Skip to main content

Advertisement

Log in

Computerized paired associate learning performance and imaging biomarkers in older adults without dementia

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

This cross-sectional study examined whether performance on the computerized Paired Associate Learning (PAL) task from the Cambridge Neuropsychological Test Automated Battery is associated with amyloid positivity as measured by Positron Emission Tomography, regional volume composites as measured by Magnetic Resonance Imaging, and cognitive impairment. Participants from the BIOCARD Study (N = 73, including 62 cognitively normal and 11 with mild cognitive impairment; M age = 70 years) completed the PAL task, a comprehensive clinical and neuropsychological assessment, and neuroimaging as part of their annual study visit. In linear regressions covarying age, sex, years of education and diagnosis, higher PAL error scores were associated with amyloid positivity but not with medial temporal or cortical volume composites. By comparison, standard neuropsychological measures of episodic memory and global cognition were unrelated to amyloid positivity, but better performance on the verbal episodic memory measures was associated with larger cortical volume composites. Participants with mild cognitive impairment demonstrated worse cognitive performance on all of the cognitive measures, including the PAL task. These findings suggest that this computerized visual paired associate learning task may be more sensitive to amyloid positivity than standard neuropsychological tests, and may therefore be a promising tool for detecting amyloid positivity in non-demented participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Anonymized data used in the analyses presented in this report are available on request from qualified investigators (biocard-se.org).

Code availability

Not applicable.

References

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008

  • Albert, M., Soldan, A., Gottesman, R., McKhann, G., Sacktor, N., Farrington, L., … Selnes, O. (2014). Cognitive changes preceding clinical symptom onset of mild cognitive impairment and relationship to ApoE genotype. Current Alzheimer Research11(8), 773–784. https://doi.org/10.2174/156720501108140910121920

  • Baker, J. E., Lim, Y. Y., Pietrzak, R. H., Hassenstab, J., Snyder, P. J., Masters, C. L., & Maruff, P. (2017). Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis. Alzheimer’s & Dementia, 6, 108–121. https://doi.org/10.1016/j.dadm.2016.09.002

    Article  Google Scholar 

  • Baker, J. E., Pietrzak, R. H., Laws, S. M., Ames, D., Villemagne, V. L., Rowe, C. C., … Lim, Y. Y. (2019). Visual paired associate learning deficits associated with elevated beta-amyloid in cognitively normal older adults. Neuropsychology33(7), 964–974. https://doi.org/10.1037/neu0000561

  • Barnett, J. H., Blackwell, A. D., Sahakian, B. J., & Robbins, T. W. (2016). The Paired Associates Learning (PAL) Test: 30 Years of CANTAB Translational Neuroscience from Laboratory to Bedside in Dementia Research. Current Topics in Behavioral Neurosciences, 28, 449–474. https://doi.org/10.1007/7854_2015_5001

    Article  CAS  PubMed  Google Scholar 

  • Bilgel, M., An, Y., Helphrey, J., Elkins, W., Gomez, G., Wong, D. F., … Resnick, S. M. (2018). Effects of amyloid pathology and neurodegeneration on cognitive change in cognitively normal adults. Brain141(8), 2475–2485. https://doi.org/10.1093/brain/awy150

  • Bilgel, M., An, Y., Zhou, Y., Wong, D. F., Prince, J. L., Ferrucci, L., & Resnick, S. M. (2016). Individual estimates of age at detectable amyloid onset for risk factor assessment. Alzheimer’s & Dementia, 12(4), 373–379. https://doi.org/10.1016/j.jalz.2015.08.166

    Article  Google Scholar 

  • Blackwell, A. D., Sahakian, B. J., Vesey, R., Semple, J. M., Robbins, T. W., & Hodges, J. R. (2004). Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 17(1–2), 42–48. https://doi.org/10.1159/000074081

    Article  PubMed  Google Scholar 

  • Buckley, R. F., Sparks, K. P., Papp, K. V., Dekhtyar, M., Martin, C., Burnham, S., Sperling, R. A., & Rentz, D. M. (2017). Computerized cognitive testing for use in clinical trials: A comparison of the NIH Toolbox and Cogstate C3 batteries. The Journal of Prevention of Alzheimer’s Disease, 4(1), 3–11. https://doi.org/10.14283/jpad.2017.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calamia, M., Markon, K., & Tranel, D. (2012). Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. The Clinical Neuropsychologist, 26(4), 543–570. https://doi.org/10.1080/13854046.2012.680913

    Article  PubMed  Google Scholar 

  • Cambridge Cognition (2019). CANTAB® [Cognitive assessment software]. All rights reserved. https://www.cantab.com

  • de Jager, C. A., Milwain, E., & Budge, M. (2002). Early detection of isolated memory deficits in the elderly: The need for more sensitive neuropsychological tests. Psychological Medicine, 32(3), 483–491. https://doi.org/10.1017/s003329170200524x

    Article  PubMed  Google Scholar 

  • de Jager, C., Blackwell, A. D., Budge, M. M., & Sahakian, B. J. (2005). Predicting cognitive decline in healthy older adults. The American Journal of Geriatric Psychiatry, 13(8), 735–740. https://doi.org/10.1176/appi.ajgp.13.8.735

    Article  PubMed  Google Scholar 

  • de Rover, M., Pironti, V. A., McCabe, J. A., Acosta-Cabronero, J., Arana, F. S., Morein-Zamir, S., … Sahakian, B. J. (2011). Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia49(7), 2060–2070. https://doi.org/10.1016/j.neuropsychologia.2011.03.037

  • Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). California Verbal Learning Test. The Psychological Corporation.

    Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: Insights from functional MRI studies. Neuropsychologia, 46(6), 1624–1635. https://doi.org/10.1016/j.neuropsychologia.2007.11.030

    Article  PubMed  Google Scholar 

  • Egerházi, A., Berecz, R., Bartók, E., & Degrell, I. (2007). Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(3), 746–751. https://doi.org/10.1016/j.pnpbp.2007.01.011

    Article  Google Scholar 

  • Fagan, A. M., Shaw, L. M., Xiong, C., Vanderstichele, H., Mintun, M. A., Trojanowski, J. Q., Coart, E., Morris, J. C., & Holtzman, D. M. (2011). Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Archives of Neurology, 68(9), 1137–1144. https://doi.org/10.1001/archneurol.2011.105

    Article  PubMed  PubMed Central  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  • Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M., & Louis, W. J. (2002). Paired associate performance in the early detection of DAT. Journal of the International Neuropsychological Society, 8(1), 58–71.

    Article  PubMed  Google Scholar 

  • Galluzzi, S., Marizzoni, M., Babiloni, C., Albani, D., Antelmi, L., Bagnoli, C., … PharmaCog Consortium. (2016). Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: A “European ADNI study.” Journal of Internal Medicine, 279(6), 576–591. https://doi.org/10.1111/joim.12482

    Article  Google Scholar 

  • Han, S. D., Nguyen, C. P., Stricker, N. H., & Nation, D. A. (2017). Detectable Neuropsychological Differences in Early Preclinical Alzheimer’s Disease: A Meta-Analysis. Neuropsychology Review, 27(4), 305–325. https://doi.org/10.1007/s11065-017-9345-5

    Article  PubMed Central  Google Scholar 

  • Harel, B. T., Darby, D., Pietrzak, R. H., Ellis, K. A., Snyder, P. J., & Maruff, P. (2011). Examining the nature of impairment in visual paired associate learning in amnestic mild cognitive impairment. Neuropsychology, 25(6), 752–762. https://doi.org/10.1037/a0024237

    Article  PubMed  Google Scholar 

  • Hedden, T., Oh, H., Younger, A. P., & Patel, T. A. (2013). Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology, 80(14), 1341–1348. https://doi.org/10.1212/WNL.0b013e31828ab35d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140, 566–572. https://doi.org/10.1192/bjp.140.6.566

    Article  CAS  PubMed  Google Scholar 

  • Jansen, W. J., Ossenkoppele, R., Tijms, B. M., Fagan, A. M., Hansson, O., Klunk, W. E., … Zetterberg, H. (2018). Association of Cerebral Amyloid-β Aggregation With Cognitive Functioning in Persons Without Dementia. JAMA Psychiatry75(1), 84–95. https://doi.org/10.1001/jamapsychiatry.2017.3391

  • Junkkila, J., Oja, S., Laine, M., & Karrasch, M. (2012). Applicability of the CANTAB-PAL computerized memory test in identifying amnestic mild cognitive impairment and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 34(2), 83–89. https://doi.org/10.1159/000342116

    Article  PubMed  Google Scholar 

  • Konijnenberg, E., den Braber, A., Ten Kate, M., Tomassen, J., Mulder, S. D., Yaqub, M., … Visser, P. J. (2019). Association of amyloid pathology with memory performance and cognitive complaints in cognitively normal older adults: A monozygotic twin study. Neurobiology of Aging77, 58–65. https://doi.org/10.1016/j.neurobiolaging.2019.01.006

  • Langbaum, J. B., Hendrix, S., Ayutyanont, N., Bennett, D. A., Shah, R. C., Barnes, L. L., Lopera, F., Reiman, E. M., & Tariot, P. N. (2015). Establishing composite cognitive endpoints for use in preclinical Alzheimer’s disease trials. The Journal of Prevention of Alzheimer’s Disease, 2(1), 2–3. https://doi.org/10.14283/jpad.2015.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langbaum, J. B., Hendrix, S. B., Ayutyanont, N., Chen, K., Fleisher, A. S., Shah, R. C., Barnes, L. L., Bennett, D. A., Tariot, P. N., & Reiman, E. M. (2014). An empirically derived composite cognitive test score with improved power to track and evaluate treatments for preclinical Alzheimer’s disease. Alzheimer’s & Dementia, 10(6), 666–674. https://doi.org/10.1016/j.jalz.2014.02.002

    Article  Google Scholar 

  • Lim, Y. Y., Ellis, K. A., Ames, D., Darby, D., Harrington, K., Martins, R. N., … AIBL Research Group. (2013). Aβ amyloid, cognition, and APOE genotype in healthy older adults. Alzheimer’s & Dementia, 9(5), 538–545. https://doi.org/10.1016/j.jalz.2012.07.004

    Article  Google Scholar 

  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr, Kawas, C. H., … Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005

  • Meyer, P., Feldkamp, H., Hoppstädter, M., King, A. V., Frölich, L., Wessa, M., & Flor, H. (2013). Using voxel-based morphometry to examine the relationship between regional brain volumes and memory performance in amnestic mild cognitive impairment. Frontiers in Behavioral Neuroscience, 7, 89. https://doi.org/10.3389/fnbeh.2013.00089

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, J., Arnold, R., Dawson, K., Nestor, P. J., & Hodges, J. R. (2009). Outcome in subgroups of mild cognitive impairment (MCI) is highly predictable using a simple algorithm. Journal of Neurology, 256(9), 1500–1509. https://doi.org/10.1007/s00415-009-5152-0

    Article  PubMed  Google Scholar 

  • Mori, S., Wu, D., Ceritoglu, C., Li, Y., Kolasny, A., Vaillant, M. A., ... Miller, M. I. (2016). MRICloud: Delivering high-throughput MRI neuroinformatics as cloud-based software as a service. Computing in Science & Engineering, 18, 21–35. https://doi.org/10.1109/mcse.2016.93

  • Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414. https://doi.org/10.1212/wnl.43.11.2412-a

    Article  CAS  PubMed  Google Scholar 

  • Nathan, P. J., Lim, Y. Y., Abbott, R., Galluzzi, S., Marizzoni, M., Babiloni, C., … PharmaCog Consortium. (2017). Association between CSF biomarkers, hippocampal volume and cognitive function in patients with amnestic mild cognitive impairment (MCI). Neurobiology of Aging, 53, 1–10. https://doi.org/10.1016/j.neurobiolaging.2017.01.013

    Article  CAS  Google Scholar 

  • O’Donnell, J., Pietrzak, R. H., Ellis, K. C., Snyder, P. J., & Maruff, P. (2011). Understanding failure of visual paired associate learning in amnestic mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 33(10), 1069–1078. https://doi.org/10.1080/13803395.2011.596821

    Article  PubMed  Google Scholar 

  • Pasquini, L., Rahmani, F., Maleki-Balajoo, S., La Joie, R., Zarei, M., Sorg, C., Drzezga, A., & Tahmasian, M. (2019). Medial temporal lobe disconnection and hyperexcitability across Alzheimer’s disease stages. Journal of Alzheimer’s Disease Reports, 3(1), 103–112. https://doi.org/10.3233/ADR-190121

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettigrew, C., Soldan, A., Sloane, K., Cai, Q., Wang, J., Wang, M. C., … BIOCARD Research Team (2017). Progressive medial temporal lobe atrophy during preclinical Alzheimer's disease. NeuroImage: Clinical16, 439–446. https://doi.org/10.1016/j.nicl.2017.08.022

  • Pettigrew, C., Soldan, A., Zhu, Y., Wang, M. C., Moghekar, A., Brown, T., …BIOCARD Research Team (2016). Cortical thickness in relation to clinical symptom onset in preclinical AD. NeuroImage: Clinical12, 116–122. https://doi.org/10.1016/j.nicl.2016.06.010

  • Pike, K. E., Savage, G., Villemagne, V. L., Ng, S., Moss, S. A., Maruff, P., … Rowe, C. C. (2007). Beta-amyloid imaging and memory in non-demented individuals: Evidence for preclinical Alzheimer's disease. Brain130(Pt 11), 2837–2844. https://doi.org/10.1093/brain/awm238

  • Polcher, A., Frommann, I., Koppara, A., Wolfsgruber, S., Jessen, F., & Wagner, M. (2017). Face-name associative recognition deficits in subjective cognitive decline and mild cognitive impairment. Journal of Alzheimer’s Disease, 56(3), 1185–1196. https://doi.org/10.3233/JAD-160637

    Article  PubMed  Google Scholar 

  • Reijs, B., Ramakers, I., Köhler, S., Teunissen, C. E., Koel-Simmelink, M., Nathan, P. J., … Visser, P. J. (2017). Memory correlates of Alzheimer's disease cerebrospinal fluid markers: A longitudinal cohort study. Journal of Alzheimer's Disease60(3), 1119–1128. https://doi.org/10.3233/JAD-160766

  • Racine, A. M., Clark, L. R., Berman, S. E., Koscik, R. L., Mueller, K. D., Norton, D., … Johnson, S. C. (2016). Associations between performance on an abbreviated CogState battery, other measures of cognitive function, and biomarkers in people at risk for Alzheimer's disease. Journal of Alzheimer's Disease54(4), 1395–1408. https://doi.org/10.3233/JAD-160528

  • Rentz, D. M., Parra Rodriguez, M. A., Amariglio, R., Stern, Y., Sperling, R., & Ferris, S. (2013). Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: A selective review. Alzheimer’s Research & Therapy, 5(6), 58. https://doi.org/10.1186/alzrt222

    Article  Google Scholar 

  • Rezende, T., Campos, B. M., Hsu, J., Li, Y., Ceritoglu, C., Kutten, K., França Junior, M. C., Mori, S., Miller, M. I., & Faria, A. V. (2019). Test-retest reproducibility of a multi-atlas automated segmentation tool on multimodality brain MRI. Brain and Behavior, 9(10), e01363. https://doi.org/10.1002/brb3.1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvadori, N., Biscetti, L., Eusebi, P., Farotti, L., Chipi, E., Chiappiniello, A., … Parnetti, L. (2020). Relationship of neuropsychological assessment with brain MRI measures and CSF biomarkers in patients with mild cognitive impairment. Current Neurobiology, 11(2), 48–56

  • Soldan, A., Moghekar, A., Walker, K. A., Pettigrew, C., Hou, X., Lu, H., Miller, M. I., Alfini, A., Albert, M., Xu, D., Xiao, M. F., Worley, P., & BIOCARD Research Team. (2019). Resting-state functional connectivity is associated with cerebrospinal fluid levels of the synaptic protein NPTX2 in non-demented older adults. Frontiers in Aging Neuroscience, 11, 132. https://doi.org/10.3389/fnagi.2019.00132

    Article  CAS  Google Scholar 

  • Soldan, A., Pettigrew, C., Moghekar, A., Albert, M., & BIOCARD Research Team. (2016). Computerized cognitive tests are associated with biomarkers of Alzheimer’s disease in cognitively normal individuals 10 years prior. Journal of the International Neuropsychological Society, 22(10), 968–977. https://doi.org/10.1017/S1355617716000722

    Article  Google Scholar 

  • Stricker, N. H., Lundt, E. S., Albertson, S. M., Machulda, M. M., Pudumjee, S. B., Kremers, W. K., Jack, C. R., Knopman, D. S., Petersen, R. C., & Mielke, M. M. (2020). Diagnostic and prognostic accuracy of the Cogstate Brief Battery and Auditory Verbal Learning Test in preclinical Alzheimer’s disease and incident mild cognitive impairment: Implications for defining subtle objective cognitive impairment. Journal of Alzheimer’s Disease, 76(1), 261–274. https://doi.org/10.3233/JAD-200087

    Article  PubMed  Google Scholar 

  • Walker, K. A., Gross, A. L., Moghekar, A. R., Soldan, A., Pettigrew, C., Hou, X., … Walston, J. (2020). Association of peripheral inflammatory markers with connectivity in large-scale functional brain networks of non-demented older adults. Brain, Behavior, and Immunity87, 388–396. https://doi.org/10.1016/j.bbi.2020.01.006

  • Wechsler, D. (1987). Wechsler Memory Scale - Revised Manual. Psychological Corporation.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grant numbers U19-AG033655, P30-AG066507), and in part by the Intramural Research Program of the National Institute on Aging, NIH. The BIOCARD Study consists of 7 Cores and two Projects with the following members: (1) the Administrative Core (Marilyn Albert, Rostislav Brichko); (2) the Clinical Core (Marilyn Albert, Anja Soldan, Corinne Pettigrew, Rebecca Gottesman, Greg Pontone, Leonie Farrington, Jules Gilles, Nicole Johnson, Maura Grega, Gay Rudow, Scott Rudow); (3) the Imaging Core (Michael Miller, Susumu Mori, Tilak Ratnanather, Andrea Faria, Anthony Kolasny, Kenichi Oishi, Laurent Younes); (4) the Biospecimen Core (Abhay Moghekar, Jacqueline Darrow, Alexandria Lewis); (5) the Informatics Core (Ann Ervin, Roberta Scherer, David Shade, Jennifer Jones, Hamadou Coulibaly, Kathy Moser); (6) the Biostatistics Core (Mei-Cheng Wang, Yuxin (Daisy) Zhu, Jiangxia Wang); (7) the Neuropathology Core (Juan Troncoso, Javier Redding, Karen Fisher); (8) Project 1 (Paul Worley, Jeremy Walston), and (9) Project 2 (Mei-Cheng Wang, Yifei Sun). The authors are grateful to the members of the BIOCARD Scientific Advisory Board who provide continued oversight and guidance regarding the conduct of the study including: Drs. David Holtzman, William Jagust, David Knopman, Walter Kukull, and Kevin Grimm, and Drs. John Hsiao and Laurie Ryan, who provide oversight on behalf of the National Institute on Aging. The authors thank the members of the BIOCARD Resource Allocation Committee who provide ongoing guidance regarding the use of the biospecimens collected as part of the study, including: Drs. Constantine Lyketsos, Carlos Pardo, Gerard Schellenberg, Leslie Shaw, Madhav Thambisetty, and John Trojanowski.

The authors acknowledge the contributions of the Geriatric Psychiatry Branch of the intramural program of NIMH who initiated the study (Principal investigator: Dr. Trey Sunderland). The authors are indebted to Dr. Karen Putnam, who provided documentation of the Geriatric Psychiatry Branch study procedures and the data files received from NIMH.

Funding

This work was supported by grants from the National Institute on Aging (U19-AG033655, P30-AG066507).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Author contributions included conception and study design (CP, AS, MA), data collection and image processing (RB, KK, MB, BIOCARD Research Team), statistical analysis (YZ, MCW), interpretation of results (CP, AS, MA), drafting the manuscript or revising it critically for important intellectual content (CP, AS, MA) and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (all authors).

Corresponding author

Correspondence to Corinne Pettigrew.

Ethics declarations

Conflicts of interest

CP, AS, RB, YZ, MCW, KK and MB report no disclosures. Michael I. Miller owns Anatomy Works, with Susumu Mori serving as its CEO. This arrangement is being managed by Johns Hopkins University in accordance with its conflict of interest policies. Marilyn Albert is an advisor to Eli Lily.

Ethics approval

This study was approved by the Johns Hopkins University Institutional Review Board.

Consent to participate

Written informed consent was obtained from all participants.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettigrew, C., Soldan, A., Brichko, R. et al. Computerized paired associate learning performance and imaging biomarkers in older adults without dementia. Brain Imaging and Behavior 16, 921–929 (2022). https://doi.org/10.1007/s11682-021-00583-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00583-9

Keywords

Navigation