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Abstract  Global forests are increasingly crucial for achiev-
ing net-zero carbon emissions, with a quarter of the miti-
gation efforts under the Paris Climate Agreement directed 
towards forests. In China, forests currently contribute to 13% 
of the global land’s carbon sink, but their stability and per-
sistence remain uncertain. We examined and identified that 
published studies suffered from oversimplifications of eco-
system succession and tree demographic dynamics, as well 
as poor constraints on land quality. Consequently, substan-
tial estimations might have been suffered from underrepre-
sented or ignored crucial factors, including tree demographic 
dynamics, and disturbances and habitat shifts caused by 
global climate change. We argue that these essential factors 
should be considered to enhance the reliability and accuracy 
of assessments of the potential for forest carbon sinks.
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A global surge of interest has emerged in initiatives 
prioritizing carbon-centric afforestation and forest 
restoration (Strassburg et al 2020), in which forest recovery 
in China plays a leading role. Forests, which contain the 
preponderance of land carbon stocks, represent the largest 
contributor to the recent and future land carbon sink in 
China (Huang et al 2022a, b; Yu et al 2022a, 2024). These 
forests are predominantly characterized by fast-growing, 
young plantations and are also acknowledged as an essential, 
persistent carbon sink.

As part of the endeavor to realize the ambitious goal of 
achieving “carbon neutrality” by the year 2060, the Chinese 
government has announced plans to establish 41.66 million 
hectares of forest plantations by 2050, with the explicit pur-
pose of augmenting carbon storage (State Forestry Adminis-
tration of the People’s Republic of China 2016). Underpinned 
by this political impetus, the evaluation and projection of 
forest carbon stocks and sinks in China are undergoing a 
resurgence. Typically, the methodologies employed in these 
assessments fall into three categories: statistical models, 
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process-based ecosystem models, and remote-sensing-based 
machine-learning models (Table  1). Nevertheless, the 
reported carbon stocks and sinks show significant dispari-
ties, indicating considerable uncertainties inherent to these 
projections (Yu et al 2024). Here, we evaluated published 
studies and revealed three common pitfalls in the assessments 
of future carbon dynamics in China’s forests.

First, forest species composition changes during succes-
sion, which might eventually lead to the development of a 
different forest type (Fig. 1a). Forest dynamics continuously 
change, while field measurement captures the species com-
position only at the time of the survey. Most forests consist of 
various species that, however, may not be adequately repre-
sented at the stand level. For example, if the volume stock of 
any single species in a forest plot is ≥ 65%, the forest plot is 
marked as a pure stand (i.e. mono-species forest) in China’s 
national forest inventories (State Forestry Administration of 
the People’s Republic of China 2014). Thus, for instance, a 
forest plot recorded as Pinus massoniana may contain up to 
35% of its volume stock contributed from other species, such 
as Cunninghamia lanceolata Hook or/and Shima superba. 
Over the course of some decades, the stand’s succession may 
lead to the emergence of a mixed forest predominantly domi-
nated by Shima superba. Nonetheless, many studies assumed 
that the stand would remain unchanged in carbon stock pro-
jections, using age-biomass equations based on Pinus mas-
soniana. Even greater uncertainties arise when simplifying 

forest species by aggregating them into broader categories, 
such as broadleaf/needle-leaf, evergreen/deciduous, and 
mixed types. In many cases, the dominant tree species at the 
time of the survey may not necessarily be the optimal choice 
for the region, particularly during the early stages of succes-
sion when the dominant trees are more likely to be pioneer 
species rather than climax tree species (Rüger et al 2020). As 
forest ecosystems progress, pioneer tree species like Robinia 
pseudoacacia and Betula platyphylla will gradually be suc-
ceeded by other species, leading to shifts in species com-
position and even forest types (Fig. 1a). Generally, climax 
communities have a higher carbon saturation compared to 
pioneer tree species, which may result in an underestimation 
of carbon capacity when using pioneer species in projec-
tions. Moreover, with climate change persistently reshaping 
climax communities, estimating carbon potential using fixed 
tree species or forest types can introduce significant biases 
in long-term projections. Thus, the species composition and 
its changes should be considered in future simulations of 
long-term forest carbon dynamics, including climate change 
impacts on species distribution, species composition within 
stands, and forest succession trajectory.

Second, the majority of gridded-map-based projections 
rely on age and biomass relationships derived from field data 
collected and summarized at the stand level (Table 1). These 
projections employ a simplified assumption in which the age 
of future forests is increased incrementally from the baseline 

Table 1   Studies of forest carbon stock or/and sink projections in China

*Calculated based on total carbon storage
**Extrapolated to national total using carbon density and the forest area reported in 2018

Methods Periods Carbon 
sequestration rate 
(Pg year−1)

References

Statistical models Age-biomass growth model 2001–2050 0.26* Liu et al (2019)
Logistic growth model 2011–2050 0.15 Li (2021)
Age-biomass growth model 2022–2100 Shang et al (2023)
Forest carbon sequestration model 2010–2060 0.21 ± 0.02 Cai et al (2022)
Forest carbon sequestration based on the 

secondary succession theory
2010–2050 0.28–0.42 He et al (2017)

Age-biomass growth model 2010–2050 0.25* Huang et al (2012)
Parameter-sparse empirical models 2010–2060 0.17–0.25 Huang et al (2022a, b)
Age-dependent statistical model 2020–2060 0.27 Xu et al (2023)

2060–2100 0.13
A semi-empirical model 2000s–2040s 0.17 Yao et al (2018)
Age-biomass growth model 2010–2050 0.16* Yu et al (2021)
Age-biomass growth model 2010–2050 0.13–0.16 Zhang et al (2018)
IPCC volume-biomass methods 2010–2050 0.10* Li et al (2018)

Process-based ecosystem models Integrated terrestrial ecosystem carbon model 2000–2100 0.13* Ju et al (2007)
Integrated terrestrial ecosystem carbon model 2001–2100 0.17* Zhou et al (2013)

Remote-sensing-based machine-
learning models

Random forest model 2010–2050 0.83–1.52** Bastin et al (2019)
Random forest model 2010–2050 0.32** Xin et al (2022)
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year to the predicted year using an age-biomass model devel-
oped for this purpose (Yao et al 2018; Yu et al 2021). For 
example, a 20-year-old forest plot (or a grid in a forest map) 
in 2020 is often assumed to be 60 years old in 2060. This 
approach is more applicable for short-term estimation or for 
timber forests routinely harvested with fixed rotation years, 
whereas it might introduce bias in the long-term projec-
tion of non-timber forests (Yu et al 2024), especially for 
projections relying on gridded maps. This is because the 
complexities of age accrual in non-timber forests were not 
fully represented in the approach, where age dynamics are 
intricately shaped by factors such as mortality, regenera-
tion, and natural growth (see illustrations of age changes 
in Fig. 1b). This means that when applying an age-biomass 
model derived from field surveys to project long-term car-
bon stock in non-timber forests, the stand age of the future 
forest might not equal to the years between the baseline year 
and the simulated year. For instance, in the case of fast-
growing timber species like eucalypts, which are routinely 
harvested on fixed rotation cycles of 5–6 years, the change in 
stand age is predictable and fixed. Conversely, in secondary 
forests with diverse age and species compositions, the stand 
age represents the average age of canopy trees. Therefore, 
the stand age in surveyed stands might not necessarily indi-
cate the cumulative years of stand biomass accumulation. 
Instead, it reflects the average age of canopy trees that have 
survived under natural growth and disturbances, in which 
the annual accrual of stand age will often be divergent from 
1 (Fig. 1b). In some instances, the mortality of older trees 
can even reduce the average age in a gridded forest map. 
Consequently, even in the absence of disturbances, the 
assumption that annual age accrual is consistently equal to 
“1” for forest growth projections might be less suitable for 

some of the forests. Unfortunately, the assumption has been 
widely adopted in projections relying on gridded maps. For 
long-term assessments of carbon dynamics, future studies 
should either consider tree demographics within stand level 
or derive annual age accrual information from large samples 
for large-scale simulations (Dong et al 2023).

Third, the land suitability for future forestation was less 
considered in carbon dynamics projections. Appropriate 
planning is required to enhance forest carbon sink and avoid 
vast ecosystem degradation, in which a critical prerequisite 
is to locate the suitable land and identify the correspond-
ing appropriate species for forestation. Nonetheless, habitats 
of tree species will be shaped by climate change, resulting 
in shifts of land suitability and the choice of tree species. 
Inappropriate forestation might increase competition for land 
(Chen et al 2018) and water (Brown 2014), consequently 
leading to increased food prices and hunger risk (Doelman 
et al 2020). A study revealed that the potential available lands 
for forestation mainly distributed along the “Hu-huanyong-
line” under projected future climate change scenario (Zhang 
et al 2022). However, these areas are known to be prone to 
climatic stresses, which threaten the stability of forest sink 
(Anderegg William et al 2020; Marcos et al 2023). It is well-
acknowledged that climatic extremes, such as heat stress, 
drought, pests, and diseases, altered ecosystem succession, 
retarded forest growth, and aggravated tree die-offs (Ande-
regg et al 2015; Hicke et al 2012; Peng et al 2011; Vicente-
Serrano et al 2013). Recent studies have shown that species-
specific functional traits, such as big-sized trees, mycorrhizal 
types, fire adaptability, and leaf longevity, are beneficial for 
predicting the stability of carbon sequestration (Deng et al 
2023; Feng et al 2022; Huang et al 2022a, b; Wang et al 
2022, 2023; Luo et al 2023). These mechanisms affecting 

Fig. 1   Conceptual diagram illustrating the three common pitfalls in 
carbon stock and sink projections. Panel a: forest species composition 
changes during succession, which might eventually develop into a dif-
ferent forest type, e.g., needle-leaf forest to mixed forest. Panel b: the 
dynamics of forest age due to natural growth, harvest, and planting in 
a stand. The stand age (SA) is the average age of the trees at canopy 

level, while AA is the average age of all trees in a stand. The changes 
in the age of trees will not be proportionally propagated to the age 
of stand. Panel c: the future forestation activities might face the chal-
lenges of decreasing suitability of lands, including limited accessibil-
ity, water resources, nutrients, and rising costs
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the persistency and stability of forest carbon sink should be 
considered for accurate projection of sink potential.

Moreover, climate changes also affect the choice of tree 
species. These climatic feedbacks on carbon stability and 
forestation activities were less considered in forest carbon 
projections. Therefore, we advocate that climate-smart spe-
cies should be evaluated to identify species-specific land 
suitability for accurate assessment of forest carbon sink. 
A recent study has devoted to address this challenge and 
improved the assessment reliability of future forest carbon 
sink in China (Xu et al 2023). Regarding the land suitabil-
ity, a study revealed that forestation showed a tendency to 
increase on marginal lands, in which carbon sequestration 
was significantly lower than in non-marginal lands (Yu et al 
2023). Additionally, forestation on marginal lands has also 
increased forestation failures due to water depletion, biodi-
versity loss, nutrient limitation, and low tree survival rate 
(Yu et al 2023). Furthermore, previous studies have revealed 
that planted forests consumed more water than natural forest 
in water-limited area (Yu et al 2019), while the succession of 
planted forests also developed toward the depletion of phos-
phorus in contrary to phosphorus accumulation in natural 
forests (Yu et al 2022b). Thus, with the large and contigu-
ous lands available for forestation continuously occupied 
by new trees, crops, and urban expansions in China, future 
forestation might be increasingly driven to fragmented and 
marginal lands, which could be suffered from rising foresta-
tion costs, and will prone to high failure rate and reduced 
carbon sequestration potential.

To summarize, all 3 approaches, involving process-based 
ecosystem models, statistical models, and remote-sensing-
based machine-learning models, currently suffer from over-
simplifications of ecosystem succession and land suitability 
in describing forest biomass carbon dynamics. Statistical 
and remote-sensing-based machine-learning models, which 
rely directly on the age-biomass relationship in forest bio-
mass carbon estimation, might be more susceptible to tree 
demographic dynamics in long-term projections. Although 
promising, it is also challenging to improve tree demographic 
changes in process-based ecosystem models due to the com-
plex processes involved, such as wood harvest, tree regen-
eration/mortality, and ecosystem succession. We argue that 
these essential factors should be addressed in each approach 
to enhance the reliability and accuracy of long-term assess-
ments of forest carbon sink potential.
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