
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11682-021-00520-w

ORIGINAL RESEARCH

Conflict adaptation and related neuronal processing in Parkinson’s 
disease

Rea Rodriguez‑Raecke1,2   · Christoph Schrader2 · Pawel Tacik2,4 · Dirk Dressler2 · Heinrich Lanfermann3 · 
Matthias Wittfoth3

Accepted: 20 July 2021 
© The Author(s) 2021

Abstract
Non-motor symptoms like cognitive impairment are a huge burden for patients with Parkinson’s disease. We examined 
conflict adaptation by using the congruency sequence effect as an index of adaptation in 17 patients with Parkinson’s dis-
ease and 18 healthy controls with an Eriksen flanker task using functional magnet resonance imaging to reveal possible 
differences in executive function performance. We observed overall increased response times in patients with Parkinson’s 
disease compared to healthy controls. A flanker interference effect and congruency sequence effect occurred in both groups. 
A significant interaction of current and previous trial type was revealed, but no effect of response sequence concerning left 
or right motor responses. Therefore, top-down conflict monitoring processes are likely the main contributors leading to the 
congruency sequence effect in our paradigm. In both groups incongruent flanker events elicited activation in the middle 
temporal gyrus, inferior parietal cortex, dorsolateral prefrontal cortex and the insula in contrast to congruent flanker events. 
A psychophysiological interactions analysis revealed increased functional connectivity of inferior parietal cortex as a seed 
to the left prefrontal thalamus during incongruent vs. congruent and neutral stimuli in patients with Parkinson’s disease that 
may reflect compensatory facilitating action selection processes. We conclude that patients with Parkinson’s disease exhibit 
conflict adaptation comparable to healthy controls when investigated while receiving their usual medication.

Keywords  fMRI · Congruency sequence effect · Parkinson’s disease · Cognitive control · Conflict adaptation

Introduction

Parkinson's disease (PD) is the second most common neu-
rodegenerative disorder worldwide and is marked by motor 
dysfunctions as well as non-motor symptoms (Schapira 
et al., 2017). Conflict processing tasks like the flanker task 
(Eriksen & Eriksen, 1974) are used to investigate cognitive 

control and inhibitory action control (Ridderinkhof et al., 
2011). In healthy controls (HC), response times (RT) fol-
lowing congruent flanker events (C) are shorter compared to 
incongruent flanker events (IC), which is known as congru-
ency effect. In patients with PD, several studies showed fur-
ther slowing of RTs for incongruent flanker events (Claassen 
& Wylie, 2012; Wylie et al., 2005) and larger congruency 
effects (Praamstra et al., 1998, 1999). Not consistent with 
these findings, other studies could not reveal an empha-
sized congruency effect in PD (Falkenstein et al., 2006). 
This might be connected to differing target onset delays in 
the task (Cagigas et al., 2007). Further, congruency effects 
are also reported to be linked to medication status in PD 
(Djamshidian et al., 2011). In PD, facilitation effects, refer-
ring to shorter RTs following congruent flanker events 
compared to neutral flanker events (N), are not reported to 
show significant differences to HC (Falkenstein et al., 2006; 
Wylie et al., 2005). Investigating RTs as a function of spe-
cific sequences of flanker events, the congruency effect is 
reportedly reduced if a specific trial follows directly after 
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incongruent as compared to congruent trials. This effect is 
referred to as “congruency sequence effect (CSE)” (Duthoo 
et al., 2014). There are several approaches to explain this 
effect and to evaluate how much of it is actually a top-down 
process with attentional control continuously monitoring the 
processing stream (Botvinick et al., 2001), or a bottom-up 
episodic memory effect mimicking the congruency sequence 
effect (Hommel et al., 2004; Mayr et al., 2003). The conflict 
monitoring theory describes conflict adaptation as shorter 
RTs for incongruent trials following other incongruent tri-
als. Further, the concept of conflict adaptation states that a 
similar level of conflict during consecutive flanker events 
reduces RTs (Botvinick et al., 2001) while the theory of 
feature repetition states that a stimulus priming effect accel-
erates responses to repeated stimuli and repeated motor 
responses (Mayr et al., 2003; Nieuwenhuis et al., 2006). Pre-
vious studies revealed a reduced CSE in PD (Bonnin et al., 
2010; Rustamov et al., 2013) that was linked to stimulus 
repetition events. However, it is also reported that the CSE 
occurs even in the absence of feature repetitions (Duthoo 
et al., 2014; Tomat et al., 2020). By including a high “com-
patibility ratio”, i.e. higher proportion of congruent trials 
compared to incongruent trials (Zurawska Vel Grajewska 
et al., 2011) and delayed visibility of the target (Mattler, 
2003), which both are known to increase flanker interfer-
ence, we aimed to increase possible differences for HC and 
PD. We are interested in whether the CSE emerges mainly 
from top-down conflict monitoring or bottom-up feature rep-
etition, which may be disentangled by evaluating response 
sequences, and whether patients with PD differ from HC 
due to impaired conflict adaptation (Botvinick et al., 1999; 
Rustamov et al., 2013).

We hypothesize that conflict adaptation is reduced in PD 
and that patients with PD show a pronounced congruency 
effect (Egner, 2007) in contrast to HC. Further, we hypoth-
esize that facilitation effects do not differ among PD and HC 
and that activation in fronto-parietal and cingulo-opercular 
networks that are commonly engaged in stimulus–stimulus 
and stimulus–response conflicts, as it was reported in an 
Activation Likelihood Estimation (ALE) meta-analysis (Li 
et al., 2017), are reduced in conflict adaptation events in 
HC but not PD. Further, we expect to observe increased 
connectivity of conflict-processing and motor areas in PD.

Materials and methods

Participants

Thirty-five individuals (17 PD, 18 HC) were included in the 
study. All patients were seen by movement disorder spe-
cialists and met the UK Parkinson’s Disease Society Brain 
Bank (UKPDSBB) clinical diagnostic criteria (Hughes et al., 

1992) and were on their dopaminergic medication while 
participating in the study. Age did not differ significantly 
between patients with PD and HC (p = 0.07) but gender 
was not balanced (PD: 14 males, 3 females; HC: 7 males, 
11 females). In six patients the left side was reported to be 
affected most, in five cases the left side. In six cases no lat-
eralization was reported. Table 1 summarizes demographic 
and clinical data of the participants.

Experimental design and procedure

The experiment included a cognitive and health assessment 
to exclude participants suffering from depression or demen-
tia that was acquired prior to the fMRI measurement. The 
complete investigation lasted 2 h in total. Stimuli consisted 
of five horizontally arranged arrows, presented on a com-
puter screen illustrated in Fig. 1. The flanker stimulus arrays 
preceded the target arrow by 200 ms. The complete stimulus 
array remained on the screen until the participant's response 
was registered. The experiment contained 140 congruent 
events, 70 neutral events and 70 incongruent events. Presen-
tation of the stimuli was randomized, and the interstimulus 

Table 1   Demographic and clinic data of patients with Parkinson’s 
disease (PD) and healthy controls (HC)

Each patient surpassed the cut-off score of 14 of the cognitive part 
of the Parkinson Neuropsychometric Dementia Assessment (PANDA 
subscale A), indicating that none of them was demented. Clinically 
relevant depressive symptoms were absent in both groups. However, 
patients with PD reached significant higher Beck’s Depression Inven-
tory (BDI) scores compared to HC (p = 0.044). Medications are listed 
with the number of patients receiving them. All data (except Hoehn 
& Yahr stage where mean and range is depicted) are shown as mean 
and standard deviation (SD), age and disease as duration in years
n.a. not applicable, UPDRS Unified Parkinson's Disease Rating 
Scale, BDI Beck Depression Inventory, NMS-PD Non-motor Symp-
toms Questionnaire for Parkinson's Disease, PANDA Parkinson Neu-
ropsychometric Dementia Assessment

PD (n = 17) HC (n = 18)

Age 58.82 (7.13) 55.22 (3.73)
Male/Female 14/3 7/11
BDI 6.18 (4.50) 3.5 (2.95)
Hoehn & Yahr stages 1.7 (range 1–3) n.a.
UPDRS III 13.33 (7.89) n.a.
Disease duration 5.33 (3.04) n.a.
NMSS-PD 6.31 (5.02) n.a.
PANDA (cognition) 22.06 (3.92) n.a.
Levodopa 8 n.a.
MAO-inhibitor 11 n.a.
Dopamine-agonist 16 n.a.
ACE-inhibitor 3 n.a.
AChE-inhibitor 1 n.a.
Amantadine 3 n.a.
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interval was jittered. A compatibility ratio with 50% congru-
ent and 25% incongruent trials was used.

Acquisition and statistical analysis

Behavioral data

Calculations were performed using SPSS 22.0 (https://​
www.​ibm.​com/​softw​are/​uk/). Mean RTs to flanker events 
were used as outcome measures and two-tailed two sam-
ple t-tests and chi square tests in case of binary data were 
applied to compare demographic data between groups. 
Error- and post-error trials were removed from the data. 
Using an univariate 3 × 3 × 2 × 2 ANCOVA, a Previous trial 
type (C, IC, N) × Current trial type (C, IC, N) × Group (HC, 
PD) × Response sequence (repetition, alternation) analysis 
was conducted and number of errors and age were added as 
covariates. Post-hoc tests are Bonferroni-corrected. Homo-
geneity of variance was tested using the Levene-test. Data is 
reported as mean ± standard error of the mean (SEM) while 
results were considered significant with p < 0.05. Partial eta 
squared (ηP

2) is reported as a measure of effect size.

FMRI data

fMRI data was acquired using a 1.5 Tesla MR scanner 
(Siemens Avanto) with a 12-channel head coil. A T2*-
sensitive EPI sequence was applied, 34 axial slices, no 

gap, matrix size of 64 × 64 mm, voxel size of 3 × 3 × 3 mm, 
FoV of 192 × 192 mm, TR of 2 s, TE of 30 ms, and 90° 
flip angle. T1-weighted structural images were acquired 
using a MPRAGE sequence (TR 19 ms, TE 2.91 ms, flip 
angle 15°, voxel size of 1.0 × 1.0 × 1.0 mm, matrix size 
of 256 × 256 mm). Functional images were analyzed with 
SPM12 (http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/). Realignment 
parameters were added as regressors of no interest. Results 
were considered relevant with family-wise-error (FWE) cor-
rection p < 0.05 for whole-brain comparison on cluster level. 
Activated brain areas were defined using the SPM Anatomy 
toolbox (Eickhoff et al., 2007).

Psychophysiological interactions (PPI) analysis

We performed PPI analyses using the right anterior insula 
and left IPC as seed regions. Center coordinates of the Vol-
umes of interest (VOIs) were defined following the results 
of a published ALE meta-analysis from 111 neuroimaging 
studies that acquired fMRI Data during conflict process-
ing (Li et al., 2017). Spherical VOIs with a radius of 8 mm 
were created and Eigenvariates of the Blood Oxygen Level 
Dependent (BOLD) signal were extracted from the VOIs for 
each subject separately. PPI interaction terms were then cre-
ated by convolving the extracted signal with the contrast of 
conflict (IC > C). The resulting PPI interaction term, BOLD 
signal from the VOI and task condition contrast were then 
added as regressors in a first-level General Linear Model 
(GLM), creating a main effect for the PPI-interaction term. 
The resulting images were then fed into a second-level two-
sample t-test. Activation clusters obtained from the second-
level as well as PPI results were labeled using the SPM 
Anatomy Toolbox (Eickhoff et al., 2007).

Results

Behavioral data

The preceding Levene test was significant for the Previous 
trial type × Current trial type × Group × Response sequence 
ANCOVA (F (23, 601) = 1.590, p = 0.04), therefore the 
dependent variable “response time” was transformed using 
a common logarithm. In succession, the Levene test was not 
significant (F (23, 601) = 0.993, p = 0.472) and all variables 
fulfilled the assumptions.

There was a significant effect of “Current trial type” 
(F (2, 599) = 92.973, p < 0.001, ηP

2 = 0.237) and “Group” 
(F (1, 599) = 12.329, p < 0.001, ηP2 = 0.02, Fig. 2a and 
b) with slower RTs in PD (mean = 0.52) compared to 
HC (mean = 0.47). The interaction “Current trial type 
* Previous trial type” (F (4, 599) = 3.419, p = 0.009, 
ηP

2 = 0.022, Fig. 2a and b) and the covariates “error” (F 

Fig. 1   Paradigm with Flanker stimuli applied in the experiment. The 
stimuli were displayed on a computer screen (NordicNeuroLab 40″ 
4K UHD InroomViewingDevice, NordicNeuroLab AS, Norway) that 
was visible to the subjects in the MRI scanner via a mirror, using 
Presentation software (Neurobehavioral Systems, Albany, CA). The 
participants were instructed to respond to the central target arrow by 
pressing the matching left or right key on the response device (MRI 
compatible response grips, Nordic neurolab) with their left or right 
index finger. Additionally, they were asked to respond as quickly as 
possible while avoiding errors
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(1, 599) = 185.571, p < 0.001, ηP
2 = 0.237) and “age” (F (1, 

599) = 80.606, p < 0.001, ηP2 = 0.119) also provided sig-
nificance. Bonferroni-adjusted post-hoc analysis revealed a 
significant difference (p < 0.001) for all pairwise compari-
sons regarding “Current trial type” (IC and C (0.09, 95%-
CI [0.08, 0.10]), IC and N (0.04, 95%-CI [0.03, 0.05]), 
N and C (0.05, 95%-CI [0.04, 0.07])). RTs were faster 
for congruent trials (mean = 0.44) compared to incongru-
ent trials (mean = 0.54) and neutral trials (mean = 0.50). 
Concerning the significant interaction “Current trial type 
* Previous trial type”, RTs were faster in both groups if the 
current and previous trial were the same trial type, regard-
less of the motor response alternating or repeating left or 
right (Fig. 3a–d, supplementary Table 2).

No significant effect appeared for “Previous trial 
type” (F (2, 609) = 1.624, p = 0.198, ηP2 = 0.005), and 
“Response sequence” (F (1, 609) = 2.959, p = 0.086, 
ηP2 = 0.005). There was no significant Trial type * Group 
interaction (Current trial type * Group (F (2, 599) = 1.367, 
p = 0.256, ηP2 = 0.005, Previous trial type * Group (F (2, 
599) = 0.018, p = 0.982, ηP2 < 0.001, Current trial type * 
Previous trial type * Group (F (4, 599) = 0.016, p = 0.999, 
ηP2 < 0.001).

FMRI data

Investigating the differential contrast of conflict adaptation 
(IC-IC > IC-N or C), no voxels survived in a whole-group 
comparison. Therefore, we decided to further investigate 
other aspects of conflict processing and evaluate whether 
we are able to replicate previous findings regarding activated 
brain areas during conflict processing to show that our para-
digm works as expected.

The analysis revealed activation of left middle temporal 
gyrus, left IPC and bilateral midcingulate cortex (MCC) dur-
ing processing of incongruent stimuli in contrast to congru-
ent and neutral stimuli combined (Fig. 4a, supplementary 
Table 1A). Contrasting incongruent to congruent stimuli 
(Fig. 4b, supplementary Table 1B), activated areas included 
left middle temporal gyrus, left IPC, left insula and left 
DLPFC. Contrasting incongruent to neutral stimuli (Fig. 4c, 
supplementary Table 1C), left middle temporal gyrus and 

DLPFC appeared. Comparing HC to PD, increased activa-
tion of right superior temporal gyrus (assigned to IPC), a 
temporal portion of the right fusiform gyrus and right mid-
dle frontal gyrus appeared in HC compared to PD (Fig. 4d), 
Montreal Neurological Institute (MNI)-coordinates are 
shown in supplementary Table 1D.

Psychophysiological interactions (PPI) analysis

In a separate PPI analysis for the PD group with IPC as seed 
region, increased connectivity was revealed in left pars trian-
gularis and left middle temporal gyrus for conflict in contrast 
to non-conflict processing with FWE correction p < 0.05 
(Fig. 4e). No other contrast or seed revealed significant 
increases in connectivity with this threshold. Analyzing the 
HC group separately for the IPC seed and contrast of conflict 
compared to non-conflict processing, only with a lowered 
threshold increased connectivity with insular cortex was 
shown with p > 0.001 uncorrected (Fig. 4e). In PD compared 
to HC, the left IPC exhibited increased functional connectiv-
ity with the thalamus for the effect of conflict (IC > N and 
C). This result is significant with FWE-correction, p < 0.05 
(MNI: x = 0.12, y = − 10, z = 14, 1 voxel, t = 5.78, Fig. 4f). 
Lowering the threshold to p = 0.001 uncorrected, this activa-
tion expands to 24 voxels.

Discussion

A congruency sequence effect is evident in both groups 
(Figs. 2, 3), providing no evidence for our hypothesis that 
conflict adaptation is reduced in PD. This is not consistent 
with other studies reporting impaired sequence dependent 
modulation in patients with PD on medication (Fielding 
et al., 2005; Rustamov et al., 2013). Interestingly, effects 
of response sequence (motor response left or right) did not 
yield significance, but the interaction of current and pre-
vious trial type did. Therefore, the observed CSE can’t be 
explained by episodic memory retrieval (Hommel et al., 
2004), substantiating that the CSE was formerly reported to 
be present in tasks without feature repetitions (Tomat et al., 
2020), favouring conflict-induced attentional adjustment to 

Fig. 2   a Response times (in sec-
onds) to congruent, incongruent 
and neutral stimuli for healthy 
controls (HC) as a function of 
previous trial type. b Response 
times (in seconds) to congruent, 
incongruent and neutral stimuli 
for patients (PD) as a function 
of previous trial type. Depicted 
data are shown as means
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take place. Hence, top-down conflict monitoring processes 
are likely the main contributors leading to the CSE in our 
paradigm. We anticipated a pronounced congruency effect 
in PD, but equivalent facilitation effects in PD. The non-
significant interaction “Group * Current trial type” did not 
provide evidence for a larger magnitude of the congru-
ency effect with respect to the PD group. Consequently, 

facilitation effects also did not differ in PD and HC. Despite 
a general slowing in RTs in PD that was reported previously 
(Adam et al., 2012), both groups showed a flanker interfer-
ence effect, revealed by the significant effect of “Current 
trial type” and the non-significant “Group * Current trial 
type” interaction. This is not in line with several studies 
showing larger congruency effects in PD (Praamstra et al., 

Fig. 3   a Response times (in 
seconds) to congruent (C) 
and incongruent (IC) stimuli 
split into sequence repetition 
and alternation for the group 
of healthy controls (HC) as a 
function of previous trial type. 
b Response times (in seconds) 
to C and IC stimuli split into 
sequence repetition and alterna-
tion for the group of patients 
(PD) as a function of previous 
trial type. c Response times 
(in seconds) to C and neutral 
(N) stimuli split into sequence 
repetition and alternation for the 
group of HC as a function of 
previous trial type. d Response 
times (in seconds) to C and 
N stimuli split into sequence 
repetition and alternation for 
the group of patients (PD) as a 
function of previous trial type
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1998, 1999). With increasing age of the participants and 
increasing error rates also RTs increased in both groups, 
revealed by the significant effects of the covariates “Age” 
and “Error”.

Contrasting the HC to the PD group, fMRI analysis 
revealed increased activation in right IPC, DLPFC and fusi-
form gyrus that may be linked to superior performance in 
the task (Gbadeyan et al., 2016; Slotnick & White, 2013). 
Increased activation in middle temporal gyrus, DLPFC, IPC 
and insula during incongruent flanker events in contrast to 
congruent flanker events was observed (Fig. 4B). This is 
consistent with other conflict processing MRI investiga-
tions (Egner & Hirsch, 2005; Zurawska Vel Grajewska et al., 
2011). DLPFC, IPC and insula are also reported to be asso-
ciated with conflict processing in a domain-general pattern 
in a meta-analysis with ALE (Li et al., 2017). We used these 
regions as seeds in our PPI-analysis.

In PD, the PPI analysis revealed increased connectiv-
ity in regions reported to be involved in processes of top-
down cognitive control (Egner & Hirsch, 2005). Contrast-
ing PD against HC in the PPI analysis, increased functional 

connectivity of IPC and thalamus emerged in PD, which 
partly supports that connectivity of conflict processing and 
motor areas is increased in PD, because the thalamus sup-
ports motor areas in coordinating movements and is there-
fore also a target for deep brain stimulation in PD (Iorio-
Morin & Fomenko 2020).

We observed conflict adaptation in our behavioral data 
for both groups, but were unable to uncover possible neural 
correlates for this effect. We found a significant interaction 
of current and previous trial type, but without an effect of 
repetitive or alternating response sequences, arguing against 
a bottom-up priming effect in our data. The results of the 
fMRI and PPI analyses also show predominantly top-down 
processes, such as activation of the DLPFC in both groups 
during conflict processing, with HC showing stronger activa-
tions in the group comparison. In summary we can assume 
that in our paradigm, the CSE emerges mainly from top-
down conflict monitoring, and bottom-up feature repetition 
effects likely only play a minor role. In our behavioral data 
analysis, patients with PD differed from HC only in terms 
of general processing speed, and the groups did not differ in 

Fig. 4   Congruency effect (both groups): a effect of incongruent 
stimuli compared to congruent and neutral stimuli IC > CN in the 
whole group of subjects, FWE-corrected p < 0.05, k > 50; b effect of 
incongruent stimuli compared to congruent stimuli, FWE-corrected 
p < 0.05, k > 50; c effect of incongruent stimuli compared to neutral 
stimuli FWE-corrected p < 0.05, k > 50; d group difference: HC > PD, 
effect of group with PD showing decreased activation: fusiform gyrus 
(sagittal), IPC (coronal), FWE-corrected p < 0.05, k > 1. e Psycho-

physiological interactions (PPI) with seed in IPC: changes in func-
tional connectivity for conflict processing in contrast to non-conflict 
events in PD group (pars triangularis, FWE-corrected p < 0.05) and 
control group (insula, uncorrected); f PD group vs. control group; 
contrast: conflict (incongruent-congruent) PD > HC FWE-corrected 
p < 0.05, functional connectivity between the seed and this area (thal-
amus) is increased in the PD group compared to the control group
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terms of congruency effects and CSE, but in our fMRI analy-
sis, patients with PD showed reduced activation of conflict 
processing areas during the task compared to HC.

However, there are some limitations in our study. We did 
not check on differences performing with the most vs. least 
affected side of the body in PD prior to the experiment, and 
patients with PD were only tested on medication. Several 
studies pointed out, that medication may have a huge impact 
on performance in conflict tasks in PD (Djamshidian et al., 
2011; Ruitenberg et al., 2019) and that dopaminergic medi-
cation may actually modulate conflict adaptation in PD (Dut-
hoo et al., 2013). PD and HC groups also differed in terms 
of depressive symptoms, possibly contributing to further 
reducing RTs and also accuracy in our PD group (Herzallah 
et al., 2017). Previous research reported a lacking CSE in 
PD (van Wouwe et al., 2014) and basal ganglia dysfunction 
facilitates initiation of movement following irrelevant exter-
nal cues (Praamstra et al., 1998, 1999). However, inhibition 
of irrelevant flankers is likely modulated with medication 
in PD (Duthoo et al., 2013) and the CSE may also be rather 
linked to amplification of task-relevant information instead 
of inhibition of task-irrelevant information (Egner & Hirsch, 
2005). Future research should focus on controlling medica-
tion status in PD and attempting to further improve probe 
task methodology to achieve a better understanding of pos-
sible impairments of conflict-induced adaptation of cogni-
tive control in PD.

Conclusions

We confirmed equivalent facilitation effects in PD and HC 
and patients with PD differed from HC only in terms of gen-
eral processing speed. No evidence was provided for a pro-
nounced congruency effect or for reduced conflict adaptation 
in PD. The CSE probably emerges mainly from top-down 
conflict monitoring in our paradigm. In our fMRI analysis, 
we were not able to provide evidence that fronto-parietal and 
cingulo-opercular networks show reduced activation during 
conflict adaptation in PD, but we revealed that connectivity 
of conflict processing and motor-related areas is increased 
in PD.
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