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Abstract Tree-ring width (RW), density, elemental com-
position, and stable carbon and oxygen isotope (δ13C, δ18O) 
are widely used as proxies to assess climate change, ecology, 
and environmental pollution; however, a specific pretreat-
ment has been needed for each proxy. Here, we developed a 
method by which each proxy can be measured in the same 
sample. First, the sample is polished for ring width meas-
urement. After obtaining the ring width data, the sample is 
cut to form a 1-mm-thick wood plate. The sample is then 
mounted in a vertical sample holder, and gradually scanned 
by an X-ray beam. Simultaneously, the count rates of the 
fluorescent photons of elements (for chemical characteriza-
tion) and a radiographic grayscale image (for wood density) 

are obtained, i.e. the density and the element content are 
obtained. Then, cellulose is isolated from the 1-mm wood 
plate by removal of lignin, and hemicellulose. After pro-
ducing this cellulose plate, cellulose subsamples are sepa-
rated by knife under the microscope for inter-annual and 
intra-annual stable carbon and oxygen isotope (δ13C, δ18O) 
analysis. Based on this method, RW, density, elemental com-
position, δ13C, and δ18O can be measured from the same 
sample, which reduces sample amount and treatment time, 
and is helpful for multi-proxy comparison and combination 
research.

Keywords Tree-ring width · Tree-ring density · Tree-
ring elemental composition · Tree-ring stable carbon and 
oxygen isotopes

Introduction

Over the past century, tree rings have been widely used 
for climatic reconstructions and studies of environmen-
tal change because they have the important advantages 
of annual resolution and being precise dated (Fritts 1976; 
Cook et al. 2010; Büntgen et al. 2021). The proxies typically 
derived from tree rings include the ring width and ring den-
sity, as well as the stable isotopes (δ13C, δ18O) and elemental 
composition of the rings. Tree-ring width is the widely used 
proxy for temperature, precipitation and streamflow recon-
struction (Gou et al. 2007; Cook et al. 2012; Wang et al. 
2017; Yan et al. 2020; Singh et al. 2021). Tree-ring density 
is also an important tool in tree ring research, with latewood 
density being considered one of the best proxies for recon-
structing past historical temperatures (Fan et al. 2009; Liang 
et al. 2016; Björklund et al. 2019). In addition, by detecting 
changes in the element composition contained in tree rings, 
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we can track the pollution history of polluted sites (Rocha 
et al. 2020). Stable carbon and oxygen isotopes can be used 
to for reconstructing temperature and precipitation varia-
tions, and calculating intrinsic water-use efficiency (iWUE) 
(Gagen et al. 2007; Xu et al. 2011, 2023; Frank et al. 2015).

Multi-proxy analysis of tree rings can assist with efforts 
to obtain a comprehensive understanding of different aspects 
of natural and human history (McCarroll and Loader 2004; 
Binda et al. 2021; Nguyen et al. 2021). For example, com-
bining tree-ring width and maximum late wood density 
(MXD) data can achieve a more effective summer tempera-
ture reconstruction than using only ring width data (Chen 
et al. 2019; George and Esper 2019). In addition, the combi-
nation of ring width and δ13C can well reconstruct the past 
temperature change (Liu et al. 2007), and may be an effec-
tive method to reconstruct the regional snow cover change 
(Liu et al. 2011). The combination of tree-ring width and 
δ18O explore the physiological response of tree growth to 
climate change, and reconstruct monthly streamflow (Fang 
et al. 2020; Nguyen et al. 2022; Zhao et al. 2023). The com-
bination of tree-ring δ13C and δ18O not only helps to sepa-
rate the effect of stomatal conductance or photosynthesis on 
water use efficiency (Grießinger et al. 2019; Guerrieri et al. 
2019; Mathias and Thomas 2021), but also strengthens the 
climate reconstruction signal whilst dampening the noise 
(Freund et al. 2023).

Usually, each proxy is analyzed separately due to the 
different pre-treatment methods, the limited number of 
samples, or different research goals. For example, 5-mm 
cores are collected for tree-ring width analysis, but 10-mm 

or 12-mm cores may be needed to produce enough sample 
material for density and isotopic analysis. The measurement 
of tree-ring width results in no sample loss except for pol-
ishing. For the analysis of density and elemental composi-
tion, X-ray technology is now a widely used measurement 
technique, but the samples must be cut into laths and treated 
with alcohol to remove resins and other extractable com-
pounds in the wood prior to X-raying (Schweingruber et 
al. 1978). Moreover, the analysis of δ13C and δ18O requires 
further chemical treatment to obtain α-cellulose for isotopic 
measurement (Loader et al. 1997). The process of cutting 
and chemical treatment causes large and permanent losses 
from the tree-ring samples. Hence, in situations where the 
amount of sample material is limited, a method that uses the 
minimum sample amount but makes it possible to obtain all 
these tree-ring proxies, and simultaneously reduces the time 
required and the sample loss, would be beneficial.

In this study, we present a method that can be used to 
measure the tree-ring width and density, as well as the 
elemental composition and the stable carbon and oxygen 
isotope ratios, from a single sample. After a single tree-ring 
core is dated, the sample is then cut to make a 1-mm wood 
plate for measurement of the density and elemental composi-
tion, and then this plate is treated to extract cellulose and cut 
into subsamples at annual or seasonal resolution to obtain 
the tree-ring δ13C and δ18O values. This method is described 
with respect to the instrumentation and equipment we use 
in our laboratory and makes maximum use of one sample to 
obtain the tree-ring width, density, elemental composition, 
and δ13C, δ18O data (Fig. 1).

Fig. 1  Processing flow chart
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Materials and method

Tree core sampling

The sample example in this text was collected from sub-
alpine Abies fargesii in Shennongjia, central China (SNJ, 
31.45 °N, 110.25 °E, 2800 m a.s.l.). Tree ring cores were 
extracted from healthy trees using 10 mm diameter incre-
ment borers at chest height. After each tree core was col-
lected, its quality was visually assessed. If problems such 
as decay are found, the sampling site of the tree should be 
replaced and resampled. The cores collected from each tree 
were wrapped in dry paper tubes and numbered, and finally 
brought back to the laboratory.

Tree‑ring width measurement

After the cores were air-dried, sample cores were removed 
from the paper tubes and placed with the fiber direction per-
pendicular to the horizontal into a groove on a slat. Each 
core was then sanded with a series of finer-grit sandpaper 
(400, 600, 800, 1000–2000). Sanding did not affect values 
for tree ring oxygen and carbon isotopes. After sanding, ring 
structure is then examined using a microscope (Fig. 2a) and 
coarsely dated to 10, 50, and 100 years using visual dating, 
and very narrow or suspected rings are marked.

We used a ring width measurement system (e.g., LINTAB 
measuring table (Rinntech, Heidelberg, Germany; the pre-
cision of 0.01 mm) and TSAP-Win software, the WinD-
ENDRO tree-ring analysis system (Regent Instruments, 
Canada), or Velmex measuring system (Velmex, Inc., 
Bloomfield, USA)) to measure the tree-ring widths, and 
then cross-date the cores (Fig. 2b). Finally, COFECHA 
(Holmes 1983) was used to check the quality of the cross-
dating results.

Tree‑ring density and elemental composition 
measurement

Sample cores were soaked in a water bath at 80 °C for 48 h 
to remove water-soluble materials. The water was replaced 
with hot water every 8 h to ensure that water-soluble com-
pounds are fully removed. The sample cores were then 
placed in a glass vessel with 99% alcohol for 48 h to remove 
resins and other soluble extracts.

Each core was glued to a wooden mount, and then cut 
into 1-mm-thick wood plates using a high-precision double-
edged saw (Fig. 3a) with the cuts made perpendicular to 
the fiber direction. Any glue at the edge of the wood plates 
was removed with a carving knife, and the rest of the glue 
was removed with a solvent such as acetone or ethanol in 
the cellulose extraction step, so the glue does not affect 
the extracted cellulose. A comparison of cellulose oxygen 

Fig. 2  Tree-ring width measurement. a Sanded samples. b Tree-ring widths measured using LINTAB

Fig. 3  Equipment for meas-
ureing tree-ring density and 
elemental composition. a 
Double-edged DendroCut saw 
(Walesch Electronic GmbH, 
Effretikon, Switzerland). b Itrax 
Multiscanner (Cox Analytical 
Systems, Sweden)
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isotopes in samples prepared by the wood-plate method with 
glue and the traditional method without glue showed that 
there was no significant difference in the oxygen isotopes 
values (Xu et al. 2013b).

Laths 1 mm thick were cut from the tree cores, then 
scanned with X-rays in an Itrax Multiscanner (Cox Ana-
lytical Systems, Mölndal, Sweden; Fig. 3b) that measures 
wood density and quantifies chemical elements using X-ray 
fluorescence (XRF) (Jacquin et al. 2017; Björklund et al. 
2019). The Itrax was operated at 30 kV and 35 mA with 
a Cr-tube, and the sample was exposed to the X-ray beam 
for 100 s at each measurement point and advanced in the 
radial direction in 20-μm steps. Simultaneously, count rates 
of fluorescent photons for chemical elements (for chemical 
characterization) and a radiographic greyscale image (for 
wood density) were generated. The scanner has a resolution 
of 50 μm, which is thus the minimum ring width that can be 
analyzed in the tree-ring samples.

Peaks in the continuous XRF spectrum were assigned to 
specific elements using the Q-spec software (Cox Analytical 
Systems), producing relative concentrations (counts of fluo-
rescent photons) of those elements detected and pre-defined 
within the wood structure for each analyzed point. Tree-ring 

boundaries were defined on the radiographic image using 
WinDENDRO (Regent Instruments, Canada) and the pixel-
based output was used to transfer these boundaries to the 
elemental counts. In addition, maximum latewood densities 
were extracted from the radiographic images by calibrating 
the greyscale intensities to wood densities using a light cali-
bration curve derived from a calibration wedge.

Cellulose extraction for oxygen and carbon isotope 
measurement

After the density and elemental analyses, each wood plate 
was cut into several sections (e.g., 7–8 cm for each section) 
with a knife designed to fit into glass tubes (Fig. 4a). Then, 
we scanned these wood plates with the multiscanner to 
record the original ring structure information. Finally, we 
sandwiched the wood plate between two Teflon punch sheets 
that were then tied together with cotton string (Fig. 4b) and 
inserted the sample into a glass test tube.

The samples in test tubes were then chemically treated 
to extract cellulose (Table 1). An acidified  NaClO2 solu-
tion was used to remove the lignin (Fig. 4c) with successive 
extractions until the wood plate turned white or light yellow, 

Fig. 4  Wood plates after dif-
ferent extraction steps before 
oxygen and carbon isotope 
measurements. a Before cel-
lulose extraction. b Packed 
between Teflon punch sheets. 
After removal of c lignin, then d 
hemicellulose and decomposed 
lignin, then e lipids. f Dried 
1-mm-thick cellulose plate. g 
Wrapped in silver foil to meas-
ure oxygen isotope (roll shape, 
left) and in tin foil for carbon 
isotope (cuboid shape, right)
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indicating that the lignin has been removed. Samples require 
vary in the number of extractions, but generally require 
at least four times. Samples are then soaked in an NaOH 
(17 wt%) solution to remove hemicellulose and decomposed 
lignin (Xu et al. 2011, 2013a) (Fig. 4d), then washed gently 
and thoroughly in distilled water until pH < 10, the solu-
tion is then neutralized with diluted HCl. Samples were 
then wash a few times with distilled water until pH was 
5–7. After organic solvents removed lipids (Fig. 4e), sam-
ples were oven-dried at 70 °C to yield cellulose plates for 
further analysis.

The dried 1-mm-thick cellulose plate was then placed on a 
photo-binder with an adherent black surface and transparent 
plastic film (Fig. 4f). The samples were then viewed with a 
microscope. Subsamples were cut and weighed (± 0.001 mg) 
to measure oxygen isotopes (120–200 µg) and carbon iso-
topes (60–120 µg) and rolled in a 7 mm × 7 mm piece of 
silver foil for oxygen isotopes or a 7 mm × 7 mm piece of tin 
foil in a cuboid shape for carbon isotopes (Fig. 4g).

Stable isotope ratios of the cellulose samples were 
measured with an isotope ratio mass spectrometer (Delta 
V Advantage, Thermo Scientific, Germany) coupled to a 
pyrolysis-type, high-temperature conversion elemental 
analyzer (Flash 2000-HT, Thermo Scientific, Germany). 
We measured oxygen isotopes using the pyrolysis method 
and carbon isotopes using the combustion method. Merck’s 
cellulose microcrystalline was used as the authentic stand-
ard (δ18O value: 29‰, δ13C value: − 24.58‰). The Merck 
standard was used for each of eight cellulose samples to 
calibrate δ18O/16O and δ13C/12C ratios for the sample. The 
standard deviation for the Merck sample in one batch was 
less than 0.2‰ for the oxygen isotope and 0.1‰ for the 
carbon isotope.

Results

The width, density, elemental composition and stable oxy-
gen isotope levels for sample SNJ-526A from Shennongjia 

in Hubei Province, China are shown in Fig. 5. The ring-
width time series in Fig. 5a shows the interannual variations. 
In particular, the ring width in 1971–1973, 1989, 2000 and 
2014 was extremely narrow.

Comparing Fig. 5a and 5b, the maximum latewood den-
sity is consistent with the tree-ring width, and the density 
decreases obviously in years with very narrow tree rings. In 
addition, the maximum latewood density has an increasing 
trend in the whole period. Using K and Ca as an example 
of elemental analysis (Fig. 5c), we found sudden changes 
in their content around 1995, which may be influenced by 
sapwood.

After the chemical extractions of the samples, the final 
cellulose plates are white (Fig. 4f), with no hemicellulose 
or lignin. The purity of the resulting cellulose obtained from 
this extraction process was verified in a previous study (Xu 
et al. 2013b). The tree-ring boundaries can be clearly iden-
tified, allowing binocular-aided tree-ring dissection with a 
suitable knife. In Fig. 5d, the δ18O ratio of the sample seems 
to increase slowly from 1950 to 2014. In addition, previous 
study showed stable oxygen isotope levels were fairly con-
sistent between different trees at this sampling site (Zhao 
et al. 2023).

Discussion

The proposed method can be used to obtain tree-ring 
width, density, elemental composition, and stable carbon 
and oxygen isotope data from the same ring in one core 
from a tree. Therefore, the accurate separation of each ring 
is very important. For the width, density, and elemental 
composition measurements, it is easy to accurately define 
each ring because the original ring structure and dating 
information can be seen. For the carbon and oxygen iso-
tope measurements, individual cellulose rings should be 
separated from the cellulose plate, but matching the cellu-
lose plate to the original wood plate is sometimes difficult. 
Shrinkage of the samples during the cellulose extraction 

Table 1  Chemical extraction to analyze cellulose in tree-ring cores

Step Solution Duration No. of times Bath temperature

Step 1: removal of lignin Acidified  NaClO2 1 h 4 or more 70 °C
Wash Hot distilled water 

(98 ~ 100 °C)
15 min 3

Step 2: removal of hemicellulose and 
decomposed lignin

NaOH (17 wt %) 1 h 3 80 °C

Wash distilled water 10 min Until pH < 10
Neutralization 0.01N HCl 10 min 1
Wash distilled water 10 min Until pH 5–7
Step 3: removal of lipids Solvent (“acetone”; 1:1 

“toluene–ethanol”)
Acetone: 10 min; 1:1 toluene-

ethanol: over night
1
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(Xu et al. 2011, 2013b; Kagawa et al. 2015) may cause the 
cellulose plate to break into several places, and several 
rings on the edge of the wood plate may be lost. Therefore, 
matching the broken cellulose plate with the original wood 
plate is a critical step and can be achieved by carefully 
comparing the cellulose plate to the original wood plate 
scanned image. The high inter-tree correlation (0.8–0.9) 
that was previously found for cellulose oxygen isotope 
levels from different trees indicates the robustness of this 
method (Xu et al. 2019).

This method combines procedures for measuring ring 
width, wood density and elemental composition, and stable 
carbon and oxygen isotopes. However, it is of limited use for 
samples with extremely narrow rings (< 50 μm, the resolu-
tion of the scanner). In addition, for stable isotope analysis, 
very narrow rings (< 0.1 mm) do not produce enough mate-
rial to measure (Xu et al. 2013a).

One advantage of this method is that more data are gen-
erated from a single sample. Only one wood plate is used, 
and the remaining sample material can be used for other 
analyses. If the core is collected with a 10 or 12 mm incre-
ment borer, then two or three 1-mm wood plates would be 
available for replicate analyses or for measuring other vari-
ables such as hydrogen, nitrogen, sulfur, or radioisotopes. In 
addition, the scanned high-resolution image that is produced 
includes anatomical information such as frost rings and resin 
ducts.

This method can be expanded when the sample material 
is limited and can help to maximize the paleo-information 
extracted from a limited number of samples. It may also be 
useful for other paleoclimate proxies such as stalagmites 

and coral, for measuring the thickness of the laminae, then 
density and chemical elements, and finally carbon and oxy-
gen isotopes.
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