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Abstract
Neuroimaging technique is a powerful tool to characterize the abnormality of brain networks in schizophrenia. However, the 
neurophysiological substrate of schizophrenia is still unclear. Here we investigated the patterns of brain functional and struc-
tural changes in female patients with schizophrenia using elastic net logistic regression analysis of resting-state functional 
magnetic resonance imaging data. Data from 52 participants (25 female schizophrenia patients and 27 healthy controls) were 
obtained. Using an elastic net penalty, the brain regions most relevant to schizophrenia pathology were defined in the models 
using the amplitude of low-frequency fluctuations (ALFF) and gray matter, respectively. The receiver operating characteristic 
analysis showed reliable classification accuracy with 85.7% in ALFF analysis, and 77.1% in gray matter analysis. Notably, 
our results showed eight common regions between the ALFF and gray matter analyses, including the Frontal-Inf-Orb-R, 
Rolandic-Oper-R, Olfactory-R, Angular-L, Precuneus-L, Precuenus-R, Heschl-L, and Temporal-Pole-Mid-R. In addition, 
the severity of symptoms was found positively associated with the ALFF within the Rolandic-Oper-R and Frontal-Inf-Orb-R. 
Our findings indicated that elastic net logistic regression could be a useful tool to identify the characteristics of schizophrenia 
-related brain deterioration, which provides novel insights into schizophrenia diagnosis and prediction.

Keywords Schizophrenia · Resting-state functional magnetic resonance imaging · Elastic net regression · Amplitude of low 
frequency fluctuation · Gray matter volume

Introduction

Schizophrenia (SZ) is a severe mental disorder characterized 
by hallucinations, delusions and cognitive impairments. So 
far, the diagnosis of SZ is mainly based on the Diagnostic 
and Statistical Manual of Mental Disorders 5 (DSM-5) or 
the International Classification of Diseases (ICD) (First, 
2013; van Os & Kapur, 2009). In recent years, neuroimaging 
technique has been widely used in studying neurobiologi-
cal changes in the brain in multiple psychiatric disorders, 
which provides useful biomarkers in pre-clinical research 
and clinical diagnosis. Compared with healthy controls 
(HC), accumulated evidence from magnetic resonance imag-
ing (MRI) studies have shown widespread brain dysfunction 
in SZ patients, including the frontal cortex, temporal lobe 
and subcortical regions (Mwansisya et al., 2017). However, 
it is still unclear about the neurophysiological substrate of 
SZ, and how to accurately diagnose and predict SZ using 
regional features derived from imaging data.
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Resting-sate functional MRI (rs-fMRI) measures intrinsic 
regional activity and functional connectivity of brain in the 
absence of external tasks. Biswal et al. found that the spon-
taneous low-frequency oscillations (LFO) of blood-oxygen-
level-dependent (BOLD) signals measured in rs-fMRI are 
physiologically meaningful (Biswal et al., 1995), and the 
LFO has been successfully applied in studying neural sub-
strates of brain dysfunction and psychiatric disorders (Wood-
ward & Cascio, 2015). Different from functional connectiv-
ity, the amplitude of low-frequency fluctuations (ALFF) 
measures the intensity of resting-state BOLD signals in the 
frequency range from 0.01 to 0.08 Hz (Zang et al., 2007). 
Previous studies have found significant changes of ALFF in 
multiple brain regions in SZ (Hoptman et al., 2010; Yu et al., 
2014). In a large and multisite sample of SZ patients, poorer 
cognitive functions were found associated with lower frac-
tional ALFF in multiple brain regions, including the anterior 
cingulate cortex, dorsolateral prefrontal cortex, and poste-
rior parietal cortex (Fryer et al., 2015). In addition to brain 
functional changes, SZ patients exhibited widespread brain 
structural changes as well, such as gray matter (GM) loss 
and white matter disconnection (Gupta et al., 2015; Najjar & 
Pearlman, 2015). Although the neuroimaging findings indi-
cate the functional and structural changes could be potential 
biomarkers for SZ diagnosis, the neural substrate of SZ is 
still under-investigated.

In recent years, there is a growing effort devoted to 
develop statistical methods for clinical diagnosis with greater 
accuracy and efficiency. Multiple linear regression and step-
wise regression approaches are widely used in neuroimaging 
data analysis to characterize the brain alterations in psy-
chiatric disorders (Agosta et al., 2012; Sheline & Raichle, 
2013). However, these classical regression models have sig-
nificant limitations in dealing with neuroimaging data. For 
example, features from rs-fMRI data are often correlated 
across different regions, and linear regression approaches 
are known to be highly sensitive to collinearity. Therefore, 
regularization techniques have been established to deal with 
multidimensional and multicollinear issues in neuroimag-
ing data, such as ridge regression and the Lasso regression 
(Bunea et al., 2011; Guo et al., 2018; Kashyap et al., 2019). 
Recently, an elastic net penalty, which combines the Lasso 
and ridge regression penalty, was developed to solve dimen-
sion reduction and feature selection problem by Zou et al. 
(Zou & Hastie, 2005). The elastic net logistic regression 
could be used to effectively differentiate patients from con-
trols, which has been used in Alzheimer’s disease and other 
brain diseases (de Vos et al., 2016; Teipel et al., 2016). Zhu 
and his colleagues applied a non-negative elastic-net based 
method to examine the altered resting-state brain functional 
connectivity in SZ patients (Zhu et al., 2018). Using sup-
port vector machine, Savio et al. compared multiple fMRI 
measures for identifying SZ in a large public database and 

reported 60%—70% accuracy with ALFF/fALFF (Savio & 
Graña, 2015). Another study applied structural MRI data for 
SZ diagnosis to compare different machine learning algo-
rithms including elastic net, and showed 75% prediction 
accuracy averaging over classifiers (Salvador et al., 2017). 
To the best of our knowledge, there has been no study apply-
ing elastic net logistic regression to comparing brain func-
tional and structural alterations in SZ using ALFF and gray 
matter measures.

In the present study, we investigated the neurobiological 
changes in the brain of female SZ patients by comparing 
brain functional and structural patterns. Elastic net logis-
tic regression analyses were applied to define SZ-related 
brain regions in ALFF and GM measures, respectively. The 
receiver operating characteristic (ROC) curves were used to 
measure the classification sensitivity and specificity of the 
models. We hypothesized that the elastic net logistic regres-
sion would successfully identify the SZ-related brain altera-
tions and discriminate between SZ and HC groups. Addi-
tionally, we speculate there would be several overlapped 
regions between ALFF and GM analysis, which may play 
key roles in the progression of SZ.

Materials and methods

Participants

Twenty-nine female SZ patients were recruited from wom-
en’s psychiatric unit at the Department of Inpatient in Shen-
zhen Kangning Hospital, and 31 female HCs were recruited 
from multiple communities in Shenzhen. All participants 
were right handed determined by the Edinburgh handed-
ness inventory. In the SZ group, all participants met the 
DSM-IV criteria for paranoid SZ according to a diagnos-
tic assessment using the Structured Clinical Interview for 
DSM-IV Patient Edition (SCID-P), and were either med-
ication-naive or unmedicated during past 4 months. In the 
HC group, participants were examined to exclude those with 
first-degree relatives having SZ, schizoaffective disorder, or 
other psychiatric disorders. The demographic information 
of each participant was collected, including age, education 
and medical history. For each SZ patients, clinical symp-
toms were recorded based on the Positive and Negative Syn-
drome Scale (PANSS). The Positive Symptoms (PANSS-P), 
Negative Symptoms (PANSS-N), and General Symptoms 
(PANSS-G) were assessed respectively by two experienced 
psychiatrists (see Table 1). All participants were free of any 
significant neurological disease, head trauma, cardiovascular 
disease, alcohol/substance abuse, pregnancy, or physical ill-
ness. The study was approved by the Ethics Committee of 
Shenzhen Kangning Hospital. Each participant was required 
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to sign a written informed consent form after a full written 
and verbal explanation of the study.

Imaging data acquisition and preprocessing

Imaging data were acquired on a 3.0 T MR system (Discov-
ery MR750 System, GE Healthcare) with an eight-channel 
phased-array headcoil. The rs-fMRI data were acquired 
using gradient-echo echo-planar imaging sequence with 
the following parameters: repetition time (TR) = 2000 ms, 
echo time (TE) = 25 ms, number of slices = 35, section thick-
ness = 3 mm, intersection gap = 1 mm; matrix = 64 × 64, and 
spatial resolution = 3.75 × 3.75 × 3  mm3. For each partici-
pant, the rs-fMRI scanning lasted 420 s with 210 volumes. 
Then structural images were acquired by using a three-
dimensional brain volume imaging sequence that covered the 
whole brain (TR = 8.2 ms, TE = 3.2 ms, matrix = 256 × 256, 
section thickness = 1 mm, 136 slices). During the entire 
scanning, participants were required to close their eyes and 
relax without falling asleep.

The functional imaging data were preprocessed using 
DPARSF (Chao-Gan & Yu-Feng, 2010) based on SPM8 
(http:// www. fil. ion. ucl. ac. uk/ spm/). For each participant, the 
first 10 volumes were excluded to obtain steady-state tissue 
magnetization. The remaining 200 volumes were corrected 
for slice timing and head motion, co-registered to their own 
structural images, and normalized to the Montreal Neuro-
logical Institute (MNI) standard space. Then the imaging 
data were resampled to 3 × 3 × 3 mm, and smoothed using 
a Gaussian kernel (FWHM = 6 mm). After preprocessing 
the functional data, 4 SZs and 4 HCs were removed from 
the formal analysis due to head motion greater than 2 mm 
or 2 degrees.

ALFF and GM analysis

After removing the linear trend, a band pass filter 
(0.01–0.08 Hz) was applied to remove non-biological sig-
nals. Ninety regions of interest (ROI) were selected for the 

following analysis based on the Automated Anatomical 
Labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002). In 
the ALFF analysis, the time courses of BOLD signal were 
converted to frequency domain using the fast Fourier trans-
form. The square root of the power spectrum was then calcu-
lated and averaged across 0.01–0.08 Hz for each voxel. The 
averaged square root was defined as the ALFF value at the 
given voxel (Zang et al., 2007). To eliminate the whole-brain 
differences of ALFF across individuals, the resulting ALFF 
map was converted to z-score by subtracting the global mean 
and dividing the global standard deviation. Next the aver-
aged ALFF value within each ROI was extracted for logistic 
regression analysis.

Voxel-based morphometry (VBM) was performed to gen-
erate a whole-brain GM map in DPARSF. The structural 
image of each participant was segmented into GM, white 
matter and cerebrospinal fluid. Then, a GM template was 
generated through an iteratively nonlinear registration using 
DARTEL, a toolbox with a fast diffeomorphic registration 
algorithm (Ashburner, 2007). The GM template was used for 
normalizing functional images to MNI space. For each par-
ticipant, averaged GM value within each ROI was extracted 
for the following analysis.

Elastic net logistic regression

The features in ALFF and GM measures were used to detect 
the alterations of brain pattern in SZ, thus we applied logis-
tic regression models with an elastic net penalty using the 
R package glmnet (https:// cran.r- proje ct. org/ web/ packa ges/ 
glmnet/ index. html) and pROC (https:// cran.r- proje ct. org/ 
web/ packa ges/ pROC/ index. html). The elastic net logistic 
regression combined ridge regression and Lasso regression 
to minimize the loss function (Zou & Hastie, 2005). In the 
model, α is the mixing parameter between ridge (α = 0) and 
Lasso (α = 1), and λ indicates the strength of regularization 
(Friedman et al., 2010). The optimal α value was obtained 
from the range 0 to 1 based on the ROC curve, and the opti-
mal λ was defined based on minimum misclassification error 
(see Fig. 1). The detailed information can be found in the 
results.

To avoid the overfitting problem, we used tenfold cross-
validation with 35 participants in the training set (15 SZs 
and 20 HCs) and 17 participants in the test set (10 SZs and 7 
HCs). In ROC analysis, the area under the curve (AUC) was 
used to assess the classification performance. Sensitivity and 
specificity were calculated to assess the goodness of predic-
tion in ALFF and GM analyses, respectively. After the most 
relevant brain regions contributing to SZ prediction were 
selected, the common regions across the two analyses were 
chosen to do the following correlation analysis. These com-
mon regions were defined as core components characterizing 
the altered brain network due to SZ pathology.

Table 1  Demographic and characteristics of subjects

Data are presented as means ± standard deviations
Abbreviations: SZ schizophrenia, HC healthy control, PANSS Positive 
and negative Syndrome Scale, P positive, N negative, G general
*p < 0.05

SZ (n = 25) HC (n = 27) p value

Age 33.3 ± 10.2 32.7 ± 10.7 0.8
Years of education 12.5 ± 3.0 14.7 ± 3.5 0.02*
PANSS-P score 28.1 ± 7.2
PANSS-N score 18.0 ± 9.4
PANSS-G score 46.5 ± 12.6
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Other statistical analysis

Other statistical analysis was conducted in SPSS22. In 
correlation analysis, one of the subjects was excluded as 
an outlier due to high PANSS scores. And log-transfor-
mation was applied to all PANSS scores to reduce data 
skewness. Then a partial correlation was used to examine 
the relationship between brain regions (ALFF and GM) 
and PANSS scores, controlled for age and education. 
Bonferroni correction for multiple comparisons was not 
applied in order to comprehensively present all possible 
correlations.

Results

Demographic analysis

The demographic data for all participants were shown in 
Table 1. There was a significant difference between SZs 
and HCs in education (p = 0.02), but not in age (p = 0.8).

Elastic net logistic regression in SZ classification

In the elastic net logistic regression model, the two param-
eters α and λ were defined according to the ROC curve for 
ALFF and GM measures, respectively. Figure 1A shows 
the relationships between the number of selected brain 
regions and AUC values. Given the maximal AUC values, 
20–30 brain regions were chosen as the best predictors in 
both ALFF (AUC = 0.85, α = 0.56) and GM (AUC = 0.70, 
α = 0.55). Eventually, 27 brain regions were chosen in ALFF 
analysis, and 26 brain regions were chosen in GM analysis 
(see Table 2). The optimal λ value was determined by the 
minimal classification errors in ALFF (λ = 0.038) and GM 
(λ = 0.043), respectively (see Fig. 1B). In addition, further 
analyses were applied to compare tenfold cross validation 
to fivefold, 15-fold and 20-fold, and showed tenfold cross 
validation giving the optimal parameters in both ALFF and 
GM analyses (Supplementary Table 1).

To examine the sensitivity and specificity of the model 
in predicting SZ, the training set shows the optimal predic-
tion thresholds c* = 0.687 with accuracy 85.7% in ALFF, 
and the optimal prediction thresholds c* = 0.534 with 

Fig. 1  The parameters in 
logistic regression were defined 
using elastic net penalty. A The 
scatterplots show the larg-
est AUC values obtained by 
using 20–30 brain regions in 
both ALFF and GM analyses. 
B The optimal λ values were 
determined by the minimum 
misclassification errors in 
ALFF (log(λ) = −1.42) and GM 
(log(λ) = −1.37), respectively. 
Abbreviations: AUC, area under 
the curve; GM, gray matter; 
ALFF, amplitude of low-fre-
quency fluctuations
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77.1% in GM (see Fig. 2A). In the test set, the prediction 
accuracy reached 82.4% (3 participants misclassified) in 
ALFF, and 76.5% (5 participants misclassified) in GM 
(see Fig. 2B). In Supplementary Fig. 1, additional analy-
ses were applied to examine whether global signal regres-
sion in ALFF analysis would influence the discrimination 
power, and showed lower but reliable accuracy (training 
set: 71.4%; test set: 76.4%).

Eight common brain regions were found in both ALFF 
and GM analyses, including the Frontal-Inf-Orb-R, Rolan-
dic-Oper-R, Olfactory-R, Angular-L, Precuneus-L, Precue-
nus-R, Heschl-L, and Temporal-Pole-Mid-R. (see Table 2 
and Fig. 3). Therefore, these common regions were used 
to examine the relationships with clinical symptoms in the 
following analysis.

Correlations with PANSS

The 8 common regions involved in both ALFF and GM mod-
els were selected to examine the relationship with PANSS 
scores. In the ALFF analysis, partial correlation analysis 
showed significant positive correlations between PANSS-
N and the Rolandic-Oper-R (r = 0.46, p = 0.031), PANSS-G 
and the Frontal-Inf-Orb-R (r = 0.55, p = 0.008), PANSS-G 
and the Rolandic-Oper-R (r = 0.43, p = 0.048) (see Fig. 4). In 
the GM analysis, there was no significant correlation found 
with PANSS scores. Since lower level of education is typi-
cal in SZ patients, it may be problematic to simply control 
for years of education in the analysis. Thus we reanalyzed 
the correlation between PANSS scores and brain regions 
without controlling for education. Consistently, significant 
positive correlations were found between PANSS-G and the 
Frontal-Inf-Orb-R (r = 0.55, p = 0.006), PANSS-G and the 
Rolandic-Oper-R (r = 0.44, p = 0.047), and marginally signif-
icant correlation between PANSS-N and the Rolandic-Oper-
R (r = 0.38, p = 0.076).

Discussion

In the current study, we investigated the brain functional and 
structural changes in female patients with SZ using elastic 
net logistic regression. By examining the altered ALFF and 
GM patterns in SZ separately, the models selected the brain 
regions most relevant to SZ, and showed reliable prediction 
accuracy in classifying patients and controls. Notably, we 
found 8 common regions in both ALFF and GM analyses, 
suggesting these regions may be core hubs in SZ-related 
network. In addition, the severity of SZ symptoms (PANSS) 
were found significantly associated with ALFF in the Fron-
tal-Inf-Orb-R and Rolandic-Oper-R.

Since the BOLD signals are highly correlated across dif-
ferent brain regions, classical linear regression models are 
not suitable for dealing with neuroimaging data. Penalized 
regression has been developed to deal with multidimensional 
and multicollinear data by using ridge regression (Hoerl & 
Kennard, 1970) and the Lasso (Tibshirani, 1996), which has 
been demonstrated reliable and efficient in statistical analy-
sis for neuroimaging data (Cui & Gong, 2018; Schouten 
et al., 2017; Scott et al., 2017). Compared with ridge and 
Lasso regression, elastic net regression not only reduces the 
dimensionality of the feature space, but also preserves mean-
ingful correlations of the original feature space. Previous rs-
fMRI studies have successfully applied elastic net penalty to 
do feature selection in characterizing psychiatric disorders, 
such as Alzheimer’s disease (Teipel et al., 2016), autism 
(Plitt et al., 2015), and major depression (Bhaumik et al., 
2017). In resting-state functional connectivity analysis, sev-
eral studies have shown that machine learning with elastic 
net penalty could be useful for developing diagnostic tools 

Table 2  Brain regions associated with SZ according to elastic net 
logistic regression

The common regions in both ALFF and GM analyses were marked 
with #
Abbreviations: SZ schizophrenia, ALFF amplitude of low-frequency 
fluctuations, GM gray matter, AAL automated anatomical labeling 
atlas, L left, R right

ALFF GM

AAL No Brain region AAL No Brain region

2 Precentral-R 1 Precentral-L
#16 Frontal-Inf-Orb-R 6 Frontal-Sup-Orb-R
#18 Rolandic-Oper-R 7 Frontal-Mid-L
19 Supp-Motor-Area-L 8 Frontal-Mid-R
20 Supp-Motor-Area-R 14 Frontal-Inf-Tri-R
#22 Olfactory-R #16 Frontal-Inf-Orb-R
24 Frontal-Sup-Medial-R #18 Rolandic-Oper-R
34 Cingulum-Mid-R 21 Olfactory-L
35 Cingulum-Post-L #22 Olfactory-R
36 Cingulum-Post-R 37 Hippocampus-L
38 Hippocampus-R 41 Amygdala-L
39 ParaHippocampal-L 42 Amygdala-R
48 Lingual-R 43 Calcarine-L
51 Occipital-Mid-L 45 Cuneus-L
58 Postcentral-R 53 Occipital-Inf-L
61 Parietal-Inf-L 56 Fusiform-R
#65 Angular-L 60 Parietal-Sup-R
#67 Precuneus-L 62 Parietal-Inf-R
#68 Precuneus-R #65 Angular-L
71 Caudate-L #67 Precuneus-L
72 Caudate-R #68 Precuneus-R
74 Putamen-R 69 Paracentral-Lobule-L
#79 Heschl-L #79 Heschl-L
80 Heschl-R 84 Temporal-Pole-Sup-R
81 Temporal-Sup-L 87 Temporal-Pole-Mid-L
85 Temporal-Mid-L #88 Temporal-Pole-Mid-R
#88 Temporal-Pole-Mid-R
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for SZ (Kim et al., 2016; Zhu et al., 2018). To the best our 
knowledge, our study applied an elastic net penalty to inves-
tigate the neural substrates of SZ by combining ALFF and 

GM measures for the first time. Our results demonstrated 
that elastic net logistic regression is a useful tool to identify 
the characteristics of SZ brain pattern in both functional 

Fig. 2  The validation of the 
models in predicting SZ. A The 
ROC curves show the accura-
cies in differentiating SZs and 
HCs in ALFF (85.7%) and GM 
(77.1%), respectively. B The 
accuracies in predicting SZ in 
test set for ALFF (3 participants 
misclassified) and GM (5 par-
ticipants misclassified) analyses. 
Abbreviations: SZ, schizophre-
nia: HC, healthy control; ROC, 
received operation curve; GM, 
gray matter; ALFF, amplitude 
of low-frequency fluctuations; 
AUC, area under the curve

Fig. 3  The brain regions 
contributing to SZ prediction in 
elastic net logistic regression. 
Twenty-seven regions were 
selected in the ALFF analysis, 
and 26 regions were selected in 
the GM analysis. There were 
8 common regions in both two 
analysis. Abbreviations: SZ, 
schizophrenia; ALFF, amplitude 
of low-frequency fluctuations; 
GM, gray matter; L, left; R, 
right
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and structural imaging data, and show reliable prediction 
accuracy in SZ classification (82.4% in ALFF, 76.5% in 
GM). Based on our results, it is worthy to validate elastic net 
regression by comparing with other approaches (e.g., Lasso) 
in future study. Notably, we also did additional analyses to 
examine the effect of global signal on prediction accuracy in 
ALFF model (Supplementary Fig. 1). After regressing out 
the global signal before calculating ALFF, the accuracies of 
identifying SZ were still reliable (training set: 71.4%; test 
set: 76.4%) in elastic net regression model. We speculated 
the lower accuracy was probably due to loss of diagnostic 
information in global signal. Consistently, previous studies 
have reported that removing global signal may lose valu-
able components such as potential diagnostic information in 
schizophrenia (Hahamy et al., 2014; Liu et al., 2017; Yang 
et al., 2014). Thus it should be cautious to deal with global 
signal and interpret the result in future fMRI research.

In the ALFF and GM analyses, 20–30 regions were 
selected to obtain optimal prediction accuracy, including 
the frontal regions, subcortical and temporal structures. 
Those regions are involved in several resting state brain 
networks, including the default mode network (DMN), 
executive control network and cortical-striatal network, 
which have been found significantly disrupted in SZ (Horga 
et al., 2016; Woodward et al., 2011). More importantly, 8 
common regions were found in both of the two analyses, 
including the Frontal-Inf-Orb-R, Rolandic-Oper-R, Olfac-
tory-R, Angular-R, Precuneus-L, Precuneus-R, Heschl-L, 
and Temporal-Pole-Mid-R. Guo et al. found decreased GM 
in the Frontal-Inf-Orb-R in first-episode SZ, which was 
associated with poorer cognitive functions (X. Guo et al., 
2014). Another study reported significant neuroplasticity in 
the orbitofrontal cortex in SZ after cognitive enhancement 
therapy, suggesting a critical role of orbitofrontal cortex in 
SZ pathology (Wojtalik et al., 2015). In line with these find-
ings, our study also showed the functional and structural 

changes of Frontal-Inf-Orb-R were crucial for differentiating 
SZs from HCs, and the ALFF value was positively associ-
ated with PANSS scores. Our results also showed the ALFF 
in the Rolandic-Oper-R associated with SZ pathology, sug-
gesting the abnormality of integrating intrinsic and extrinsic 
signals in SZ. Consistently, previous study has reported that 
the Rolandic operculum was closely related to exterocep-
tive-interoceptive signals integration, which are necessary 
for self-consciousness (Blefari et al., 2017). The angular 
gyrus and precuneus have been found as core hubs in the 
DMN, which are involved in multiple cognitive functions. 
Taken together, converging evidence has shown that the 
DMN activity is enhanced in SZ patients, which is probably 
linked to the symptoms of ‘thought disorder’ in SZ (Hunt 
et al., 2017; Littow et al., 2015). In addition, our study also 
reported the significant contributions of the Olfactory-R, 
Heschl-L and Temporal-Pole-Mid-R in classifying SZ and 
controls, suggesting a possible explanation for perceptual 
distortions in SZ, such as olfactory and auditory hallucina-
tions (Chyzhyk et al., 2015; Kiparizoska & Ikuta, 2017).

Several limitations need to be admitted in the present 
study. First, although the elastic net logistic regression pro-
vided promising accuracies in differentiating SZs from HCs, 
it should be cautious to interpret the findings using cross-
validation in a small sample size (Poldrack et al., 2020). 
Varoquaux argued that the observed errors of cross-valida-
tion in small samples are often underestimated (Varoquaux, 
2018). To confirm the model parameters were suitable, our 
further analyses showed tenfold cross validation giving opti-
mal parameters compared with fivefold, 15-fold and 20-fold 
(Supplementary Table 1). However, a larger sample size is 
required to validate the findings in future research. Second, 
we only recruited female SZ patients in the current study. 
Although a number of uncertainties remain about gender 
differences in SZ, some previous findings have reported 
gender differences in neurocognitive functions and brain 

Fig. 4  The scatterplots show the relationships between ALFF and 
PANSS scores in SZ patients. PANSS-N was found positively cor-
related with the Rolandic-Oper-R, and PANSS-G was found posi-
tively correlated with the Rolandic-Oper-R and Frontal-Inf-Orb-R. 

Abbreviations: SZ, schizophrenia; ALFF, amplitude of low-frequency 
fluctuations; PANSS-N, PANSS negative scores; PANSS-G, PANSS 
positive scores
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networks in SZ (Mendrek & Mancini-Marie, 2016). There-
fore, future research need to examine whether our findings 
can be extended to male SZ patients. Third, previous studies 
have shown that SZ patients represent significant cognitive 
decline compared with HC. Thus more cognitive and behav-
ioral assessments should be involved to explain the impact 
of SZ pathology, such as the Montreal Cognitive Assess-
ment (MOCA) and Mini-Cog test (Tsoi et al., 2015). Lastly, 
some additional parameters, such as smoking and antisocial 
personality, may play an important role in analyzing resting-
state brain patterns (Kashyap et al., 2020), which need be 
considered in selecting healthy control populations in the 
future studies.

Conclusion

In summary, our study showed that the elastic net logistic 
regression could be a useful tool to identify the character-
istics of SZ-induced brain deterioration for the first time. 
The common regions in both ALFF and GM analyses sug-
gest that multiple brain regions play core roles in SZ-related 
brain networks. Our findings may help better understand the 
brain functional and structural changes in SZ, which pro-
vides novel insights into SZ diagnosis and prediction.
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