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Abstract By capturing the actions of distributed brain
regions, neuroimaging can give unique insights into the
networks underlying complex behavioral and cognitive
functions. An approach to interpreting neuroimaging data
grounded in emerging ideas in brain network theory is
needed to better characterize these large-scale network
dynamics. This paper focuses on three concepts germane
to this approach to interpretation: “connectivity”, “neural
context”, and “small-world properties”. Measures of brain
connectivity emphasize the combined action of areas.
Functional connectivity analyses focus on interacting neural
patterns, whereas effective connectivity analyses uncover
directional influences between brain areas. The second
concept, neural context, purports that a region’s contribution
to a function is more fully appreciated in relation to other
coactive brain areas. The final concept is the extension of
graph theory measures to the estimation of small-world
properties. Measures such as clustering and path length can
be used to infer the computational capacity of functional
networks. These three constructs are central to the interpre-
tation of neuroimaging data that will further unravel how
brain network dynamics guide mental function, and are
beginning to be applied to the study of neural disorders.
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Introduction

The advent of neuroimaging has allowed a comprehensive
sampling of brain activity. It provides the means to
determine whether certain behavior operations are charac-
terized by distributed operations. Imaging studies have
consistently observed that several brain regions are engaged
during a given behavior. With the improved spatiotemporal
resolution of neuroimaging techniques, it has become
increasingly clear that behavioral operations are embodied
in patterns of distributed networks.

The prevalent interpretation framework for neuroimaging
has focused on regional changes in activity, which makes
historical sense in that most neuroscience data has been
obtained from electrical measures of either single neurons
or neuronal populations. In neuroimaging data, a given
region may increase activity in response to a stimulus, but
the relevance of this change is complicated by the fact that
at the same time, several other regions will show activity
changes (increases and decreases). What is needed, then, are
concepts that allow for the interpretation of neuroimaging
data consistent with the level of measurement, namely those
that emphasize large-scale network dynamics.

The purpose of this paper is to review a different set of
concepts to tie the interpretation of neuroimaging data to
the level of large-scale network dynamics. The first
concept, connectivity, reflects the fact that brain areas work
together in instantiating a particular mental function.
Connectivity in this case is a statement of a functional
relation that is built upon an anatomical foundation. The



Brain Imaging and Behavior (2008) 2:264-269

265

second concept is neural context. Given the anatomical
connections between brain areas, there are a number of
ways in which areas can interact. This connectivity
provides the opportunity for similar areas to be engaged
in functionally distinct networks. The key point is that the
contribution of a particular region to a function is best
appreciated in the context of other areas that are engaged.
The final concept comes from the observation that brain
networks can be characterized based on features of graphs
of the connections. Both the structural and functional
connections seem to be well characterized from the
perspective of small-world networks. Such networks have
a unique capacity for information processing. These three
concepts provide insights into the brain dynamics that
support cognitive function that cannot be appreciated from
considering single areas. The present paper is meant to
provide a general introduction to these concepts, and to
illustrate how their combined use can be used to gain new
insights into brain function. We point the interested reader
to the cited literature for more information on these
concepts (e.g., Horwitz 2003; Jirsa and Mcintosh 2007,
Sporns and Zwi 2004).

Connectivity

The term functional connections (connectivity) has been
used to refer to the correlations of activity between neural
elements in both electrophysiology (Aertsen et al. 1987)
and brain imaging (Friston et al. 1993). To say that two
neural elements (neurons or brain regions) have a function-
al connection is to say that these elements show statistically
significant correlated activity without reference to how that
correlation is mediated. Effective connectivity is a logical
progression from functional connectivity and can be
defined as the influence or effect one neural element has
on another (Friston et al. 1993). The major difference
between functional and effective connectivity is best
appreciated from the available levels of inference. Because
functional connectivity is an estimate of a correlation
between neural elements (either pairwise or multivariate),
no inferences on the directionality of influences are
possible. Effective connectivity estimation requires the
specification of a model wherein directional influences are
estimated, thus by definition inferences on directionality
can be made.

A simple illustration may help to clarify. Consider two
simple networks shown in Fig. 1. Network 1 has three
nodes where nodes ‘a’ and ‘b’ are connected by a mediating
node ‘c’. Network 2 has a similar configuration save for a
direct link between nodes ‘a’ and ‘b’. Estimation of
functional connectivity amongst the three nodes in either
network would not be able to differentiate between the
configurations of the two networks because of the focus on

Network 1

Network 2

>

Fig. 1 Example of two networks with different anatomical connection
topologies. Functional connectivity estimation between nodes a, b,
and ¢ in the two networks would not be able to differentiate the
anatomical connectivity between networks I and 2. Effective
connectivity, where directionality of effects are modeled, would be
able to identify the direct connection between a and b when the
common effect from c¢ is accounted for

zero-order correlations. Effective connectivity, which tries
to model directionality, would be able to show that in
Network 1, the functional connection between ‘a’ and ‘b’ is
mediated by node ‘c’, while in Network 2, there is an
additional influence from ‘a’ to ‘b’ when the mutual effect
from ‘¢’ is taken into account.

Whether one chooses to estimate one over the other
ultimately depends on the nature of the inference one
wishes to draw about the data. Specifically, if directionality
is important, then effective connectivity needs to be
estimated, but if the detection of interacting network nodes
is sufficient, then functional connectivity can be estimated
(Mclntosh and Grady 2007).

It should be pointed out that the term functional
connectivity has been applied to both task-dependent
changes in functional connections and those that persist in
the absence of any overt task, the so-called “resting state
functional connectivity” (Biswal et al. 1995). The term
functional connectivity is equally valid in both applications,
but the emphasis is quite different. In the case of task-
dependent functional connectivity, the focus is on whether
there is a change in the functional connections between
regions as task demands change. Resting-state functional
connectivity emphasizes the overall pattern of functional
connections and its relation to the underlying anatomy. It is,
however, worth remembering the example in Fig. 1, where
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a non-zero functional connection does not guarantee a
direct anatomical connection.

Recent modeling work suggests that the patterns of
resting-state connectivity are a direct result of the anatom-
ical and functional architecture of the brain (Honey et al.
2007). In a simulated network, as the architecture and
dynamics more closely approximate real neural systems,
distributed patterns of functionally connected networks
emerge. Remarkably, the spatial patterns of these networks
resemble those reported in fMRI experiments. If the
anatomical structure is perturbed or the dynamics changed,
then the patterns break down. Such findings suggest that
resting-state connectivity may indeed index the integrity of
a given brain. This is substantiated by empirical observa-
tions of resting-state correlations in normal aging showing a
reduction in overall functional connectivity, particularly
among frontal and parietal regions. The reduced functional
connectivity correlates with decline in behavioral meas-
ures of executive function and overall processing speed
(Damoiseaux et al. 2007). Degenerative disorders such as
Alzheimer’s disease also show reduced functional connec-
tivity related to disease severity (Stam et al. 2006). Taken
together, these empirical and modeling findings suggest
that resting state correlations may act as a useful “finger-
print” for the integrity of functional networks.

Functional and effective connectivity can also show
task-dependent changes. Horwitz et al. (1992) using PET,
showed functional connectivity patterns that mapped on to
the use of “what” vs. “where” cortical visual pathways.
Effective connectivity analyses of these data (McIntosh et
al. 1994) showed task-dependent switches in prefrontal
feedback, and strong suppressive interactions between
“what” and “where” pathways.

Importantly, effective connectivity can differentiate
between top-down versus bottom-up effects. Category-
specific responses have been observed frequently in the
ventral occipitotemporal lobe (fusiform gyrus for faces,
parahippocampal gyrus for places), which is typically
considered a top-down effect from higher-order brain areas.
Using a model of effective connectivity, Mechelli et al.
(2003) found that early sensory areas changed their effects
on category-specific areas in relation to the stimuli, but
higher-order association regions did not show such changes
in effects. Thus, category specificity in these data was a
bottom-up effect where the response was modulated by the
effect of lower order cortical regions on category-specific
areas. It is likely that the real story of the neural
instantiation of category specificity is an outcome of
reciprocal interactions amongst neural sites. The results
from the effective connectivity analyses enrich models of
cognitive function by moving them beyond strict hierarchi-
cal representations and emphasizing the dynamic and
interactive nature of neural instantiations.

@ Springer

Neural context

Anatomical connectivity enables parallel routes of informa-
tion flow between areas. Convergent, divergent, and
reciprocal connections provide the potential for similar
areas to be engaged across different cognitive operations.
What distinguishes the operation is not the involvement of
the area per se, but rather the status of other areas during
that function. This dependence of the contribution of a
region on other connected regions has been referred to as
“neural context” (Bressler and Mcintosh 2007). Neural
context allows the response properties of one element in a
network to be profoundly affected by the status of other
neural elements in that network. The neural context of each
connected area emerges spontaneously from its interactions.

Contextual effects can be demonstrated in simple
nervous systems, basic sensory functions, and higher
cognitive functions (Bressler and Mcintosh 2007). An
appreciation of neural context formed the basis for
considering working memory at the confluence of sustained
attention and memory. Both working memory and sustained
attention involve activity in overlapping regions of PPC,
PFC, and anterior cingulate cortex (ACC). In an fMRI
study of the relationship between attention and working
memory, Lenartowicz and McIntosh (2005) used two
variants of a two-back working memory task: a standard
version with strong attentional demands, and a cued version
that more strongly promoted memory retrieval. The regions
functionally connected to the ACC, and the relation of the
connectivity patterns to memory performance, differed
between tasks. In the standard task, the observed connec-
tivity pattern was related to a speed-accuracy tradeoft, with
strong functional connection of ACC to PFC and PPC. In
the cued task, the connectivity pattern was related only to
better accuracy, and involved functional connections with
middle and inferior PFC, and inferior temporal cortex. By
virtue of these different patterns of functional connectivity,
the contribution of ACC to attention- and memory-driven
performance was similarly changed. In other words, each
task invoked a different neural context within which the ACC
interacted, resulting in two very different behavioral profiles.

In another study of ACC functional connectivity
(Stephan et al. 2003), the question was examined of
whether hemispheric functional asymmetry was determined
by a word stimulus (short words, with one letter colored
red) itself or by the task. In one instance, subjects judged
whether the word contained the letter “A”, ignoring the red
letter, and in another instance, they made a visuospatial
judgment indicating whether the red letter was right or left
of center. A direct comparison of the activity (measured
with fMRI) revealed strong hemispheric differences. The
letter task produced higher activity in the left hemisphere,
whereas the visuospatial task produced higher activity in
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the right hemisphere. The ACC was similarly active in both
tasks relative to baseline, but showed distinctly different
patterns of connectivity between tasks. Specifically, during
the letter task, the ACC was coupled to the left PFC; during
the visuospatial task, the ACC was linked with the right PPC.
These data are compelling examples of how behavioral
context (in this case, task demands) can modulate the neural
context within which a cortical area (i.e., the ACC) operates.

Small-world properties

Functional connectivity and neural context speak to the
dynamics of large-scale networks. Another concept that
complements these functional relationships is the assess-
ment of the capacity of a given network to integrate
information. This capacity is a hallmark of a complex
system, and can be appreciated through characterization of
the structural properties of a network.

To function optimally, a complex system such as the
brain must balance competing computational demands. It
must strike a balance between segregation of modular
processes and integration across processes. Additionally, it
should be efficient and resilient in the face of perturbation.
Evidence is mounting that suggests that the so-called small-
world properties, seen in a wide variety of social,
economic, and biological networks, may also underlie the
brain’s capacity to meet these competing demands.

Watts and Strogatz, in their seminal paper, revealed that
widely different sets of natural and artificial networks
showed similar small-world attributes (Watts and Strogatz
1998). In a typical small-world network, a large number of
connections form densely connected clusters while the
remaining connections link the clusters. This feature can be
measured to show that small-world systems maintain a
balance between high clustering and low path length.
Regular, or lattice, networks tend to have high clustering
and high path length, whereas random networks have low
clustering and low path length. Systems with high clustering
will also have a high capacity for segregation, whereas path
length between clusters will influence the system’s ability to
integrate information (Sporns et al. 2000; Tononi et al.
1999). The minimum path length between two nodes is the
minimum number of edges that must be traversed to get
from one node to the other. Each node in a network can be
characterized by the number of edges connected to it, which
is referred to as “degree”. The larger the degree, the more
connected a node. With this measure, “hubs” can be detected
as nodes having a higher degree than the average degree.

Graph theory analyses of anatomical connectivity have
demonstrated small-world architecture in nervous systems
ranging from c elegans through primates (Sporns and Zwi
2004). Functional connectivity measures can also be used
to construct graphs that can be assessed for small-world

properties. Stam and de Bruin (2004) reported the first graph
theoretical analysis of MEG data in five healthy subjects in
a resting state by thresholding functional connectivity
matrices to create undirected graphs specific to each
frequency band. Graphs from alpha and beta band had
lattice-like topology, but those from the high and low
frequency bands demonstrated small-world properties. Al-
though the temporal resolution of fMRI is far below that of
MEG, small-world architecture has been measured using
correlations of low-frequency BOLD signals in either the
temporal or the spectral domain. Salvador et al. (2005)
calculated functional connectivity between 90 anatomically
derived regions of interest measured with fMRI. Multivar-
iate analysis by hierarchical clustering and multidimensional
scaling consistently defined six major systems in healthy
volunteers: medial temporal, subcortical, occipital, frontal,
temporal, and sensorimotor. Using a wavelet-based func-
tional connectivity analysis, Achard et al. (2006) showed
small-world properties of fMRI networks across several
frequencies. The degree distribution across regions followed
an exponentially truncated power law, indicating the
presence of hubs. These hubs were predominately hetero-
modal and unimodal association cortices. Unimodal associ-
ation cortices had highly clustered mostly short-range
connections, whereas heteromodal cortices had less clus-
tered, more long-range connections.

Integration of measures and clinical extensions

Network concepts provide the means to move the focus of
neuroimaging interpretation from single brain areas to
integrated systems. Notions such as “synchrony”, “top—
down”, “bottom—up”, and “modulatory” effects, are often
invoked in the interpretation of regional changes, but are best
accessed by examining connectivity. Neural contextual
effects aid in the interpretation of situations where areas
typically not associated with a given functional network can
nevertheless show strong participation. A region can contrib-
ute to a function, yet not be critical for its normal expression.

Contextual dependency may change in different popula-
tions due to factors such as maturation, learning, brain
damage, or disease. In such cases, evaluation of changes in
neural context may give valuable information on how a
network reconfigures and whether certain reconfigurations
are more successful than others. Characterization of small-
world properties of brain networks provides complementary
information by identifying whether regions that show
contextual modulation also have unique graph metrics.
For example, it may be that hubs are most likely to show
contextual modulation whereas regions that are central to
clusters show less contextual dependency. Hubs also have a
unique capacity for facilitating information integration.
Recent work (Honey and Sporns 2008) shows that damage
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to hub nodes in large-scale network simulations has the
most dramatic effect on the integrative capacity of the
remaining network, particularly when prefrontal (area 46
and FEF) or parietal (areas 5 and 7) cortices are lesioned.
Merging such modeling work, with estimation of network
operations in empirical data, will enable us to begin to
understand why damage to certain areas causes a deficit.

Network concepts have probably been most extensively
applied to the study of schizophrenia. In this case, the
hypothesis of schizophrenia as a dysconnection syndrome
is particularly relevant (Friston and Frith 1995). Initial
examinations of functional connectivity generally revealed
reduced connectivity in patient populations relative to
controls (McGuire and Frith 1996). However, more detailed
studies of effective connections indicated that for a given
network, one could identify equivalent connections, weaker
connections, and connections that were stronger in patients
(Jennings et al. 1998), both related and unrelated to
treatment (Schlosser et al. 2003). Small-world characteriza-
tion of the network capacity in schizophrenia has shown
reduced small-world topologies, particularly for prefrontal
and parietal cortices (Liu et al. 2008). Interestingly, these
same areas are identified as showing group differences in
studies of effective connectivity (Jennings et al. 1998;
Schlosser et al. 2003), and, as noted above, prefrontal and
parietal damage compromises the integrative capacity of
cortical networks (Honey and Sporns 2008).

Combined with the connectivity estimation, a picture
emerges wherein dysconnectivity has both global and local
impact that can be related to the expression of the disorder.
At a local level, prefrontal cortex is often implicated as
central to understanding the disorder (Weinberger et al.
1994), but assessment at the network level demonstrates
that prefrontal abnormalities have a broader impact on the
overall network dynamics. Indeed, it may be possible that
regional deficiencies are an expression of the state of the
network. Network analyses agree that there is overlap in the
network configurations of patients and controls. Conven-
tional statistical analyses tend to emphasize differences,
losing sight that these focal differences are part of a larger
network, where some constituents are the same as controls.
The change in regional involvement, whether in absolute
terms or in degree, would thus translate to a change in
neural context. The contextual changes would produce
neural dynamics whose emergent function is quite distinct
from controls. Studies of large-scale nonlinear interactions
in patients suggest that the overall capacity for information
integration may not differ substantially between patients
and controls, but rather the areas that are integrated in a
given functional network (Rubinov et al. 2007). Considered
in another way, it may not always be the case that the
quantity of information represented in a network is
compromised, but rather the quality of such information.
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Adopting network concepts for the interpretation of
neuroimaging data has implications for the development of
neurocognitive theory and for the understanding of brain
disorders. Neurocognitive theories are often based primarily
on behavioural studies. The theories attempt to link
cognitive constructs to neural architecture. Characterization
of imaging data as networks provides direct means of
evaluating how and whether the neural instantiation
resembles the cognitive model. The clinical implications
come at several levels. Because the brain is a dynamic
system, any insult will have local and global effects.
Lesions may lead to focal deficits, but it is more likely
that the deficit represents a combination of the loss of the
region per se as well as the attempt of the remaining
network to compensate.
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