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Abstract
D2-like dopamine receptors in animals and humans have been shown to be linked to impulsive behaviors that are highly 
relevant for several psychiatric disorders. Here, we investigate the relationship between the fronto-striatal  D2/D3 dopamine 
receptor availability and response inhibition in a selected population of healthy OPRM1 G-allele carriers. Twenty-two 
participants successively underwent blood-oxygen level dependent functional magnetic resonance imaging (fMRI) while 
performing a stop-signal task and a separate positron emission tomography (PET) scan. Striatal and extrastriatal  D2/D3 dopa-
mine receptor availability was measured using the radiotracer  [18F]fallypride. Caudate  D2/D3 dopamine receptor availability 
positively correlated with stopping-related fronto-striatal fMRI activation. In addition, right prefrontal  D2/D3 dopamine 
receptor availability correlated positively with stopping-related striatal fMRI BOLD signal. Our study partially replicates 
previous findings on correlations between striatal  D2/D3 dopamine receptor availability and response inhibition in a popula-
tion selected for its genetic determination of dopamine response to alcohol and as a modulator of impulse control via the 
endogenous opioid system. We confirm the important role of  D2/D3 dopamine receptor availability in the fronto-striatal 
neural circuit for response inhibition. Moreover, we extend previous findings suggesting that dopamine receptor availability 
in the right inferior frontal cortex, a crucial region of the stopping network, is also strongly associated with stopping-related 
striatal fMRI activity in healthy OPRM1 G-allele carriers.

Keywords Right inferior frontal gyrus · [18F]fallypride positron emission tomography · Striatum · OPRM1 gene · Stop-
signal task

Introduction

Impulsive behavior is of high clinical relevance in psychi-
atric disorders such as substance use disorders, attention-
deficit/hyperactivity syndrome or personality disorders Philippe Pfeifer and Alexandra Sebastian contributed equally to 

this work.
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(Chamberlain & Sahakian, 2007; Robbins et al., 2012; 
Sebastian et  al., 2012, 2013, 2014; Stahl et  al., 2014; 
Turner et al., 2017). In the past years, response inhibi-
tion has come into focus of researchers as one component 
of impulsivity and has been established as a distinct and 
important neurocognitive function. Response inhibition is 
the ability to suppress a planned action or stop a repeat-
edly dysfunctional behavior (Bari & Robbins, 2013) and is 
often studied using the stop-signal task (SST) in animals 
as well as in humans (Logan & Cowan, 1984; Verbruggen 
& Logan, 2008). Applying functional magnetic resonance 
imaging (fMRI) studies, brain regions like right inferior 
frontal cortex (IFC) and anterior insula, pre-supplemen-
tary motor area (pre-SMA), striatum, and the subthalamic 
nucleus have been identified as being critically involved 
in implementing response inhibition (e.g., Aron, 2011; 
Chambers et al., 2009; Sebastian et al., 2016). Specifically, 
the fronto-basal-ganglia pathway has been implicated in 
stopping a response (Aron & Poldrack, 2006; Aron et al., 
2014; Chen et al., 2020; Sebastian et al., 2013, 2016).

Addiction is one clinical field in which disturbed inhibi-
tory control via fronto-striatal brain circuits plays a crucial 
role (Morein-Zamir & Robbins, 2015). Furthermore, there is 
evidence that both, impulsivity as well as addictive behaviors 
can be linked to a dysfunctional dopaminergic system (Bosker 
et al., 2017; Koob & Volkow, 2010). Pharmacogenetic stud-
ies provide links between fronto-striatal dopamine function 
and response inhibition (Colzato et al., 2009; Forbes et al., 
2009). Neuroimaging studies revealed positive associations 
between striatal  D2/D3 receptor availability and impulsivity 
in drug users (Buckholtz et al., 2010; Kohno et al., 2016). 
Dopaminergic neurotransmission has been shown to play an 
important role in the modulation of SST performance in rats 
(Bari et al., 2011). In humans, previous studies revealed asso-
ciations between stop signal reaction time (SSRT), a measure 
of stopping latency, and dopamine release in frontal and pre-
central cortical regions as well as interactions of the striatal 
dopamine system and motor inhibition ability (Albrecht et al., 
2014; Lorenz et al., 2015). In a behavioral study, SSRT was 
negatively correlated with  D1- and  D2-type dopamine Binding 
Potential  (BPND), specifically in the dorsal but not the ventral 
striatum. The effect of  D2-type  BPND on SSRT appeared to 
specifically relate to response inhibition while the relation-
ship between  D1-type  BPND and SSRT seemed to represent 
a general motor effect (Robertson et al., 2015). To the best 
of our knowledge there is only one previous study in humans 
that used fMRI and Positron Emission Tomography (PET) to 
investigate the correlation between dopamine receptor avail-
ability and the neural networks of response inhibition. In line 
with Robertson et al. (2015), Ghahremani et al. (2012) reported 
that striatal dopamine  D2/D3 receptor availability negatively 
correlated with stopping latency (i.e., SSRT). In addition, 
dopamine  D2/D3 receptor availability positively correlated with 

inhibition-related fMRI activation in a fronto-striatal neural 
circuitry. Prefrontal clusters included ventrolateral prefrontal 
cortices and anterior insulae (Ghahremani et al., 2012), regions 
typically involved in response inhibition (e.g., Aron, 2011; 
Aron et al., 2014; Sebastian et al., 2013, 2016, 2017). Sev-
eral lines of research thus provide ample evidence for a close 
link between fronto-striatal dopamine function and response 
inhibition.

In the present study we assess the relationship of fMRI 
BOLD signal during response inhibition and  D2/D3 dopa-
mine receptor availability in healthy male subjects. To this 
end, participants completed an SST during fMRI.  D2/D3 dopa-
mine receptor availability was measured using the radiotracer 
 [18F]fallypride in a separate PET session. Findings on  D2/D3 
dopamine receptor availability in these subjects have been 
previously published elsewhere (Pfeifer et al., 2017). All par-
ticipants of the study were originally selected for the A118G 
allele of the OPRM1 gene (rs1799971) with the aim to study 
alcohol effects in this genotype. Interestingly, preclinical and 
clinical studies also found that this genotype may modulate 
impulse control via the endogenous opioid system (Olmstead 
et al., 2009; Wiskerke et al., 2011; Ray & Hutchison, 2012).

In the light of the replicability crisis in the field of func-
tional neuroimaging conducting replication studies is strongly 
required (Munafò et al., 2017). Therefore, using a similar study 
design as Ghahremani et al. (2012) the main aim of the present 
study was to replicate previous findings on  D2-like dopamine 
receptors and their relationship to fronto-striatal brain acti-
vation in the context of impulse control. Given the findings 
by Ghahremani et al. (2012) and Robertson et al. (2015) we 
hypothesized to find a negative correlation of striatal  D2/D3 
receptor availability with stopping latency (i.e., SSRT). More-
over, we expected striatal  D2/D3 receptor availability to posi-
tively correlate with fronto-striatal fMRI BOLD signal during 
response inhibition. In order to extend previous findings, we 
not only assessed the relationship of striatal  D2/D3 receptor 
availability but also of prefrontal  D2-like dopamine receptors 
with stopping-related brain activity.

Methods

Study design

For the present study all participants underwent three 
study visits: First, we assessed the medical history and 
conducted several basic medical tests (i.e., clinical exami-
nation, blood sample analysis, and drug urine screening 
test). On the second study visit, the participants under-
went a structural MRI and performed an SST during fMRI. 
Third,  D2/D3 dopamine receptor availability was measured 
by PET at a separate study visit.
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Ethical approval

Study procedures were in line with the Helsinki Decla-
ration. Ethical approval was obtained by the local ethics 
committee of Rhineland Palatinate in Mainz, the radiation 
protection authorities (Bundesinstitut für Strahlenschutz—
BfS) and the Federal Health Administration (Bundesinsti-
tut für Arzneimittel und Medizinprodukte-BfArM).

Participants

The participants for the present investigation were 
recruited as part of a larger study (Deutsche Forschun-
gsgemeinschaft (DFG) – Project Number 126873260; 
https:// gepris. dfg. de/ gepris/ proje kt/ 12687 3260). Further 
study results have been reported in previous publications 
(Pfeifer et al., 2015, 2017). Participants were recruited via 
public advertisement. All recruited participants were geno-
typed for the OPRM1 allele and only male 118G allele-
carriers between 21 and 45 years of age who were non-
smokers were included for data acquisition in this study. In 
total, 24 participants were included for the PET and fMRI 
measurements. Participants were financially compensated. 
Exclusion criteria were any actual or lifetime psychiat-
ric and substance use disorder as well as current use of 
any psychotropic drugs. All participants were screened 
for psychiatric disorders with a standard psychiatric inter-
view (“Diagnostic System for Experts” DIA-X; Wittchen 
& Pfister, 1997). Written informed consent was obtained 
from all participants prior to participation.

Two participants were excluded from all analyses (i.e., 
behavioral and neuroimaging) for not following task 
instructions resulting in a final sample of 22 participants. 
These participants had a mean age of 26.55 (SD = 4.62, 
range: 22–37) years. The IQ, based on the multiple-choice 
vocabulary test (MWT-B; Lehrl et al., 1995), was 105.50 
(± 8.06, range: 96–129). On average, 8.31 days (SD = 1.15, 
range 3–21 days) elapsed between the fMRI and the sub-
sequent PET measurement.

Genotyping

The rs1799971 genotype was determined by pyrosequencing 
as described in a previous publication (Pfeifer et al., 2015).

Stop‑signal task

We employed the same experimental paradigm that was 
used in Sebastian et al. (2013). The task was programmed in 
Presentation software (version 13.0, www. neuro bs. com). To 
ensure that the study participants understood the instructions 
of the task and to get familiarized with it, a brief training 

session was conducted prior to the scanning session. At the 
scanning session all participants accomplished three runs 
of the SST.

The SST consisted of a go condition (75%) and a stop 
condition (25%). A white fixation circle in the center of the 
screen was presented at the beginning of each trial (500 ms). 
Within this circle, a white arrow was presented for a maxi-
mum of 1000 ms or until a button press was performed. 
Participants were instructed to respond with a button press 
corresponding to the pointing direction of the arrows. In 
the stop condition, a stop-signal was presented after a vari-
able stop-signal delay (SSD) following the display of the 
arrow. The stop-signal consisted of a color change of the 
circle from white to blue. Participants were instructed to 
attempt to stop the response in case of a stop-signal. The 
SSD was adapted to the participants' performance following 
a staircase procedure to yield a probability of 50% of cor-
rect inhibitions per run. In the beginning of a run, the SSD 
was 220 ms. If the response was not inhibited, the SSD was 
decreased by 50 ms in the next stop trial with a minimum 
SSD of 70 ms. If a response was inhibited correctly, the blue 
circle and the arrow remained on the screen and the SSD was 
increased by 50 ms in the next stop trial. The length of the 
interstimulus interval was jittered with a mean duration of 
1000 ms and a standard deviation of 292 ms. A run consisted 
of 128 stimuli that were presented in a pseudo-randomized 
order (Sebastian et al., 2012, 2013).

MRI data acquisition

Images were acquired on a Magnetom Trio syngo 3  T 
system (Siemens, Germany) equipped with a 12-channel 
head coil for signal reception. Stimuli were projected on a 
screen at the foot end of the scanner bore and were viewed 
with the aid of a mirror mounted on the head coil. Foam 
padding was used to limit head motion within the coil. 
A high-resolution T1-weighted anatomical data set was 
obtained using a 3D magnetization prepared rapid acqui-
sition gradient echo (MPRAGE) sequence for registration 
purposes (TR = 1,900 ms, TE = 2.52 ms, flip angle = 9°, 
FOV = 256 mm, 176 sagittal slices, voxel size 1 × 1 × 1  mm3). 
Functional MRI images were obtained using T2*-weighted 
echo-planar imaging (EPI) sequence (TR = 2,200  ms, 
TE = 30 ms, flip angle = 90°, FOV = 192 mm, 36 slices, 
voxel size = 3 × 3 × 3  mm3).

PET data acquisition

PET scans were acquired under resting conditions with 
closed eyes by means of a Siemens ECAT EXACT scanner 
(CTI, Knoxville, Tenn.) with an axial intrinsic resolution of 
4.3 mm FWHM operating in the three-dimensional mode. 
Images were reconstructed by filtered back projection using 
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a ramp filter and a Hamming filter (4 mm width). To cor-
rect for tissue attenuation, transmission scans were acquired 
with three rotating  [68Ge]/[68 Ga] sources before injection of 
 [18F]fallypride. Data acquisition comprised 39 time frames 
initiated immediately after the bolus intravenous injection 
of a mean of 171.4 ± 16.8 MBq of  [18F]fallypride. The bin-
ning of the data increased progressively from 20 s to 10 min, 
resulting in a total scanning time of 180 min. The study 
participants remained in the PET scanner for the whole data 
acquisition time without a break (Pfeifer et al., 2017).

PET Image analysis

The binding potential  (BPND) was calculated on a vox-
elwise basis using the simplified reference tissue model 
(SRTM) of Lammertsma and Hume (1996) (please see 
also Pfeifer et al., 2017). The cerebellum was chosen 
as a reference region since it is generally considered 
to be free of dopamine receptors. Prior to statistical 
analysis, the binding potential images were spatially 
normalized into Montreal Neurological Institute space 
(McGill University, Montreal) to remove intersubject 
anatomical variability. For this purpose, integral images 
(sum of frames between 4 and 8 min after infusion) 
were calculated and spatially normalized by using 
SPM8 routines (Wellcome Department of Cognitive 
Neurology, London) and a ligand-specific  D2 template. 
Subsequently, transformation parameters of normaliza-
tion were applied to respective individual  BPND images 
(Pfeifer et al., 2017). For voxel-wise statistical analysis 
the spatially normalized  BPND images were smoothed 
with an isotropic Gaussian filter of 12 mm at full width 
at half maximum (FWHM). The  BPND was calculated on 
Volumes-of-Interests (VOI) by applying a VOI-template 
that we used in a preceding publication (Landvogt et al., 
2010). Since  BPND in the left and right regions of the 
given striatal VOIs (supplemental Fig. 1) were highly 
correlated (Caudate: r = 0.921, p < 0.001, 95% CI: 
0.816–0.967; Putamen: r = 0.891, p < 0.001, 95% CI: 
0.752–0.954) the average of the left and right portion 
of each VOI was used for correlation analyses. For the 
IFC we used the inferior frontal gyrus of the Hammers 
brain atlas (Heckemann et al., 2006). We chose to use 
the right IFC only since in particular the right IFC is 
implicated in stopping (Aron et al., 2014; Cieslik et al., 
2015; Sebastian et al., 2013, 2016).

fMRI image preprocessing

SPM 8 (http:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm8), 
running with Matlab 8.2 (Mathworks Inc., Natick, MA) 
was used to conduct all image preprocessing and statistical 

analyses. Images were screened for motion artifacts prior 
to data analysis. The first five functional images of each 
run were discarded to allow for equilibrium effects. Sev-
eral preprocessing steps were performed on the remaining 
functional images. First, images were realigned to the first 
image of the first run, using a six degrees-of-freedom rigid 
body transformation. The realigned functional images were 
co-registered to the individual anatomical T1 image using 
affine transformations. Subsequently, anatomical scans were 
segmented using the VBM8 toolbox (r435; http:// dbm. neuro. 
uni- jena. de/ softw are/). Deformation field parameters for 
non-linear normalization into the stereotactic Montreal Neu-
rological Institute (MNI) space were derived from the DAR-
TEL approach (Ashburner, 2007) implemented in VBM8 
(using the provided MNI template of the IXI-550 cohort).

fMRI single‑subject analysis

A linear regression model (general linear model) was fitted 
to the fMRI data from all participants. Significant hemo-
dynamic changes for each condition were assessed using 
t-statistics after convolution with a canonical hemodynamic 
response function. Five events were modeled: correct and 
incorrect reactions as well as omissions in the go condi-
tion and correct and incorrect reactions in the stop condi-
tion (successful and unsuccessful stop trials, respectively). 
Instruction and fixation cross were modeled as regressors of 
no interest. Head-motion parameters and their first deriva-
tives as well as  1st to  4th order polynomial regressors of slow 
drift were entered as nuisance regressors. Prior to model 
estimation a standard 128 s high-pass filter was applied to 
the data and the model. As preprocessing and first-level anal-
yses were conducted in individual space, resulting contrast 
images were transformed into stereotactic MNI space using 
DARTEL deformation fields and averaged across runs. Spa-
tially normalized images were resampled to a resolution of 
1.5 × 1.5 × 1.5  mm3 and smoothed with an isotropic Gaussian 
kernel with a full width at half maximum of 9 mm.

fMRI group analysis

To assess stopping-related BOLD activity on second level, 
the parameter estimates resulting from the first level contrast 
'successful stop > go' were entered into a second level, ran-
dom effects group analysis using a one sample t-test design.

To assess correlations of stopping-related BOLD activity with 
 BPND, we used both voxelwise whole-brain as well as VOI-based 
approaches. On a whole-brain level, we subjected  BPND within 
the right IFC, caudate and putamen to separate multiple regres-
sion analyses using the fMRI contrast 'successful stop > go'. All 
fMRI group results were thresholded at p < 0.05 corrected for 
multiple comparisons (family wise error, FWE, correction at 
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cluster level using a height threshold of p < 0.001). The SPM 
anatomy toolbox 2.2b (Eickhoff et al., 2005, 2007) was used to 
allocate significant clusters of activation to anatomical regions.

For VOI-based correlations, following Buckholtz et al. 
(2010) we calculated the first eigenvariate of the parameter 
estimate for the contrast 'successful stop > go' for each subject 
for the following anatomically defined VOIs: the right inferior 
frontal gyrus (IFG) pars opercularis from the Harvard–Oxford 
atlas included in FSL (Desikan et al., 2006) and the left and 
right striatum VOIs from the probabilistic atlas from Keuken 
et al. (2014) (supplemental Fig. 1). All probabilistic masks were 
thresholded at 10%. We then used JASP (version 0.11.1; JASP 
team, 2018, https:// jasp- stats. org) to compute Pearson correla-
tions with  D2/D3 receptor availability in right IFC, caudate and 
putamen. Based on previous findings (Ghahremani et al., 2012) 
we expected  D2/D3 receptor availability to positively correlate 
with fronto-striatal fMRI data. We thus performed 1-sided tests 
for a positive correlation with a Bonferroni-corrected alpha 
threshold of p < 0.05/9 = 0.006.

Behavioral data analyses

Behavioral data (RT and accuracy) were collected while par-
ticipants performed the SST in the scanner. Measures of interest 
were mean RT on correct go trials, percentage of unsuccessful 
stop trials, and percentage of go omission errors. SSRT was 
computed using the integration method with replacement of 
go omissions with the maximum go RT following the recom-
mendations of Verbruggen et al. (2019). Since previous studies 
reported a negative correlation of striatal  BPND and stopping 
performance (i.e., SSRT) (Ghahremani et al., 2012; Robertson 
et al., 2015) we computed one-tailed Pearson correlations with 
a Bonferroni-corrected alpha threshold p < 0.05/3 = 0.017 for 
correlations with SSRT. To exploratory test for a relationship 
of fronto-striatal  BPND and other behavioral measures of the 
SST (i.e., go RT and omission errors) we computed two-tailed 
Pearson correlations with a Bonferroni-corrected alpha thresh-
old p < 0.05/6 = 0.008. For all behavioral data analyses, we used 
JASP (version 0.11.1; JASP team, 2018, https:// jasp- stats. org).

Results

Behavioral results

Table 1 summarizes the behavioral results of the stop-signal 
task. The participants responded correctly on 98.56% of the go 
trials and successfully inhibited their response in 49.67% of the 
stop trials. Those results indicate that participants adhered to 
task instructions and that the staircase procedure worked suc-
cessfully. SSRT and mean Go RT values corresponded to pre-
vious findings in the literature in comparable samples (Boehler 
et al., 2010; Ghahremani et al., 2012).

Correlation of  BPND and task performance

D2/D3 striatal receptor availability  (BPND) and its correlations 
with SST performance parameters are given in Fig. 1.  D2/D3 
striatal receptor availability in putamen, caudate and right IFC 
did not significantly correlate with stopping latency as indexed 
by the SSRT. Exploratory tests revealed a Bonferroni-corrected 
significant correlation of  D2/D3 caudate receptor availability 
with go omission errors. We observed no further Bonferroni-
corrected significant correlations.

fMRI results

Contrasting 'successful stop > go' resulted in activation typically 
associated with response inhibition in the SST. The activation 
pattern comprised significant clusters in a bilateral, but right 
lateralized fronto-parietal network. Prefrontal activation was 
mainly located in bilateral IFG/ anterior insula and pre-SMA 
(Fig. 2). Results are summarized in Table 2.

Voxel‑wise analysis

Whole-brain voxel-wise multiple regression analysis 
using the fMRI contrast 'successful stop > go' revealed a 
significant positive correlation of  D2/D3-receptor avail-
ability in the caudate with one cluster covering the left 
rolandic operculum, caudate and thalamus and with the 
superior frontal gyrus (Fig. 3a; Table 3).  D2/D3-receptor 
availability in the right inferior frontal cortex correlated 
positively with BOLD signal in the left striatum and cal-
carine gyrus (Fig. 3b; Table 3) during successful stopping. 
 D2/D3-receptor availability in the putamen did not correlate 
with BOLD signal during successful stopping. There were no 
negative correlations between  D2/D3 receptor availability in 
any region of interest with 'successful stop > go' BOLD signal.

Table 1  Stop-signal task performance

Percentage error trials (i.e., stop respond, go omission, go choice 
errors) was estimated by dividing the number of unsuccessful stop,go 
omission or choice errors on go trials by the total number of the 
respective trial type
SSD stop-signal delay, SSRT stop-signal reaction time

Mean SD

RT correct go (ms) 441.23 85.82
RT unsuccessful stop (ms) 406.00 79.03
SSRT (ms) 199.77 53.11
SSD 224.09 110.28
% unsuccessful stop 50.69 3.46
% go omissions 0.68 1.11
% go choice errors 0.76 1.18
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VOI‑based correlations

After applying Bonferroni correction, we observed a margin-
ally significant positive correlation of  BPND in caudate with 
BOLD signal extracted from the right striatal VOI during 
successful stopping (i.e., with 'successful stop inhibit > go' 
fMRI activity). Furthermore,  BPND in right IFC correlated 

positively with bilateral striatal BOLD signal during suc-
cessful stopping (Fig. 4). For none of the VOIs a Bonfer-
roni-corrected significant correlation of  BPND with right IFG 
fMRI BOLD signal was observed.

Discussion In the present study we sought to replicate pre-
vious findings on the relationship of  D2/D3 receptor avail-

Fig. 1  Correlations between binding potential  (BPND) in right infe-
rior frontal cortex (IFC), putamen and caudate with performance in 
the stop-signal task (i.e., stop-signal reaction time (SSRT), go reac-

tion time (RT) and % omission errors on go trials). * significant for 
Bonferroni-corrected alpha threshold p < 0.05/6 = .008
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Fig. 2  Activation maps for the 
contrast 'successful stop > go'. 
Maps are thresholded at 
pFWE < 0.05, (correction at 
cluster level, cluster forming 
threshold of p < 0.001 uncor-
rected, min. cluster extent 
k = 1616 voxel). The color scale 
represents t-scores

Table 2  Activation foci for 
the fMRI contrast 'successful 
stop > go'

Local maxima of brain activations during 'successful stop > go' in Montreal Neurological Institute (MNI) 
x-, y-, and z-coordinates with associated Z-score (pFWE < 0.05, cluster level corrected) and cluster extent in 
number of voxel (k). Coordinates of local sub-peaks within a cluster are shown indented
ACC  anterior cingulate cortex, MCC middle cingulate cortex, IFG inferior frontal gyrus, R right, L  left

Region side x y z Z p k

Insula Lobe R 36 17 -9 6.34 .001 13,696
IFG (p. Opercularis) R 44 8 27
Middle Orbital Gyrus R 26 44 -18
IFG (p. Triangularis) R 48 29 9
Middle Frontal Gyrus R 42 36 18
Olfactory cortex R 17 12 -14
Insula Lobe L -33 18 -9 5.96 .001 5573
IFG (p. Orbitalis) L -39 47 -17
Middle Orbital Gyrus L -20 54 -18
SuperioOrbital Gyrus L -17 36 -26
Posterior-Medial Frontal Gyrus R 12 17 65 6.16 .001 10,125
ACC L -2 27 30
Superior Frontal Gyrus R 18 5 71
Posterior-Medial Frontal L -2 12 53
MCC R 11 18 41
Superior parietal lobule L -62 -51 51 4.71 .002 1616
Middle Temporal Gyrus L -50 -53 -2
SupraMarginal Gyrus L -56 -51 27
Inferior Occipital Gyrus R 36 -66 -12 6.71 .001 26,614
Middle Occipital Gyrus R 33 -90 3
Superior Temporal Gyrus R 60 -44 23
Fusiform Gyrus R 35 -75 -14
Calcarine Gyrus R 20 -93 -5
Middle Temporal Gyrus R 51 -27 -11
Fusiform Gyrus L -32 -62 -17 6.71 .001 13,232
Middle Occipital Gyrus L -21 -99 3
Inferior Occipital Gyrus L -33 -87 -12
Cerebellum (VI) L -38 -47 -29
Cerebellum (Crus 1) L -26 -68 -30
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ability and stopping latency and associated fronto-striatal 
brain activation in the context of impulse control in a sam-
ple of healthy OPRM1 G-allele carriers. In contrast to pre-
vious findings (Ghahremani et  al., 2012; Robertson et  al., 
2015) we did not observe a significant negative relationship 
of stopping latency (i.e., SSRT) and fronto-striatal  D2/D3 
receptor availability. Yet, fronto-striatal  D2/D3 dopamine 
receptor availability significantly correlated positively with 

BOLD activity during successful stopping as expected. 
More specifically, whole brain voxel-wise multiple regres-
sion analyses revealed that  D2/D3 receptor availability in 
the caudate was significantly associated with stopping-
related prefrontal and caudate fMRI activity. In addition, we 
assessed the relationship of  D2/D3 receptor availability in 
the right IFC, since the right IFC has been shown to be cru-
cial for stopping (Aron et al., 2014; Sebastian et al., 2016, 

Fig. 3  Activation maps for whole-brain voxel-wise multiple regres-
sion analysis using the fMRI contrast ' successful stop > go' and bind-
ing potential  (BPND) in the caudate (A) and right inferior frontal cor-
tex (B) as covariates.  BPND in the caudate correlated positively with 
brain activity in the left rolandic operculum, striatum and thalamus 
and with the superior frontal gyrus during successful stopping.  D2/

D3-receptor availability in the right inferior frontal cortex correlated 
positively with BOLD signal in the left striatum and calcarine gyrus 
during successful stopping. Maps are thresholded at pFWE < 0.05, 
(correction at cluster level, cluster forming threshold of p < 0.001 
uncorrected, min. cluster extent for a: k = 989 voxel and b: k = 772 
voxel). The color scale represents t-scores

Table 3  Activation foci 
resulting from whole-brain 
voxel-wise correlations of  D2/
D3-receptor availability  (BPND) 
with 'successful stop > go'  
fMRI activation

Local maxima of brain activations in Montreal Neurological Institute (MNI) x-, y-, and z-coordinates with 
associated Z-score (pFWE < 0.05, cluster level corrected) and cluster extent in number of voxel (k). Coordi-
nates of local sub-peaks within a cluster are shown indented
BPND binding potential, R right, L left

Region side x y z Z p k

Caudate (mean)  BPND correlation with 'successful stop > go' BOLD signal
Rolandic Operculum L -36 6 14 4.50  < .001 3139
Caudate Nucleus L -9 -8 18
Thalamus R 3 -18 9
Thalamus R 14 -11 3
Superior Frontal Gyrus R 17 60 18 4.31 .018 989
Superior Frontal Gyrus L -15 68 15
right inferior frontal cortex  BPND correlation with ' successful stop > go' BOLD signal
Putamen L -21 14 9 4.15 .011 1111
Caudate Nucleus L -6 5 9
Calcarine Gyrus L -6 -71 12 3.88 .047 772
Lingual Gyrus L -9 -77 -2
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2017).  D2/D3 receptor availability in the right IFC was sig-
nificantly associated with striatal BOLD signal during suc-
cessful stopping. VOI-based analyses largely confirmed the 
whole-brain results. We observed a highly significant posi-
tive correlation of fMRI parameters extracted from bilateral 
striatal VOIs with right IFC  BPND as well as a marginally 
significant correlation of fMRI parameters extracted from 
the right striatum with right caudate  BPND. Taken together, 
the present findings provide further evidence for the impor-
tant role of striatal  D2/D3 receptor availability in humans for 
the neural circuitry subserving response inhibition behavio-
ral control. Moreover, we show that also right prefrontal  D2/
D3 receptor availability is critically related to fronto-striatal 
brain activity during successful stopping.

D2/D3 ‑receptor availability and response inhibition

The modulatory role of dopamine in inhibitory action con-
trol is broadly supported by pharmacological testings and 
observations in various clinical populations (de Wit et al., 
2002; Colzato et al., 2009; Lee et al., 2016, Nandam et al., 
2013). A previous study demonstrated that disturbances 
within ascending dopaminergic trajectories (i.e., decreased 
midbrain  D2/D3- autoreceptor availability) may enhance def-
icits in impulse control as assessed with the Barratt Impul-
siveness Scale (Buckholtz et al., 2010). In contrast to the 
behavioral paradigm used in the present study impulsivity 
was measured as a personality trait in the study by Buckholtz 
et al (2010). This is important to note since associations 
between impulsive traits measured with self-report scales 
and state impulsivity as assessed using experimental para-
digms are – if at all present – relatively small (Cyders & 
Coskunpinar, 2011; Reynolds et al., 2006; Stahl et al., 2014). 
Results are thus not directly comparable. Here, we applied 
a neurocognitive impulse control task with the aim to rep-
licate findings from preceding studies that investigated the 
contribution of striatal dopaminergic function to inhibitory 
control in humans with a similar methodology (Ghahremani 
et al., 2012; Robertson et al., 2015). In contrast to previous 
findings, SSRT displayed only a non-significant negative 
association with  D2-like dopamine receptors in the present 
study. Therefore, the data do not support strong associations 
between  D2- like dopamine receptors in the dorsal striatum 
and inhibitory control. It is noteworthy, however, that brain 
behavior correlations in small samples (n = 20–30) may be 
sensitive to outliers and may overestimate the actual effect 
size (Cremers et al., 2017). Brain-behavior correlations in 
the present and previous studies were assessed in small sam-
ples (present study: n = 22, Ghahremani et al., 2012: n = 18, 
Robertson et al., 2015: n = 27). Nevertheless, the association 
of SSRT and striatal  D2/D3-receptor availability was consist-
ently negative in all of these studies providing accumulating 
evidence for the suggested relationship. Ghahremani et al. 

(2012) as well as other authors point out that models of 
behavioral control should consider not only  D2-like receptor 
availability, but also their balance with the  D1 receptor sta-
tus in the striatum (Eagle et al., 2011). As the latter cannot 
be measured with [18F]fallypride, our study cannot provide 
information on the ratio of both different receptor types. This 
may, however, be essential for an integrative interpretation 
of  D2-like receptor availability and its correlation with stop-
ping latency.

One interesting finding in our study population is that 
elevated  D2/D3 dopamine receptor availability in the cau-
date was associated with a higher propensity for go omis-
sion errors. In line with that, in a study that investigated 
the neural correlates of omission errors using event-related 
potentials omissions were attentional lapse-based errors as 
indicated by a delayed brain preparation before the stimulus 
onset (Perri et al., 2017). Furthermore, significantly elevated 
omission error rates in the SST have been reported in indi-
viduals with ADHD, a clinical condition that may benefit 
from a stabilization of dopamine signaling when treated with 
stimulants (Adams et al., 2011; Lee et al., 2016; Overtoom 
et al., 2002).

Stopping‑related BOLD activity and striatal  D2/
D3‑receptor availability

Multiple regression of caudate  D2/D3 receptor availability 
revealed a positive association with stopping-related fMRI 
activity in the rolandic operculum, caudate, thalamus and 
superior frontal gyrus, thus replicating previous findings by 
Ghahremani et al. (2012) in large parts. The present results 
extend previous findings by additionally testing for stopping-
related associations with right prefrontal  D2/D3-dopamine 
receptor availability. Right IFC  BPND was associated with 
left striatal activity resulting from the 'successful stop > go' 
fMRI contrast. This finding highlights the possible rela-
tionship of prefrontal dopamine transmission for stopping 
and strengthens previous findings of a lateralization of this 
brain function (Aron et al., 2014). However, our data cannot 
reveal causal relationships between dopamine transmission 
and inhibitory control. Therefore, the question remains how 
dopamine exactly modulates the stopping network. In this 
context, Kayser et al. (2016) assessed the changes in impul-
sive choice ratio on tolcapone, a drug that augments frontal 
dopamine tone, in a cohort of pathological gamblers using 
a randomized, double-blind, placebo-controlled within-sub-
ject study design. Stronger baseline right IFC BOLD sig-
nal correlated with greater declines in impulsive choice on 
tolcapone versus placebo. In addition, connectivity of right 
IFC and striatum increased on tolcapone versus placebo. 
This suggests that tolcapone or dopamine augmentation in 
general may have a role in reducing impulsive behaviors, 
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Fig. 4  VOI-based correlations between binding potential  (BPND) in 
right inferior frontal cortex (IFC), caudate and putamen and BOLD 
signal in right and left striatum and right inferior frontal gyrus (IFG) 
during successful stopping (i.e., 'successful stop > go' fMRI contrast). 

* Correlation was significant after applying Bonferroni correction. # 
Correlation marginally significant after applying Bonferroni correc-
tion
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specifically via increases in top-down control via fronto-stri-
atal pathways in particular in individuals with greater base-
line right IFC activity. The findings by Kayser et al. (2016) 
thus underline the present findings regarding the importance 
of fronto-striatal dopaminergic modulation in the context of 
impulse control. Furthermore, researchers who investigated 
cortical dopamine release during an SST with fallypride 
PET found that changes in cortical  D2/D3 receptor avail-
ability were detectable (Albrecht et al., 2014). Interestingly, 
the latter study demonstrated significant changes in cortical 
dopamine in anatomic locations corresponding to neural 
correlates of inhibiting motor responses as characterized in 
humans with fMRI (left orbitofrontal cortex, right middle 
frontal gyrus, and right precentral gyrus).

Taken together, the present results corroborate a posi-
tive association of stopping-related striatal brain activity 
with  D2/D3-dopamine receptor availability in the nucleus 
caudatus. They extend these findings by revealing a similar 
association with  D2/D3-dopamine receptor availability in 
the right IFC, a key region of the neural stopping network.

Our study has limitations: First,  [18F]fallypride has 
a comparable affinity to  D2 and  D3 dopamine receptors 
in vivo. Therefore, we are not able to distinguish spe-
cific findings for each receptor subtype. Second, using 
this tracer we cannot report findings in the  D1- dopamine 
receptor system which also plays a crucial role for suc-
cessful motor inhibition. Another limitation is the lack 
of a control group for the behavioral findings in our par-
ticipants with the OPRM1 G-allele. However, a previous 
study that investigated response inhibition by means of the 
SST in alcohol dependent OPRM1 G and A allele carriers 
as control group found no group differences regarding the 
SSRT (Courtney et al., 2013). Finally, there were several 
days between the behavioral/fMRI and PET assessments. 
Therefore, we cannot rule out the occurrence of events 
that potentially alter the  D2/D3 receptor status in between 
the two measures.

In summary, the present study partially replicates previ-
ous findings and provides further evidence that dopamine 
receptor availability in the dorsal striatum is important for 
successful stopping (Eagle and Robbins, 2003, Ghahremani 
et al., 2012; Robertson et al., 2015). In addition, our results 
extend previous findings and suggest that dopamine recep-
tor availability in the right inferior frontal cortex, a key 
region of the stopping network, is also strongly associ-
ated with stopping-related striatal fMRI activity in healthy 
OPRM1 G-allele carriers. Since we performed correla-
tional analyses interpretations about causal relations of 
dopamine receptor availability and stopping-related fMRI 
activity are beyond the scope of this study.
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