stroke brain, providing a fertile ground for 
functional restoration.
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Introduction

Recovery after stroke is based on different neural levels rang-
ing from single neurons to wide-spread functional networks 
(Cramer, 2008). The hypoperfusion depriving the brain of 

oxygen and nutrients leads not only to a cascade of cellular 
and biochemical processes resulting in permanent neural 
damage, but also in growth of neurites and formation of 
new synapses to rebuild and remodel the injured networks, 
contributing to functional restoration (Carmichael, 2006; 
Cramer, 2018). Since neurogenesis has no known clinically 
meaningful role in adult brain recovery, the post-stroke neu-
roplasticity changes lay the foundation for recovery (Cramer, 
2008; Cramer et al., 2011; Nudo, 2013).

The neuroplasticity changes supporting recovery of 
function can be enhanced by increasing stimulation from 
the environment (Baroncelli et al., 2010), termed environ-
mental enrichment (EE). In general, EE involves organi-
zation of the rehabilitation environment and provision of 
equipment to facilitate voluntary engagement in physical, 
cognitive, and social activities that provide complex stim-
ulation (Nithianantharajah & Hannan, 2006; Rosenzweig 
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et al., 1978). In animal research, this usually involves hous-
ing multiple animals together in a large cage equipped with 
different toys and enhanced novelty and complexity com-
pared to standard conditions (Zhang et al., 2017).

Evidence from animal studies has shown that EE improves 
post-stroke cognitive and motor recovery (Nithianantharajah 
& Hannan, 2006), and that multimodal (e.g., auditory-visual) 
stimulation is superior to unimodal stimulation (Maegele 
et al., 2005). Despite this evidence, only few studies have 
assessed the effects of EE in human stroke patients to date. 
Studies utilizing a communal and individual EE providing, 
for example, games, reading material, music and audiobooks, 
have reported increased levels of physical, cognitive or social 
activity (Janssen et al., 2014; Rosbergen et al., 2017, 2019). 
In patients with various neurological disorders, similar com-
munal and individual EE has been shown to improve mood 
and functional / cognitive abilities (Khan et al., 2016). How-
ever, the largest to date (N = 193) trial of a patient-driven 
EE model did not find significant clinical improvements in 
these domains in stroke patients (Janssen et al., 2021). The 
experiences from these studies highlight the importance of 
EE elements, which are engaging, personally tailored and 
easily accessible, and which can be provided in sufficient 
quantity that can result in suboptimal rehabilitation intensity 
to bring about a behavioural change (Krakauer et al., 2012; 
Murphy & Corbett, 2009).

Rehabilitation environment can also be enriched by 
using selected components of EE (Percaccio et al., 2007). 
One of the potential components of EE is music, which 
has the capacity to enhance mood and arousal, facilitate 
verbal and non-verbal (emotional) communication and 
social interaction, engage multiple cognitive and motor 
functions, and provide reward and motivation to learn and 
train (Särkämö & Sihvonen, 2018). Advanced neuroimag-
ing studies on healthy participants have provided evidence 
that music listening modulates a wide-spread network in the 
brain, comprising bilateral temporal, frontal, parietal, and 
subcortical regions in healthy subjects (Alluri et al., 2012; 
Brattico et al., 2011; Koelsch, 2010, 2014; Schmithorst, 
2005; Toiviainen et al., 2014; Zatorre & Salimpoor, 2013). 
In early subacute stroke patients, music listening activates 
a similar network of brain regions (Sihvonen et al., 2017b). 
These observations have provided the initial impetus for 
studying music in the context of neurological rehabilitation 
(Sihvonen et al., 2017a) as a form of easily applicable audi-
tory EE that can increase activity-dependent neuroplasticity 
providing a fertile ground for recovery (Murphy & Corbett, 
2009; Särkämö & Soto, 2012).

In stroke patients, daily music listening during the suba-
cute post-stroke stage has been shown to improve cognitive 
and emotional recovery (Baylan et al., 2020; Särkämö et al., 
2008) and to induce structural neuroplasticity changes in 
frontolimbic regions (Särkämö et al., 2014) compared to 

standard care and to daily audiobook listening as a control 
intervention. Recently, using data from the current rand-
omized controlled trial (RCT) pooled together with data 
from our previous trial (Särkämö et al., 2008), we compared 
the effects of daily listening to vocal music, instrumental 
music, and audiobooks and found that the vocal (sung) 
component seems to be crucial for the rehabilitative effi-
cacy of music. As the primary neuropsychological outcome, 
vocal music listening improved post-stroke verbal memory 
recovery compared to instrumental music and audiobooks 
(Sihvonen et al., 2020). Moreover, as secondary outcomes, 
vocal music listening improved the recovery of post-stroke 
language skills (Sihvonen et al., 2020), increased grey matter 
volume in left temporal regions, strengthened resting-state 
functional connectivity of the left temporoparietal parts of 
the language and default mode networks, and enhanced frac-
tional anisotropy (FA) of the left frontal aslant tract (FAT) 
and stimulus-specific activation of its superior frontal ter-
mination areas (Sihvonen et al., 2020; Sihvonen, Pitkäniemi 
et al., 2021; Sihvonen, Ripollés et al., 2021) compared to 
audiobooks, suggesting that the behavioural benefits of vocal 
music listening are coupled with structural and functional 
reorganization of the left hemisphere language network.

Numerous animal studies have shown that EE ameliorates 
the consequences of brain injury by promoting structural 
white matter recovery, resulting in modulation of neural 
circuits and improved neurological function (Forbes et al., 
2020; Gibson et al., 2014; Purger et al., 2016). Despite this 
evidence, studies on patients on the effects of any form of EE 
on the structural connectivity after brain injury (e.g., stroke) 
are still largely lacking. This information would greatly 
improve our understanding of the prerequisites of effec-
tive EE in treating patients, providing, for example, crucial 
information on its neural mechanisms. While we have previ-
ously shown that post-stroke vocal music listening enhances 
microstructural properties (FA) of the left FAT (Sihvonen, 
Ripollés et al., 2021), a white matter pathway integral to 
the language network, the broader structural connectivity 
changes potentially induced by music as a form of auditory 
EE in other white matter tracts beyond the language network 
remain unexplored.

Here, we set out to determine the whole-brain structural 
connectome changes across both hemispheres induced by 
post-stroke vocal music listening as a secondary analysis 
from the diffusion-weighted imaging (DWI) MRI data from 
our RCT described above (Sihvonen et al., 2020; Sihvonen, 
Pitkäniemi et al., 2021; Sihvonen, Ripollés et al., 2021), 
using a sample of 38 acute stroke patients with a 3-month 
follow-up. More specifically, we carried out connectometry 
analysis utilizing quantitative anisotropy (QA), which has 
shown greater sensitivity than conventional single-tensor 
based or tract-based analysis (Yeh, Badre et al., 2016). 
Connectometry uses permutation testing to identify group 
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differences in white matter tracts, and has recently been used 
to uncover white matter connectometry of word production 
(Hula et al., 2020) and verb retrieval (Dresang et al., 2021) in 
post-stroke aphasia. Based on the previous functional MRI 
results from the baseline (pre-intervention) stage of our trial, 
which showed that music listening activates bilateral fronto-
temporal, parietal, and subcortical regions in early subacute 
stage stroke patients (Sihvonen et al., 2017b), we hypoth-
esized that vocal music listening would induce longitudinal 
(baseline to 3-month stage) structural connectivity changes 
bilaterally in frontotemporal and parietal regions. Further-
more, we hypothesized that also instrumental music would 
induce similar structural connectivity changes, although 
less than vocal music in the left-lateralized language-related 
tracts.

Methods

Subjects and study design

Fifty stroke patients were recruited from the Turku Univer-
sity Hospital between 2013 and 2016 for a three-arm RCT 
(Clinicaltrials.gov: NCT01749709). Inclusion criteria were 
acute unilateral ischaemic or haemorrhagic stroke; right-
handedness; < 80 years of age; capability to communicate 
in Finnish and ability to co-operate; residence in Southwest 
Finland; and normal hearing. Exclusion criteria were prior 
neurological or psychiatric disease, and substance abuse. 
The study was approved by the Ethics Committee of the 
Hospital District of Southwest Finland and performed in 
conformance with the Declaration of Helsinki. All patients 
gave an informed consent and received standard stroke treat-
ment and rehabilitation. Baseline MRI imaging and behav-
ioural assessments were performed < 3 weeks post-stroke 
(mean 12 days, SD 5.5). Patients were then randomized 
to vocal music (VMG, N = 17), instrumental music (IMG, 
N = 17), and audiobook groups (ABG, N = 16). The rand-
omization was stratified for lesion laterality (left/right) and 
performed as block randomization (10 blocks of three con-
secutive patients for left and right lesions), with the order 
within the blocks being drawn by a random number genera-
tor. The randomization list was generated by a laboratory 
engineer not involved in the data collection and the persons 
performing the patient recruitment had no access to it.

During the study, six patients were excluded due to 
refusal to participate at follow-up and six patients due to 
incomplete MRI data. The remaining thirty-eight patients 
(15 female and 23 male, mean age 56.1 years SD 13.4) com-
pleted the 3-month MRI and behavioural assessments and 
were included in statistical analyses (VMG, N = 12; IMG, 
N = 15; ABG, N = 11; Table 1). The groups were relatively 
well balanced between stroke-relevant clinical variables 

such as stroke type (infarct/haemorrhage) (P = 0.398), 
lesion laterality (P = 0.676), lesion volume (P = 0.712) and 
stroke severity according to the National Institutes of Health 
Stroke Scale (NIHSS) scores at the acute stage (< 7 days), 
F(22,38) = 0.872, P = 0.627; Wilk's Λ = 0.442 (individual 
categories P = 0.153–0.994; see Table  1). None of the 
patients received endovascular stroke treatments and only 
one patient received thrombolytic therapy.

Intervention

The patients were individually contacted by a music therapist 
who informed them of their group allocation after baseline 
assessments. Other researchers were blinded to the group 
allocation of the patients. The music therapist provided the 
patients with a portable MP3 player, headphones, and a col-
lection of listening material individually selected to match 
the music or literature preferences of the patient as closely as 
possible. The listening material was vocal music with sung 
lyrics in VMG, instrumental music (with no sung lyrics) in 
IMG, and narrated audiobooks (with no music) in ABG. All 
material was in a language that the patients understood best. 
The patients were instructed to listen to the allocated mate-
rial by themselves daily (min. 1 h per day) in the hospital 
or at home from 3 weeks post-stroke (i.e., after the baseline 
assessments) until the 3-month follow-up assessments, and 
they were asked to keep a listening diary. During the inter-
vention period, the music therapist kept regular contact with 
the patients to encourage listening, provide more material, 
and help with the equipment if needed. The intervention has 
been described in more detail elsewhere (Sihvonen et al., 
2020; Sihvonen, Ripollés et al., 2021).

MRI data acquisition and reconstruction

Patients were scanned on a 3 T Siemens Magnetom Verio 
scanner (Siemens Healthcare, Erlangen, Germany) with 
a standard 12-channel head matrix coil at the Depart-
ment of Radiology, Turku University Hospital. The MRI 
protocol comprised high-resolution T1-weighted ana-
tomical images and DWI (TR = 11700 ms, TE = 88 ms, 
acquisition matrix = 112 × 112, 66 axial slices, voxel 
size = 2.0 × 2.0 × 2.0mm3) with one non-diffusion weighted 
volume and 64 diffusion weighted volumes (b = 1000 s/
mm2).

The DWI data were reconstructed in the Montreal Neu-
rological Institute (MNI) space using q-space diffeomorphic 
reconstruction (QSDR) (Yeh & Tseng, 2011) that allows 
the construction of spin distribution functions (SDFs) (Yeh 
et al., 2010). The b-table was checked by an automatic qual-
ity control routine to ensure its accuracy (Schilling et al., 
2019). Normalization was carried out using the anisotropy 
map of each participant and a diffusion sampling length 
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ratio of 1.25 was used. The data output was resampled to 
2 mm isotropic resolution. Quality of the normalization 
was inspected using the  R2 values denoting goodness-of-
fit between the participant’s anisotropy map and template 
as well as inspecting the anatomical localisation of each 
participant’s forceps major and minor to confirm the nor-
malization quality (Hula et al., 2020). The restricted diffu-
sion was quantified using restricted diffusion imaging (Yeh 
et al., 2017) and QA was extracted as the local connectome 
fingerprint (Yeh, Vettel et al., 2016) and used in the con-
nectometry analysis.

Data availability

Anonymized data reported in this manuscript are available 
from the corresponding author upon reasonable request and 
subject to approval by the appropriate regulatory commit-
tees and officials.

Statistical analysis

Diffusion MRI connectometry (Yeh, Badre et al., 2016) 
analyses were carried out using DSI Studio (http:// dsi- stu-
dio. labso lver. org, version April 7 2021). Three multiple 

regression models were used to identify positive local con-
nectome changes across time (3 months > Acute) between 
the VMG, ABG and IMG. Local connectomes with T-score 
exceeding 3 were selected and tracked using a deterministic 
fiber tracking algorithm (Yeh et al., 2013) to obtain corre-
lational tractography. The tracks were filtered by topology-
informed pruning (Yeh et al., 2019) with 4 iterations, and a 
length threshold of 20 voxel distance was used to identify 
significant tracts. Bootstrap resampling with 2000 rand-
omized permutations was used to obtain the null distribu-
tion of the track length and estimate the false discovery rates 
(FDR).

Results

The connectometry analyses comparing the longitudinal 
QA changes between the intervention groups revealed that 
the VMG showed greater QA increase (3 months > Acute) 
compared to the ABG in the left ventral (uncinate fascicu-
lus, inferior fronto-occipital fasciculus, extreme capsule) 
and dorsal (arcuate fasciculus, frontal aslant tract) pathways, 
in the left cingulum, thalamic radiation and corticostriatal 
tracts as well as in the right ventral (inferior longitudinal 

Table 1  Baseline demographic 
and clinical characteristics of 
the patients

Data are median (IQR) unless otherwise stated. Significant group differences are shown in bold
F one-way ANOVA, H Kruskal–Wallis test, χ2 chi-square test
a Likert scale 0–5 (0 = never, 1 = rarely, 2 = once a month, 3 = once a week, 4 = 2–3 times a week, 5 = daily)
b Classification based on Verbal Fluency Test
c Classification based on shortened Boston Naming test
d Classification based on shortened Token Test
e Classification based on the MBEA Scale & Rhythm subtest average score (< 75% cut-off)

Vocal music 
group (N = 12)

Instrumental 
music group 
(N = 15)

Audiobook 
group (N = 11)

p value

Demographic
Sex (male/female) 5/7 11/4 7/4 0.239 (χ2)
Age (years) 58.5 (30.0) 55.0 (12.0) 61.0 (20.3) 0.218 (F)
Education (years) 14.8 (3.6) 13.0 (6.0) 11.5 (5.3) 0.450 (F)
Music background (pre-stroke)
Formal music  traininga 0.0 (0.0) 0.0 (0.0) 0.0 (1.0) 0.218 (H)
Instrument  playinga 0.0 (5.0) 0.0 (3.0) 0.0 (5.0) 0.762 (H)
Music listening prior to  strokea 5.0 (0.8) 5.0 (0.0) 5.0 (3.0) 0.265 (H)
Clinical
Stroke type (infarct/haemorrhage) 10/2 9/6 7/4 0.398 (χ2)
Verbal  fluencyb 7.5 (8.8) 9.0 (9.5) 10.0 (5.0) 0.715 (H)
Namingc 18.5 (3.3) 18.0 (3.0) 18.0 (4.0) 0.444 (H)
Auditory  Comprehensiond 30.0 (2.5) 29.0 (6.0) 27.0 (10.0) 0.112 (H)
Amusia  Overalle (no/yes) 5/7 9/6 2/9 0.103 (χ2)
Lesion laterality (left/right) 6/6 7/8 7/4 0.676 (χ2)
Lesion volume in  cm3 29.0 (71.1) 45.3 (88.3) 18.5 (11.2) 0.712 (F)
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fasciculus) and dorsal (arcuate fasciculus, superior longitu-
dinal fasciculus) pathways, in the right cingulum, thalamic 
radiation and corticostriatal tracts and the corpus callosum 
(FDR = 0.02; Fig. 1A, Fig. 2A).

The IMG also showed greater QA increased compared 
to the ABG in the left ventral (uncinate fasciculus, inferior 
fronto-occipital fasciculus, inferior longitudinal fasciculus) 
and dorsal (arcuate fasciculus) pathways, in the left thalamic 

radiation and corticospinal and -pontine tracts as well as 
in the right dorsal (arcuate fasciculus, superior longitudinal 
fasciculus) pathway and the corpus callosum compared to 
the ABG (FDR = 0.0004; Fig. 1B, Fig. 2A).

Compared to the VMG or IMG, the ABG did not show 
significant increases in QA over time. Moreover, the com-
parisons between the VMG and IMG revealed no significant 
differences.

Fig. 1  Structural white matter connectometry changes (3 months > Acute). 
Significant changes in connectometry showing increased structural white 
matter connectivity between (A) VMG and ABG (3  months > Acute) 

and (B) IMG and ABG (3  months > Acute). ABG = Audiobook group, 
IMG = Instrumental music group, L = left, QA = Quantitative anisotropy, 
R = right, VMG = Vocal music group
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When the two significant connectometry findings 
were further compared, VMG only [(VMG > ABG) 
– (IMG > ABG)] was associated with increased QA in the 
left anterior ventral and right dorsal and ventral pathways 
as well as in the bilateral cingulum (see Fig. 2B) whereas 
IMG only [(IMG > ABG) – (VMG > ABG)] was associated 
with increased QA in the left posterior ventral and dorsal 
pathways as well as corpus callosum and the right dorsal 
pathway (see Fig. 2B).

Discussion

This study set out to determine the structural connec-
tome changes induced by post-stroke music listening in 
the context of auditory EE. Our novel findings were that 

compared to listening to audiobooks, both daily listening 
to vocal and instrumental music after stroke enhanced 
structural connectivity in dorsal and ventral pathways in 
both hemispheres as well as in the corpus callosum. The 
present study extends previous results on the rehabilita-
tive effects of music listening after stroke (Baylan et al., 
2020; Särkämö et al., 2008, 2014; Sihvonen et al., 2020), 
including the previously reported results from the cur-
rent RCT (Sihvonen, Pitkäniemi et al., 2021; Sihvonen, 
Ripollés et al., 2021), and provides new information about 
the extent of structural connectome changes after music 
listening intervention. The results conform with evidence 
derived from animal studies (van Praag et  al., 2000) 
showing that exposure to EE can elicit neuroanatomical 
changes in the white matter also in human stroke patients.

Fig. 2  Comparison of significant connectometry findings. (A) Positively 
associated white matter tracts for VMG > ABG (red) and IMG > ABG 
(blue). (B) Positively associated white matter tracts for VMG only 
[(VMG > ABG) – (IMG > ABG)] (green) and IMG only [(IMG > ABG) 

– (VMG > ABG)] (yellow). ABG = Audiobook group, IMG = Instru-
mental music group, L = left, QA = Quantitative anisotropy, R = right, 
VMG = Vocal music group
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In clinical practice, successful post-stroke rehabilitation 
and functional restoration are grounded on neuroplasticity 
of the injured brain (Carmichael, 2006; Cramer, 2008, 2018; 
Cramer et al., 2011; Krakauer et al., 2012; Nudo, 2013). 
The neuroplasticity changes are driven by activity-dependent 
mechanisms (Cramer et al., 2011; Murphy & Corbett, 2009) 
that, according to animal studies, can be enhanced via EE: 
In animal models for stroke, EE has led to, for example, 
decreased lesion volume (Buchhold et al., 2007; Zhang 
et al., 2017) and white matter damage (Hase et al., 2018) as 
well as to increased synaptogenesis (Hirata et al., 2011) and 
axonal remodelling (Li et al., 2015). Moreover, the neural 
benefits of EE have been associated with improved cognitive 
and motor recovery (Buchhold et al., 2007; Farrell et al., 
2001). Despite promising evidence derived from animal 
research, there has been limited translation of this interven-
tion into patient studies (Livingston-Thomas et al., 2016) 
and its neural effects of have remained unexplored in human 
stroke patients. Previous studies have shown that a commu-
nal and individual EE increases activity in stroke patients 
(Janssen et al., 2014; Rosbergen et al., 2017, 2019; but see 
Janssen et al., 2021), but evidence on its effect on functional 
and cognitive recovery has remained inconsistent (Janssen 
et al., 2021; Khan et al., 2016). To our best knowledge, this 
is the first study to evaluate the effects of auditory EE (i.e., 
music listening), on whole-brain white matter connectiv-
ity in stroke patients. Based on the results, both vocal and 
instrumental music listening increase structural white mat-
ter connectivity in the post-stroke brain, providing a fertile 
ground for recovery (Murphy & Corbett, 2009; Särkämö & 
Soto, 2012).

To maximize the utilization of the activity-dependent 
mechanisms of brain plasticity, the rehabilitative stimula-
tion, also in EE, needs to take place in the acute and early 
subacute post-stroke stages with elevated brain plasticity as 
well as to be intensive enough and stimulate the impaired 
neural network (Bernhardt et al., 2017; Foley et al., 2012; 
Krakauer et al., 2012; Murphy & Corbett, 2009). Failing to 
meet these demands could partly explain the lack of con-
sistent clinical findings in previous EE studies in stroke 
patients. In the present study, patients listened to music 
for at least one hour per day from the early subacute stage 
to 3-month stage, within the time window of heightened 
neuroplasticity. Compared to audiobooks, both vocal and 
instrumental music listening induced widespread con-
nectome changes. This likely owes to music’s capacity to 
induce widespread activations in the brain (Alluri et al., 
2012; Koelsch, 2014; Samson et al., 2011; Schmithorst, 
2005; Zatorre & Salimpoor, 2013), even in the current sam-
ple of stroke patients at the baseline before intervention 
(i.e., in the early subacute stage) (Sihvonen et al., 2017b). 
Moreover, music is a complex stimulation for the brain, 
involving, for example, acoustic analysis, auditory memory, 

auditory scene analysis, processing of interval relations, of 
musical syntax and semantics, and activation of motor rep-
resentations of actions (Koelsch, 2011; Koelsch & Siebel, 
2005). This has been suggested to stimulate multiple func-
tional networks in the brain (Särkämö & Sihvonen, 2018), 
offering an avenue to tap into the activity-dependent neu-
roplasticity mechanisms of recovery.

In fact, the connectome changes induced by instrumental 
music seem more extensive compared to those induced by 
listening to vocal music. However, the locus of neuroplasti-
city changes is also important and depends on the stimulated 
networks. The activation patterns are more widespread when 
listening to music containing singing than mere instrumental 
music in both healthy subjects (Alluri et al., 2013; Brattico 
et al., 2011). Similar activation patterns were observed in the 
present sample of stroke patients at the early subacute stage 
(Sihvonen et al., 2017b). Moreover, listening to vocal music 
combines processing of linguistic and musical information 
into a unified representation, providing enhanced modula-
tory effects compared to processing of mere musical infor-
mation (i.e., instrumental music). This improved modulation 
has been shown to translate into improved cognitive and 
neural recovery after stroke (Särkämö et al., 2008, 2014; 
Sihvonen et al., 2020; Sihvonen, Pitkäniemi et al., 2021; 
Sihvonen, Ripollés et al., 2021). In the present study, vocal 
music induced more neuroplasticity changes in the left ante-
rior ventral and right dorsal and ventral pathways as well as 
in the bilateral cingulum as compared to instrumental music. 
This provides a plausible explanation for the emotional and 
cognitive benefits of daily music listening music post-stroke 
(Baylan et al., 2020; Särkämö et al., 2008), and more specifi-
cally for the cognitive improvements observed after vocal 
music listening in the present study (Sihvonen et al., 2020).

Studies on stroke patients have revealed that patients 
remain mostly inactive, alone and unstimulated during the 
critical acute and early subacute stage (Bernhardt et al., 
2004; De Wit et al., 2005) and receive therapeutic interven-
tions less than recommended (Foley et al., 2012), thus failing 
to exploit the critical periods for neuroplasticity (Cramer 
et al., 2011). Increased levels of stimulation for early suba-
cute stroke patients could potentially lead to improved out-
comes. Music listening could be implemented, regardless 
of the severity of patient’s neurological impairment, with 
reasonable intensities, even in inpatient wards without con-
stant input from the staff (i.e., therapists).

The present study provides proof of concept that post-
stroke music listening in the context of auditory EE could 
induce wide-spread changes in the structural connectome 
but has some potential limitations. The sample size remains 
modest, and the present results cannot be generalized with-
out reservations and future larger-scale studies. As studies 
on the effects of post-stroke EE on the brain structure are 
lacking, the extent of the connectivity changes induced by 
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music listening cannot be compared to those induced by, 
for example, communal enrichment. Future rehabilitation 
studies on auditory enrichment with more detailed estima-
tions of the microstructural complexity of neurites using, for 
example, neurite orientation dispersion and density imag-
ing (NODDI), could provide more specific information of 
the specific mechanisms of recovery (Zhang et al., 2012). 
Moreover, as the neuroplasticity changes are based on myri-
ads of molecular changes, including those related to stress, 
studies on biochemical mediators of post-stroke stress are 
needed to further understand how music improves recovery 
post-stroke.

Conclusions

In conclusion, the present connectometry results suggest that 
the positive effects of music listening on post-stroke recov-
ery are underpinned by wide-spread structural reorganiza-
tion, and further substantiates the conclusion that listening 
to music provides a fertile ground for functional restoration 
after stroke.
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