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Abstract

The impairment of large-scale brain networks has been observed in dementia with Lewy bodies (DLB) using functional
connectivity, but the potential for an analogous effect on structural covariance patterns has not been determined. Twenty-four
probable DLB subjects (mean age 74.3 + 6.7 years, 16.7% female) and 23 similarly aged Controls were included. All participants
underwent 3T MRI imaging with high-resolution T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) se-
quence. Graph theoretical analyses were performed using variation in regional cortical thickness to construct a structural
association matrix with pairwise Pearson correlations. Global and nodal graph parameters were computed to assess between-
group differences and community structure was studied in order to quantify large-scale brain networks in both groups. In
comparison to Controls, DLB subjects had decreased global efficiency, clustering, modularity and small-worldness of structural
networks (all p < 0.05). Nodal measures showed that DLB subjects also had decreased clustering in bilateral temporal regions and
decreased closeness centrality in extensive areas including right middle frontal, left cingulate and bilateral occipital lobe (all false-
discovery rate (FDR)-corrected q < 0.05). Whereas four distinct modules could be clearly identified in Controls, DLB showed
extensively disorganized modules, including default-mode network and dorsal attentional network. Our results suggest a marked
impairment in large-scale brain structural networks in DLB, mirroring functional connectivity networks disruption.
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Introduction

Dementia with Lewy bodies (DLB) is the second-leading de-
generative dementia in older people after Alzheimer’s disease
(AD), accounting for 10—-15% of cases (Jellinger and Attems
2011; Araoutoglou et al. 2019). It is clinically characterized
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by core features including recurrent visual hallucinations, rap-
id eye movement (REM) sleep behaviour disorder (RBD),
cognitive fluctuations and parkinsonism (McKeith et al.
2017). Alpha-synuclein protein deposition with a variable de-
gree of AD co-pathology represents the neuropathological
hallmark of DLB (Spillantini et al. 1997; Gomperts 2016).
Structural MRI surface-based morphometry has shown corti-
cal thinning in posterior regions, especially in cingulate and
parietal regions, with a relative preservation of medio-
temporal lobe compared to AD (Watson et al. 2015; van der
Zande et al. 2018). In addition to molecular and structural
brain changes, functional connectivity studies with resting-
state functional MRI (fMRI) applying either seed-based or
independent component analysis have revealed distinct net-
work disruptions, but sometimes with contrasting results. In
fact, increased, reduced or even preserved default-mode net-
work (DMN) connectivity has been described in DLB (Galvin
et al. 2011; Lowther et al. 2014; Schumacher et al. 2018).
Similarly, reports on other large-scale networks are heteroge-
neous, with impaired connectivity being described for sa-
lience, executive (Lowther et al. 2014), attentional

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11682-020-00444-x&domain=pdf
http://orcid.org/0000-0002-5836-0792
mailto:nicolas.nicastro@hcuge.ch

2446

Brain Imaging and Behavior (2021) 15:2445-2453

(Kobeleva et al. 2017), basal ganglia (Lowther et al. 2014),
fronto-parietal (Peraza et al. 2014) and sensori-motor net-
works (Lowther et al. 2014; Peraza et al. 2014; Schumacher
et al. 2018). Interestingly, only one study described impaired
visual network disruption (Sourty et al. 2016), which can be
surprising when we consider the prominent visuo-spatial im-
pairment observed in DLB.

In addition, impaired metabolic connectivity networks
based on 'SF-FDG PET imaging has been described in
DLB, e.g. in primary visual cortex, posterior DMN and dorsal
attentional network (DAN) (Sala et al. 2019), occipital lobe,
cerebellum and thalamus (Caminiti et al. 2017). Cognitive
impairment negatively covaried bilateral parietal and left
precuneus metabolism in DLB (Morbelli et al. 2019).

Graph theory provides a useful framework to assess the
relationship between brain regions and their organization into
large-scale networks (Bullmore and Sporns 2009). In fact,
both structural and functional brain systems have features of
complex networks, including small-world topology and clus-
tering, which can be assessed with structural MRI, diffusion
tensor imaging or electroencephalography (EEG) (Achard and
Bullmore 2007; Gong et al. 2009). Brain graphs can be con-
structed to study the nervous system as a set of nodes (ana-
tomical brain regions) and interconnecting edges (i.e.
structural/functional connections) (Bullmore and Bassett
2011).

Graph theoretical analyses of cortical thickness in AD and
mild cognitive impairment (MCI) have shown altered global
and nodal networks, especially in temporoparietal regions (He
et al. 2008; Pereira et al. 2016). However, it is unknown
whether similar large-scale network disruptions are observed
in DLB.

With the present case-controlled study, we aimed to assess
structural covariance using graph theoretical analyses of var-
iations in cortical thickness, in a cross-sectional case-con-
trolled cohort of clinically probable DLB subjects. Based on
functional connectivity findings and graph theoretical analy-
ses reported in AD, our hypothesis was that DLB participants
would exhibit large-scale network disruptions and regional
impairment affecting posterior brain regions.

Methods
Participants

The present study was conducted within the
Neuroimaging of Inflammation in MemoRy and Other
Disorders (NIMROD) study (Bevan-Jones et al. 2017).
We included 24 participants with probable DLB accord-
ing to 2017 consensus criteria (McKeith et al. 2017).
Subjects were aged > 50 years and had at least two-year
clinical follow-up to confirm clinical progression and no
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diagnostic change. We also included 23 similarly aged
healthy Controls, with mini-mental state evaluation
(MMSE) scores greater than 26, absence of regular memory
complaints, and without any significant medical illness.
DLB clinical core features were collected: parkinsonism
was assessed with Movement Disorder Society Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) part III
(Goetz et al. 2008), cognitive fluctuations with the
Clinician Assessment of Fluctuation (CAF) scale (Walker
et al. 2000), while the presence of visual hallucinations and
RBD was assessed with history taking.

Patients were identified from the Memory clinic at the
Cambridge University Hospitals NHS Trust, other local
memory clinics, and from the Dementias and
Neurodegenerative Diseases Research Network
(DeNDRoN) volunteer registers. Healthy controls were
recruited via DeNDRoN as well as from partners of par-
ticipants. Informed written consent was obtained in accor-
dance with the Declaration of Helsinki. The study was
approved by the East of England Ethics Committee
(Cambridge Central Research, Ref. 13/EE/0104).

MRI acquisition

Participants underwent MRI imaging acquired at the Wolfson
Brain Imaging Centre (University of Cambridge) on a 3T
Siemens Magnetom Tim Trio scanner. A T1-weighted mag-
netization-prepared rapid gradient echo (MPRAGE) sequence
was acquired with the following parameters: relaxation time
(TR)=2300 ms, echo time (TE)=2.98 ms, field of view =
240 x 256 mm?, 176 slices, flip angle = 9°, isotropic Imm’®
voxel.

Image preprocessing

The T1-MPRAGE images were processed with FreeSurfer
v6 to obtain cortical thickness measurements in 34 re-
gions of interest (ROIs) per hemisphere, based on the
Desikan-Killiany parcellation scheme (Desikan et al.
20006). Briefly, for each MRI, the pial and white matter
surfaces were generated and the cortical thickness was
measured as the distance between their respective bound-
aries. Visual inspection was carried out blinded to group
diagnosis and corrections were performed where neces-
sary to ensure accurate skull stripping and reconstruction
of white matter and pial surfaces.

Network construction and analysis

For each of the 68 cortical ROIs, we performed linear regres-
sions of cortical thickness to obtain residuals adjusting for age,
sex, years of education and mean cortical thickness (Mak et al.
2016). These residuals were used to construct the brain
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graph, where every node corresponds to an anatomical brain
region and the edges represent the correlation between
them. For each diagnostic group, we built a 68 x 68 associa-
tion matrix for which every entry was defined as the
Pearson correlation (binary undirected graph) between each
pair of ROI cortical thickness data. We used network den-
sities (D) from 9-24% (in steps of 1%). These values were
chosen as for D < 9%, the number of edges was inferior to
the number of nodes, leading to a disconnected graph,
whereas for D >24%, the network was similar to random
graphs and showed small-world index lower than 1.5. In
order to assess between-group differences in network topol-
ogy, we calculated the global and nodal parameters
reflecting the various aspects of a brain graph, i.e. integra-
tion, segregation and centrality. The following global pa-
rameters were computed: local efficiency, clustering coef-
ficient, modularity and small-worldness. The local
efficiency is the average inverse shortest path length and is
a measure of integration. The clustering coefficient assesses
the presence of clusters in a graph. For each node, this can
be calculated as the fraction of the node’s neighbours which
are also neighbours of each other (Watts and Strogatz 1998).
Thus, the clustering coefficient for each node can be aver-
aged into the mean (global) clustering coefficient and repre-
sents a measure of segregation. The modularity represents
the extent to which a network can be segregated into clearly
delineated communities, reflecting a high number of edges
within communities and lower number of edges between the
different communities (Girvan and Newman 2002). The
small-world index is a ratio between the characteristic path
length and the global clustering coefficient. A small-world
network features short paths but also high clustering coeffi-
cient, resulting in an optimal network architecture. As ob-
served, several of the above measures are directly based on
the evaluation of the characteristic path length. However,
we did not report between-group results of this global mea-
sure. In fact, when testing integrative measures in a group of
subjects with neurodegenerative conditions, it is considered
as more suitable to use efficiency rather than characteristic
path length in the analysis of disconnected networks
(Rubinov and Sporns 2010).

To assess between-group differences in nodal network
topology, we calculated nodal efficiency, nodal clustering
and closeness centrality. Nodal efficiency represents the
local average of the inverse shortest path length, whereas
nodal clustering is the regional counterpart of global clus-
tering coefficient, reflecting the ability of a network to
segregate into specialized clusters in order to process a
specific information (Rubinov and Sporns 2010).
Finally, closeness centrality is defined as the inverse of
the average shortest path length from one given node to
all other nodes in the graph. This measure represents a
useful way to assess whether a node is a brain hub, i.e.

its centrality (van den Heuvel and Sporns 2013). In order
to assess the large-scale brain modules in Controls and
DLB, community structure was calculated using the
Louvain algorithm at D=15%, which is an average D
value among the range of D used for the present study
(9-24%) (Fox et al. 2005).

Statistical analyses

Demographic data were analyzed with Stata software
Version 14.2 (College Station, TX). Assessment of distri-
bution for continuous variables was performed with
Shapiro—Wilk test and visualization of histogram plots,
followed by ¢ test or Mann—Whitney U test, accordingly.
Categorical variables were compared with Chi-Square test.
Statistical significance was considered when p < 0.05.

All graph theoretical analyses were performed with
BRain Analysis using graPH theory (BRAPH) software
Version 1.0 (Mijalkov et al. 2017), a freeware running
on MATLAB 2018b (version 9.5, Mathworks Inc,
Sherborn, MA, USA). We thus built connectivity matri-
ces in order to calculate global and nodal brain graph
measures, in addition to performing non-parametric per-
mutations (n=5’000) for group comparisons and assess
the different modules in both diagnostic groups.
Significance threshold was set at two-tailed p <0.05
for global measures and two-tailed false-discovery rate
(FDR)-corrected q<0.05 for nodal measures to correct
for multiple comparisons. Global and nodal parameters
in DLB were also compared to random graphs in order
to ensure that significant findings against Controls were
consistent. Estimation of modular similarities between
Controls and DLB group was performed using Jaccard
coefficient (J) for each module, with J = (number of
shared regions within a module / total number of re-
gions attributed to a module for both groups) x 100,
expressed in %.

Table 1  Baseline characteristics of included subjects
DLB (n=24) CTL (n=23) pval

Age (yvears) 74.3+6.7 72.3+5.7 0.27 *
(62-87) (62-84)

Female proportion 16.7% (4/24) 34.8% (8/23) 0.15$

Education (years) 12.14£2.5 13.94+2.8 0.03 #
(8-17) 9-19)

MMSE 22.8+4.3 28.9+1.2 0.0001 #
(15-29) (26-30)

ACER 67.7+11.9 92.0+6.6 0.0001 #
(45-87) (75-100)

Mean cortical thickness ~ 2.25+0.13 2.37+0.09 0.001 #

*t-test, $ Chi-Squared test, # Mann-Whitney U test
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Results
Patients clinical characteristics

Both groups were comparable in terms of age and sex, where-
as Controls had higher education attainment (mean + SD 13.9
+2.8vs. 12.1 +£2.5 years, p = 0.03 uncorrected). As expected,
MMSE and ACER scores were significantly lower in the DLB
group (p < 0.001, Mann-Whitney U test) (Table 1). Prevalence
of DLB diagnostic core features was as follows in our DLB
group: 92% (22/24) had parkinsonism, 63% (15/24) had visu-
al hallucinations and cognitive fluctuations, while 38% (9/24)
had evidence of RBD. These results are in line with previous
publications (Morbelli et al. 2019; Matar et al. 2020).

Seventeen DLB subjects had available ''C-Pittsburgh
compound B (PiB) PET imaging, with 10 being amyloid-
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Fig. 1 Differences between Controls and DLB participants regarding

global measures assessed with densities between 9 and 24%. Negative
difference indicates lower values for the DLB group (in red) compared to
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positive (cortical standardized uptake ratio (SUVR) > 1.5)
and 7 amyloid-negative (cortical SUVR < 1.5).

Global network analysis

Compared to Controls, DLB subjects showed significantly
decreased local efficiency at D = 14-15% (p = 0.022), as well
as decreased clustering coefficient (p=0.043 —0.006) and

modularity (p=0.044 —0.020) at most D values. In addition,
DLB had lower small-worldness (p=0.002) at D=17%

(Fig. 1).

Nodal network analysis

Compared to Controls, DLB subjects showed decreased nodal
clustering in the right entorhinal and left middle temporal gyri
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Fig. 2 Brain modules in Controls L
and DLB participants. Both
groups had four different
modules. In Controls, Module T
(blue) includes entorhinal,
temporal pole and inferior frontal
regions; Module II (orange)
broadly mirrors dorsal attentional
network, Module III (yellow)
includes frontal pole and lateral
temporal regions, while Module
IV (violet) broadly corresponds to
the default mode network. L and
R indicate Left and Right

Controls

(FDR q<0.05) as well as decreased closeness centrality in
extensive brain areas, including right rostral middle frontal,
bilateral inferior frontal (pars opercularis), left paracentral, left
isthmus and caudal anterior cingulate, left insula, right supe-
rior temporal, right fusiform, right transverse temporal, bilat-
eral supramarginal, bilateral cuneus, left pericalcarine and
right lingual gyri (FDR q<0.05). We did not observe any
significant differences regarding nodal efficiency.

Modules

Four different modules were identified for Controls and DLB
groups (Fig. 2). Regarding Controls, Module I (blue) included
entorhinal gyrus, temporal pole and inferior frontal gyrus (pars
opercularis). Module II (orange) encompassed precentral gy-
rus, parietal and occipital regions, broadly corresponding to
the DAN (Vossel et al. 2014). Module III (yellow) included
frontal pole and lateral temporal regions. Finally, Module IV
(violet) included cingulate and orbitofrontal regions, partly
mirroring DMN (Raichle 2015) (Fig. 2; Table 2). In compar-
ison, we observed that DLB had disrupted networks, especial-
ly regarding inferior frontal, temporal, cingulate and occipital
regions. For example, inferior frontal and cingulate areas were
not part of Module IV (DMN), whereas pericalcarine gyrus
and cuneus were not included into Module IT (DAN), as well
as weaker connectivity within modules, as shown in Fig. 3. A

DLB

severe disruption of each module was observed for the DLB
group, especially regarding Module III (Ji; = 7.1%) and IV
(Jrv = 14.7%), but also Module I (J; = 17.6%) and Module 11
(Ji1 = 20%). Figure 4 shows the differential allocation of atlas
regions to Modules I-IV for Controls and DLB.

Discussion

This study confirms that DLB affects the graph theoretical
properties of networks based on the covariance of cortical
thickness. Specifically, the influence of DLB on global param-
eters (e.g. decreased efficiency, clustering, modularity, and
small-worldness), indicates changes in large-scale structural
connectivity networks. These data compare to the effect of
AD, that decreases small-worldness and clustering (Phillips
et al. 2015; Pereira et al. 2016), and Parkinson’s disease
(PD) with MCI, that reduces global and nodal efficiency in
frontal and parietal areas compared to Controls and PD with-
out cognitive deficits. Together, these studies suggest that
large-scale network disruptions are temporally related to the
development of cognitive impairment (Pereira et al. 2015).
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Table2  Brain modules in Controls and DLB patients. Roman numerals
indicate the module assigned to each left and right ROI, respectively

Region of interest Controls DLB
Frontal lobe
Superior frontal v/1v 1/1vV
Rostral middle frontal v /11 1/1
Caudal middle frontal IvV/1 1/
Inferior frontal (pars opercularis) 1/1 I/1
Inferior frontal (pars orbitalis) v/1v /1
Inferior frontal (pars triangularis) IV/1V I/1
Lateral orbitofrontal v/1v /v
Medial orbitofrontal v/1v vV/1v
Frontal pole I/ 11 vV/1v
Precentral /1 /v
Paracentral /1 v/Iv
Temporal lobe
Entorhinal 1/1 /1
Parahippocampal I/ 11 11/ 11
Insula 1/1v 1/1
Temporal pole 1/1 v/l
Fusiform /1 /1
Superior temporal /1 1/1
Middle temporal 1r/11 I/
Inferior temporal 11/ 11 /1
Transverse temporal /1 nr/m
Banks of superior temporal sulcus /1 1/1
Parietal lobe
Postcentral /1 v/1
Supramarginal /1 1/1
Superior parietal /1 /1
Inferior parietal /1 /1
Precuneus /1 /1
Occipital lobe
Lingual 1/111 I/
Pericalcarine /1 /v
Cuneus /1 11/ 11
Lateral occipital /1 II/11
Cingulate cortex
Rostral anterior ar/mv II/11
Caudal anterior v/1v /1
Posterior v/1v nr/m
Isthmus v/1v nr/m

Roman numerals indicate the module assigned to each left and right ROI,
respectively

We found that DLB altered regional network topology,
including decreased nodal clustering — a measure of segrega-
tion — and decreased closeness centrality. Clustering was re-
duced in temporal areas while closeness centrality was de-
creased in regions encompassing middle frontal gyrus,
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posterior cingulate and occipital regions. Previously, a re-
duced closeness centrality was observed for AD in
temporoparietal regions (He et al. 2008; Yao et al. 2010).
Using resting-state fMRI data, Schumacher et al. observed a
decreased within-network connectivity in frontal and temporal
areas in DLB (Schumacher et al. 2019). Previous studies have
suggested that participation coefficient is preferred to central-
ity measures for correlational analyses (Power et al. 2013), but
as we only performed group comparisons, we believe that
closeness centrality is a suitable marker of nodal centrality.
In addition, while participation can be considered as a central-
ity measure, it is rather a coefficient to estimate connections
across different topological modules, with a high participation
coefficient relating to a connector hub while a low participa-
tion coefficient suggests a provincial hub.

In addition to assessing global and regional topology mea-
sures, we computed large-scale network organisation into
modules. Our results suggested that clearly delineated struc-
tural modules could be defined in Controls. These modules are
reminiscent of functional brain networks described with
fMRI, i.e. DMN including posterior cingulate and
orbitofrontal regions and DAN including precentral and pari-
etal areas (Vossel et al. 2014; Raichle 2015). Our DLB group
showed extensive network disruptions (Fig. 4), with key re-
gions being lost and assigned to other brain networks, espe-
cially inferior frontal, posterior cingulate and occipital cortex.
These findings are in accordance with several fMRI studies
showing disrupted DMN network in DLB (Chabran et al.
2018; Schumacher et al. 2019). Similarly, Sala et al. applied
seed-based interregional correlation analyses using
fluorodeoxyglucose PET, showing that DMN and DAN were
particularly vulnerable large-scale networks in DLB (Sala
etal. 2019).

As discussed by Phillips et al. (2015), the method used to
construct the correlation matrix can dramatically affect not only
the magnitude of the results, but also their direction. In fact,
according to whether we use binary or weighted edges,
Pearson or partial correlations, very different results have been
observed even when using the same imaging modality. For ex-
ample, characteristic path length has been shown to be either
reduced (Tijms et al. 2013) or increased (He et al. 2008) in AD
subjects compared to Controls. One explanation is that control-
ling for mean cortical thickness removes the effect of regional
inter-dependencies. Thus, for graphs using Pearson correlations
without controlling for mean cortical thickness, characteristic
path length is usually lower in Controls than in groups affected
by dementia, whereas for graph using mean cortical thickness as
a covariate (as this was the case for the present study), the results
tended to be in the opposite direction (Phillips et al. 2015). For
this reason, we studied other global graph parameters (e.g. clus-
tering coefficient) which do not show such discrepancies, in
order to more easily compare our findings with the previous
literature. Moreover, most studies used age and sex as covariates,
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Fig. 3 Weighted association

matrix showing the four different
modules (I-IV) in DLB and IV
Controls. Color bar indicates the

strength of the correlation

coefficients (red/yellow represent

stronger correlations while I
blue/green weaker correlations)

but we believe that adjusting the data for education was critical as
higher education attainment has been associated with larger cor-
tical thickness (Querbes et al. 2009).

Our study has several limitations. First, our sample size was
modest. However, we were able to include subjects from the
same centre and using the same MRI scanner to reduce variance.
In addition, our findings were subjected to a stringent signifi-
cance threshold for regional graph parameters which allowed
us to observe similarly significant findings than other

Controls left DLB
I |
Il P I
I = n
1\ v

right
| |
Il Il
3
1] M
vV IV

Fig. 4 Alluvial plots showing the differential allocation of left and right
hemispheric regions of interest into Modules for Controls (left) and DLB
(right). See Table 2 for detailed regional differences

0.5

Controls

multicentric studies with larger cohorts. Second, it would have
been interesting to study the possibly differential pattern of large-
scale network disruption in DLB harbouring an ADcopathology,
as this affects around half of the patients. However, our small
sample precluded such further analyses, as 17 of our 24 DLB
subjects had an available PiB PET imaging (with 10/17 amyloid-
positive subjects). Similarly, the small sample precluded further
analyses correlating clinical core features (e.g. visual hallucina-
tions or cognitive fluctuations) with global and nodal network
alterations.

In summary, we present novel evidence of large-scale struc-
tural brain network impairment in DLB. Both global and local
measures of efficiency and segregation are affected, offering new
insights into the pathophysiology of neurodegeneration. Further
studies including larger samples and prodromal DLB are re-
quired to confirm these findings and to tackle the complex rela-
tionship between structural and functional connectivity impair-
ments in dementia.
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