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Introduction

In forest ecosystems, the above- and belowground compo-
nents, litter, and soil are four major sources that are respon-
sible for the flux of nutrients (Persch et al. 2015; Awasthi 
et al. 2022a, b). Among these, belowground factors have 
a pivotal role in the functioning of a forest ecosystem and 
contribute more than 30% of the net primary productivity 
of the terrestrial ecosystems (Mikieleko et al. 2021; Karki 
et al. 2022; Pandey et al. 2023a). Generally, in terrestrial 
ecosystems, the availability of soil N restricts primary pro-
duction (Chapin et al. 2002; LeBauer and Treseder 2008), 
and N availability is a key factor in ecosystem productivity 
(Vitousek and Howard 1991; Bonito et al. 2003). Many stud-
ies of N transformation processes have shown that soil pH, 
temperature, moisture, soil organic matter quality, and quan-
tity, in particular, total N and C/N values can great affect N 
mineralization (Owen et al. 2003; Knoepp and Vose 2007). 
Changes in land-use modify the physicochemical properties 
of soil and thus, have a great influence on the soil N miner-
alization processes (Bargali et al. 2019; Manral et al. 2022; 
Pandey et al. 2023b). However, changes in soil N concentra-
tion and the process of N mineralization in different land-
use systems are not well characterized and may vary with 
site quality, species composition, and management practices 
(Karki et al. 2021; Manral et al. 2023). N mineralization by 
microbes mainly depends on the N levels in the soil in any 
system and the nature of the nutrient inputs (Padalia et al. 
2018; Ullah et al. 2019; Manral et al. 2020).

Abstract  In this study, we investigated how tree species 
affect N mineralization in connection to some soil properties 
and seconder metabolite levels of litter, in the soil of the old-
est native forest communities. In the oldest pure communi-
ties of Pinus nigra (PN), Fagus orientalis (FO), and Abies 
bornmuelleriana (AB) in the mountain range of Mount 
Uludağ, Bursa, Turkey, annual net yield and N mineraliza-
tion in the 0–5- and 5–20-cm soil layers were determined in 
a field incubation study over 1 year. Sampling locations were 
chosen from 1300 to 1600 m a.s.l., and moisture content (%), 
pH, water-holding capacity (%), organic C, total N, and C/N 
ratio, and annual net mineral N yield of the soil and hydro-
lyzed tannic acid and total phenolic compounds in litter were 
compared for these forest communities. F. orientalis had 
the highest annual net Nmin yield (43.9 ± 4.8 kg ha–1 a–1), 
P. nigra the lowest (30.5 ± 4.2 kg ha–1 a–1). Our findings 
show that in the oldest forest ecosystems, the seasonal soil 
moisture content and tree species play an essential role in N 
cycling and that hydrolyzed tannic acids and total phenolic 
compounds effectively control N turnover. Tannic acid and 
total phenolics in the litter were found to inhibit nitrification, 
but total phenolics were found to stimulate ammonification.
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Soil organic matter is typically the principal source of 
N in mature forests (Nadelhoffer et al. 1999a, 1999b). The 
amount of organic matter that plants produce and the rate 
at which it decomposes vary greatly among plant species 
(Lovett et al. 2004; Chapman et al. 2006; Güleryüz and 
Everest 2010). The prevailing consensus is that deciduous 
tree species provide higher quality litter than coniferous tree 
species do (Bauhus et al. 1998; Aerts and Chapin 2000; Ber-
endse and Scheffer 2009). In relation to this hypothesis, N 
mineralization rates are higher in soils with deciduous spe-
cies than in those with coniferous species. However, other 
studies have shown the opposite situation (Hackl et al. 2004; 
Zhang et al. 2011). Vegetation type and tree species greatly 
impact both soil C and N dynamics (Hobbie et al. 2007). 
The lignin/N and C/N ratios in the litter also directly impact 
decomposition rates (Taylor et al. 1989; Hobbie 2008). Soil 
C/N ratio has been shown to be negatively correlated with 
nitrification and N mineralization (Lovett et al. 2004; Ven-
terea et al. 2003).

Many studies have addressed the effect of changes in spe-
cies diversity on N cycling in plant communities that have 
been designed and established by research groups (e.g., Til-
man et al. 1996). However, the effects of natural communi-
ties on key ecosystem functions such as N cycling and its 
relationship to the factors affecting the communities are not 
as well studied. According to Arslan et al. (2010), a natural 
oak stand and a thinned oak stand had higher yearly net 
accumulation of nitrates than in pine plantations, demon-
strating the significance of species of tree and forest manage-
ment approaches on N cycling in forest ecosystems.

Phenolic compounds in the litter also affect the micro-
organisms that degrade soil organic matter and thus influ-
ence soil processes such as N and C mineralization (Kanerva 
2007; Smolander et al. 2012; Adamczyk et al. 2018; Smo-
lander and Kitunen 2021). Several studies have indicated 
that tannin and/or polyphenol content in litter are good indi-
cators of decomposition, net N mineralization, and N immo-
bilization rates (Campbell and Fuchshuber 1995; Kalburtji 
et al. 1999; Driebe and Whitham 2000). In general, plants 
growing in low pH and low soil fertility conditions tend to 
have high concentrations of phenolic compounds, including 
tannins (Northup et al. 1998; Thoss et al. 2004). Phenolic 
compounds have also been shown to provide a C source for 
microbial populations in forest soil (Schmidt 1988; Souto 
et al. 2000), but high tannin content in the litter is generally 
associated with low decomposition rates (Kalburtji et al. 
1999; Kraus et al. 2003). In addition, phenolic compounds in 
leaf litter or humus may inhibit nitrification (Baldwin et al. 
1983; Kraus et al. 2004; Kanerva et al. 2006).

As natural areas are shrinking in the world and in Tur-
key, land-use changes and degradation also affect global 
nutrient cycles. Studies that have focused on predicting 
the effect of biodiversity change on the global cycle by 

determining the changes that occur in the N cycle when the 
species composition changes in natural (i.e., anthropogeni-
cally undisturbed) areas. A significant part of the forest 
areas in Turkey are natural ecosystems. Anatolia has a high 
biodiversity with 20.76 million hectares (about 27% of 
the country) of forest cover (Kaya and Raynal 2001). Cli-
max forests, composed of Cedrus libani communities and 
three endemics Abies communities [A. cilicica (Antoine 
et Kotschy) Carrière, A. nordmanniana (Stev.) Spach, A. 
bornmuelleriana Mattf.], are of considerable significance 
to Turkey in terms of being natural ecosystems. There are 
also pure or mixed compositions of the oldest native cli-
max forests such as Abies bornmuelleriana (AB), Fagus 
orientalis (FO), and Pinus nigra (PN) on Uludağ Moun-
tain, Bursa, Turkey. These forests occur in natural com-
munities on the northern slopes of this mountain. The 
objective of this study was to investigate how tree species 
affect N mineralization in the soil of the oldest native for-
est communities in relation to various soil properties and 
the total phenolic and tannin content in the litter.

Material and methods

Study area

The study area on Uludağ Mountain in Bursa in northwest-
ern Turkey (40°4′ N, 29°13′ E) constitutes the western end 
of the Pontic mountain range. It has granitic slopes in the 
northwest and steep calcareous rock slopes in the south, with 
a variety of metamorphic and plutonic granodiorites making 
up the nucleus (Ketin 1983). The mountain has a mediter-
ranean-type climate at lower elevations, which are close to 
the city of Bursa on its northwestern side, and a rainy, par-
tially moderate microthermic climate, with freezing winters 
at higher elevations. Climate diagrams, according to Walter 
and Lieth (1960–1967), show climatic differences between 
Bursa city and Uludağ Zirve station (Fig. 1). The mountain’s 
climate has been categorized as belonging to the East Med-
iterranean climate group’s first family (Akman 1990). At 
Uludağ’s top, the maximum snow depth is 430 cm, and there 
are on average 66.7 snow days each year, and 179.2 days 
with snow cover (Güleryüz 1992).

The 11,338-ha Uludağ National Park, one of Turkey’s 
first national parks, was established in 1961. Because of 
its elevation (2543 m a.s.l.) and geologic features, it has a 
diverse range of endemic species that constitute many dis-
tinct vegetation types. For example, there are pure or mixed 
compositions of the oldest native climax forests such as 
Abies bornmuelleriana, Fagus orientalis, and Pinus nigra. 
Uludağ is therefore considered to be one of Turkey’s Impor-
tant Plant Areas (IPAs) (Güleryüz et al. 2010a).
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Soil sampling and field incubation

One sampling site (100 m × 100 m) for each community 
(pure A. bornmuelleriana, P. nigra, and F. orientalis) was 
selected from the mountain belt between 1300 and 1600 m 
a.s.l. Our study sites in the northwest have a substratum of 
granitic rock. Details for each site are given in Table 1.

Soils were collected and buried for different periods 
of incubation at the sites using the “buried bag method” 
(Eno 1960) from May 2013 to May 2014. Three mineral 
soil layer samples (0–5 cm and 5–20 cm) were collected to 
determine the bulk density (20 cm × 20 cm × 20 cm) from 
random locations inside the sampling site of each forest 
type (Bulk density is calculated with incubating and col-
lected soil samples). Roots and the gross fraction of the soil 
were separated from the samples using a 4-mm mesh sieve, 
and they were then mixed separately. After then, each soil 
sample was subdivided into two samples. In order to deter-
mine the initial mineral N contents (Actual Nmin) in the 
soil solution, one sample (about 100−200 g) was taken to 
the laboratory (three soil samples collected at each forest 
type). The other sample (about 100–200 g) was reburied in 
a polyethylene bag at the same depth it was taken (Incubated 
Nmin) (Three bags buried at each forest type) (Güleryüz 
et al. 2008). Soil samples were transported in ice boxes and 
kept at + 4 °C in the laboratory for short periods of time 
until analysis. From 3 May to 26 October 2013 at 6-week 
intervals (first four incubation period) and during a snow-
covered incubation period in winter from 26 October 2013 
to 1 May 2014 (fifth incubation period, about 32 weeks), 
soil moisture, mineral N concentration, and pH were 
measured (1. incubation period: 03.05.2013−22.06.2013, 
2. incubation period: 22.06.2013−02.08.2013, 3. incu-
bation period: 02.08.2013–15.09.2013, 4. incubation 
period: 15.09.2013–26.10.2013, 5. incubation period: 
26.10.2013−01.05.2014). In September 2013, litter samples 
were collected to measure total phenolic compounds and 
hydrolyzed tannic acid.

Soil extraction and chemical analyses

Soil moisture and the water-holding capacity (%) were meas-
ured volumetrically, total soil N (%) was determined using 
the Kjeldahl method, and the wet incineration method was 
used to determine total organic C (%) in the soil (Steub-
ing 1965). The pH of the fresh soil materials was measured 

Fig. 1   Climate diagrams for Bursa, Yeşilkonak, and Uludağ, Tur-
key (from Güleryüz [1992] and Ergül [1987] after Walter and 
Lieth [1960–1967]). Curve of average monthly precipitation cor-
responding to curve of average monthly temperature in relation of 
20  mm = 10  °C = 1 unit of scale. Humide period vertically hatched, 
arid period dotted

▸
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using a 1:2.5 mixture of soil to water (in saturated mud; 
Steubing 1965). The microdistillation technique was used 
to determine the soil mineral N (Bremner and Keeney 1965; 
Gerlach 1973). The total phenolics and hydrolyzed tannic 
acid concentration of the litter were determined spectro-
photometrically using the Folin–Ciocalteu method (Makkar 
2000).

Calculations and statistical analyses

The net N mineralization (Nmin) yield for each sampling 
(incubation) period was determined by subtracting the actual 
Nmin from the Nmin in the incubated sample (kg Nmin 
ha–1). The annual total mineral N yield (kg Nmin ha–1 a–1) 
for each soil layer and community was calculated by adding 
the net yield values from each incubation period. Because 
the incubation periods were different durations, the net N 
mineralization yield for each period was transformed into 
daily yields. The net N mineralization per week (kg Nmin 
ha–1 week–1) was then calculated using the daily yields. The 
seasonal fluctuation of the net N mineralization was deter-
mined using the weekly yields (Güleryüz et al. 2008; Arslan 
et al. 2010).

The soil pH, moisture, water-holding capacity (WHC%), 
organic C (% and kg/ha), total N (% and kg/ha), and C/N 
ratio, and annual net mineral N yield and the hydrolyzed 
tannic acid and total phenolic compounds of litter were com-
pared for significant differences between the forest commu-
nities using a one-way ANOVA. In addition, the seasonal 
fluctuations of actual Nmin, net mineral N yield (kg Nmin 
ha–1 week–1) and soil moisture content for each community 
were analyzed. The significance among means was deter-
mined by the Tukey HSD test. A simple correlation test 
was also used to analyze the relationship between each soil 
property (soil moisture, pH, maximum water holding capac-
ity, organic C, total N, and C/N ratio) and the net mineral 
N yield and the relationship between the concentration of 
hydrolyzed tannic acid and total phenolic compounds in the 
litter and the annual net NH4

+-N and NO3
––N yield in soil 

(0–5-cm layer). Statistica Ver. 6.0 (SAS/STATICA) was used 
for all tests with significance level α < 0.05.

Results

Soil properties

Table 2 shows the results of the comparison of soil proper-
ties between the sample sites. All soil properties differed 
significantly between the communities except for moisture, 
pH, and C (% and kg/ha) in the 0–5-cm layer (α < 0.05). 
For soil properties in the 5–20-cm layer, except for organic 
C, differed significantly (α < 0.05). Total N levels were 
lower in the AB community than in other communities 
in the layer of 0–5-cm, but organic C levels were simi-
lar among the communities. The C/N ratio was highest in 
the AB community. All communities had a similar mean 
pH, but the pH was highest in the PN community, which 
also had a relatively high soil WHC% in the 0–5-cm layer 
(Table 2).

In addition, seasonal fluctuation of soil moisture (0–5-
cm layer) during the year was significant in all communi-
ties, it is found significant in all communities except the 
AB community in the layer of 5–20-cm (α < 0.05). In all 
communities, soil moisture was highest in May 2013 and 
lowest in September 2013 (Fig. 2).

Actual mineral N

Actual NH4
+–N did not differ among the sampling dates 

in the 0–5-cm soil layer of the PN community (α > 0.05), 
in other communities it differed significantly (α < 0.05). 
However, in the soil of 5–20-cm layer of all communities, 
the actual NH4

+–N values differed significantly between 
sampling dates (α < 0.05) (Fig. 3). Actual NO3

––N values 
for the soil in the 0–5-cm layer of all communities also 
differed significantly between sampling dates (α < 0.05). 
While actual NO3

––N values in the 0–5-cm soil layer in 
the AB community increased in May (α < 0.05), these rates 
were also observed in the FO community in September 
and October (α < 0.05) and in the PN community in May 
and October (α < 0.05). All communities but FO had an 
increase in nitrate content in the 5–20-cm soil layer in May 
(α < 0.05) (Fig. 3).

Table 1   Description of sampling sites for each plant community

Community Description

Pure Abies bornmuelleriana (AB) 40°10′94″ N 29°09′60″ E, cover 100%, slope 15% W, 1590 m a.s.l.
Vaccinium myrtillus, Lamium garganicum, Galium rotindifolium, Crepis sp.

Pinus nigra (PN) 40°19′87″ N 29°07′69″ E, cover 90%, slope 10% W, 1397 m a.s.l.
Dorycnium bithynicum, G. rotundifolium

Fagus orientalis (FO) 40°11′26″N 29°07′59″E, cover 100%, slope 10% W, 1358 m a.s.l.
Scilla bifolia, Crocus biflorus, Pyrola minor
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Annual mineral N yield and seasonal fluctuation

As shown in Fig. 4, seasonal fluctuations in net NO3
−–N and 

NH4
+–N yield (kg Nmin ha–1 week–1) in the 0–5-cm soil 

layer of all communities differed significantly between sam-
pling periods dates (α < 0.05). In the 5–20-cm soil layer, net 
NO3

−–N yield differed significantly among sampling dates 
for all situations (α < 0.05) except in the AB community. In 
general, net NO3

−–N yields in the AB and FO communities 
were highest in May and June. During the same period, the 
net NH4

+-N yield was highest in the PN community.
The annual net Nmin yields for the communities are 

shown in Table 3. Annual net NO3
−–N yield in the 0–5-

cm soil layer differed significantly between communi-
ties (α < 0.05). The annual net NO3

−–N yield in the 0–5-
cm soil layer was higher in FO (19.8 kg ha–1 a–1) than in 
the other two forest communities (AB: 12.9 kg ha–1 a–1, 
for PN, 2.5 kg ha–1 a–1). The annual net mineral N yield 
(NH4

+ + NO3
−–N) differed significantly in the soil of 

0–20 cm layer between the communities (α < 0.05). FO had 
the highest annual net Nmin yield (43.9 ± 4.8 kg ha–1 a–1), 
and PN had the lowest (30.5 ± 4.2 kg ha–1 a–1).

Total phenolic compounds and tannic acid in the litter

The concentrations of secondary metabolites (total phe-
nolic compounds and hydrolyzed tannic acid) in the litter 
layer differed significantly between communities (α < 0.05) 
(Table 4). Hydrolyzed tannic acid and total phenolic com-
pounds concentrations in the litter were  low in the AB 
(53.2 ± 3.6 mg/L for total phenolics and 0.553 ± 0.2 mg/g 

organic matter for tannic acid) and FO (69.7 ± 13.6 mg/L 
for total phenolics and 0.783 ± 0.1 mg/g organic matter for 
tannic acid) communities and highest in the PN community 
(288.2 ± 41.5 mg/L and 1.833 ± 0.4 mg/g organic matter).

Correlation between soil characteristics and net 
mineral N yield

For both soil layers, only the relationship between soil mois-
ture and net NO3

−–N and NH4
+–N yield was found to be sig-

nificant (α < 0.05). On the other hand, the correlation results 
for other factors were mixed (Table 5).

Correlation between total phenolic compounds 
and tannic acid in the litter and soil net mineral N yield

Total phenolics concentrations in the litter was positively 
correlated with annual net NH4

+-N yield (α < 0.05) and neg-
atively correlated with annual net NO3

––N yield (α < 0.05) 
in the top layer of soil (0–5-cm), respectively. Soil NH4

+–N 
yield and tannic acid were not positively significantly cor-
related (α > 0.05), but soil NO3

−–N yield was significantly 
negative correlated with tannic acid (α < 0.05) (Table 6).

Discussion

Physicochemical properties of soils vary in space and time 
because of variations in topography, climate, weathering 
processes, vegetation cover, and microbial activities (Paudel 
and Sah 2003; Manral et al. 2020) and several other biotic 

Table 2   Mean ± SD values for 
soil properties at depths of 0–5 
and 5–20 cm. Different letters 
indicate significant differences 
in a specific soil property at 
a specific soil depth among 
the communities according to 
Tukey’s HSD test (α < 0.05); 
N = 15

AB Abies bornmuelleriana, PN Pinus nigra, FO Fagus orientalis 

Soil property Soil depth (cm) Mean ± SD

AB PN FO

pH (H2O) 0–5 5.1 ± 0.5a 5.2 ± 0.3 a 5.0 ± 0.4 a
5–20 4.5 ± 0.6 b 5.3 ± 0.4 a 4.8 ± 0.5 b

Moisture (%) 0–5 23.2 ± 13.2 a 25.2 ± 13.3 a 27.2 ± 10.8 a
5–20 11.3 ± 4.7 b 13.7 ± 4.8 b 21.4 ± 6.8 a

Total N (%) 0–5 0.3 ± 0.1 b 0.4 ± 0.1 a 0.4 ± 0.1 a
5–20 0.1 ± 0.1 b 0.2 ± 0.0 a 0.2 ± 0.2 a

Total N (kg ha–1) 0–5 1404 ± 382 b 1784 ± 433 a 1936 ± 369 a
5–20 1140 ± 439 b 1896 ± 226 a 2241 ± 476 a

Organic C (%) 0–5 3.4 ± 0.3 a 3.3 ± 0.4 a 3.3 ± 0.3 a
5–20 2.9 ± 0.6 a 3.3 ± 0.4 a 3.0 ± 0.4 a

Organic C (kg ha–1) 0–5 16,034 ± 4034 a 14,351 ± 3623 a 16,630 ± 3358 a
5–20 28,040 ± 8348 a 29,353 ± 5927 a 28,618 ± 5396 a

C/N ratio (weight ratio) 0–5 11.8 ± 3.0 a 8.6 ± 2.6 b 8.8 ± 1.9 b
5–20 26.0 ± 6.9 a 15.6 ± 2.7 b 13.1 ± 3.1 b

WHC (%) 0–5 59.6 ± 12.2 b 81.5 ± 19.0 a 63.0 ± 6.9 b
5–20 42.0 ± 8.7 b 47.6 ± 5.3 ab 49.0 ± 6.9 a
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and abiotic factors (Bargali et al. 1993). In highly dissected 
mountainous landscapes, bioclimatic conditions change 
rapidly and may vary within short distances, resulting in a 
pronounced heterogeneity of soil types and their physico-
chemical properties (Baumler 2015; Bargali et al. 2018). The 
soils on the Uludağ’s granite bedrock are located between 
1300 and 2200 m above sea level and are generally loamy 
sand and sandy loam textures (Çepel 1978). These soils in 
northern aspect of Uludağ that made of granite bedrock have 
the highest sand content (78%–89%) and the lowest clay con-
tent (5%–17%) compared to other bedrocks in Uludağ (Çepel 
1990). Sarıyıldız et al. (2022) recorded 83% sand, 10.4% silt, 
6.6% clay, and the 1.41 g/cm3 bulk density for the soil in the 
Abies bornmuelleriana community with a northern aspect at 
1500–1600 m a.s.l. The physicochemical properties of soil 
from the sample sites are given in Table 2.

Soil pH, which is generally between 6.0 and 8.0 
(Kyveryga et al. 2004), increases nitrification, whereas lower 

soil pH can prevent nitrification (Page et al. 2002; Ste-Marie 
and Pare 1999). Here we revealed a low nitrate yield in the 
soil of the P. nigra community, which has acidic soil, con-
sistent with findings from prior studies on acidic forest sites 
(Priha and Smolander 1997; Zhong and Makeshin 2006; 
Nugroho et al. 2007). The acidic soil in the A. bornmuel-
leriana community and its high nitrate yield supports pre-
vious findings of nitrate in acidic soils (Zöttl 1960; Runge 
1974). According to Bauhus et al. (1998), although decidu-
ous species enhance soil properties by raising pH levels and 
increasing nutrient cycling, conifers can significantly alter 
soil characteristics in a negative way. While we determined 
a low nitrate yield in the Pinus nigra community and high 
nitrate yield in the deciduous Fagus orientalis community, 
coinciding with our hypothesis, nitrification rates for Fagus 
orientalis could not be explained solely by changes in pH. 
Indeed, our correlation analysis showed that in both soil lay-
ers, the nitrification rate did not depend mainly on pH. Our 
results are consistent with those of Booth et al. (2005) that 
suggest that soil pH does not influence nitrification.

In addition to microclimatic conditions such as soil mois-
ture and temperature, the chemistry of the throughfall and 
litter of a specific tree species has an impact on ground veg-
etation and C and N transformations (Barbier et al. 2008). 
Organic matter produced by different plant types and its rate 
of decomposition can vary significantly between species 
(Lovett et al. 2004; Chapman et al. 2006). Organic matter 
quantity and quality are considered primary soil character-
istics (Chapin 2003).

Total N also differed significantly (α < 0.05) among the 
communities, but they had similar amounts of soil organic C. 
In the Toros Mountains, the P. nigra community had mean of 
3.4 ± 0.3% C in soil samples collected from the 0–10-cm soil 
layer (Güleryüz and Everest 2010). This value is close to the 
average of 3.3 ± 0.4 in the 0–5-cm layer of the same commu-
nity in our study, but the mean of 12.32 ± 5.35 for the same 
community on Spil Mountain is much higher (Güleryüz 
et al. 2010b). In our study, the soil in the A. bornmuelleriana 
community similarly had a mean organic C of 3.4 ± 0.3% in 
the same layer of soil (0–5-cm). Sarıyıldız et al. (2022) also 
reported an approximate mean of 3.573 ± 0.24% C for the 
same species of community (1600–1700 m a.s.l., N aspect). 
In our study, there was no statistically significant relation-
ship between organic C % and the yield of NH4

+-N in min-
eral soil for the different plant communities (0–5-cm layer) 
(α > 0.05, r = 0.127; Table 5), similar to previous findings 
(Güleryüz and Everest 2010). The amounts of total N were 
lower in the AB community (0.3 ± 0.1%, 1404 ± 382 kg/ha) 
than in other communities in the upper soil layer (0.4 ± 0.1% 
for PN and FO, 1784 ± 433 kg/ha for PO, 1936 ± 369 kg/
ha for FO). Total N % was 0.3 ± 0.1 in the AB community 
in the 0–5-cm layer, higher than 0.218 ± 0.08% reported by 
Sarıyıldız et al. (2022) for AB soils at 1600–1700 m a.s.l. 

Fig. 2   Mean (± SD) soil moisture (%) at soil depths 0–5 and 
5–20 cm in three old climax forest communities in 2013–2014. Dif-
ferent letters indicate significant differences in moisture at a specific 
soil depth in the community among sampling periods dates in Tuk-
ey’s HSD test (α < 0.05); N = 3
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on the N aspect. The soils in this community have high 
C/N ratios due to the low total N content (A. bornmuel-
leriana:11.8). Considering that the N mineralization in the 
soil is inversely proportional to the C/N ratio (Li et al. 2014; 
Zeller et al. 2007; Leuschner 2006), the annual net nitrate 
yield in the soils of the A. bornmuelleriana community 
is expected to be high. In our study, the annual net nitrate 
yield in the soils of A. bornmuelleriana and F. orientalis 
communities is indeed high. It should also be noted that N 

mineralization is not influenced only by the C/N ratio. The 
quality of litter (lignin/N) can be more effective at regulating 
N mineralization in both mineral and organic soil than cli-
mate and other factors (Scott and Binkley 1997). It has been 
reported that the quality and quantity of the foliar litter char-
acterized by C/N ratios and lignin/N affect N mineraliza-
tion, nitrification, and litter decomposition rate (Taylor et al. 
1989) and differs among tree species in forest ecosystems 
(Nugroho et al. 2006). Consequently, tree species highly 

Fig. 3   Mean (± SD) actual 
mineral N in soil depths 0–5 
and 5–20 cm in old climax for-
est communities in 2013–2014. 
Different letters indicate signifi-
cant differences in actual min-
eral N at a specific soil depth in 
the community among sampling 
periods dates in Tukey’s HSD 
test (α < 0.05); N = 3
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Fig. 4   Mean (± SD) net min-
eral N yield (kg ha–1 week–1) 
at two soil depths in three old 
climax forest communities in 
2013–2014. Different letters 
indicate significant differences 
in net mineral N at a specific 
soil depth in the community 
among sampling periods dates 
in Tukey’s HSD test (α < 0.05); 
N = 3
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influence humus type. Nitrogen in litter with higher lignin 
or other compounds that are more resistant to decomposition 
mineralizes more slowly than in the litter with more-labile 
C compounds (Chapin 2003). It is generally accepted that 
litter that contains a high level of N shows more net N min-
eralization than litter that contains a low level (Prescott et al. 

2000; Chapin 2003; Laughlin 2011) and is supported by the 
fact that the F. orientalis community had the highest soil N 
content and N transformation rates. Several reports indicate 
that the C:N ratio and total N content have a far greater 
impact than conventional soil properties such as microbial 
biomass N to total N, microbial biomass C to total C, and pH 
on the rate of mineralization (Prescott 1995; Vervaet et al. 
2002). An extensive number of studies have identified soil 
N concentration as the best predictor of N mineralization 
rates (Wang et al. 2001; Booth et al. 2005; Ros et al. 2011). 
In our study, in the 0–5-cm soil layer, total N and nitrate 
yield were not significantly correlated (α > 0.05), but they 
were in the 5–20-cm soil layer (α < 0.05) (Table 5). Nitrate 
yield had no significant relationship with the C/N ratio, simi-
lar to the result of Andrianarisoa et al. (2010). Some basic 
properties of nitrification such as pH and C/N ratio may also 
be an indicator for humus rather than mineral soil (Persson 

Table 3   Net annual mineral N yield (kg Nmin ha–1 a–1) in the three forest communities. Different letters indicate significant differences in net 
annual mineral N yield at a specific soil depth among the communities according to Tukey’s HSD test (α < 0.05); means ± SD; N = 3

AB Abies bornmuelleriana, PN Pinus nigra, FO Fagus orientalis

Forest 
commu-
nity

NH4 + –N NO3
−–N Total Nmin

Soil depth (cm) Soil depth (cm) Soil depth (cm)

0–5 5–20 0–20 0–5 5–20 0–20 0–5 5–20 0–20

AB 9.3 ± 0.8 b 12.7 ± 3.3 a 22.0 ± 2.6 a 12.9 ± 2.5 a 2.9 ± 1.2 b 15.8 ± 3.7 b 22.2 ± 2.8 a 15.6 ± 3.7 ab 37.8 ± 4.9 ab
PN 15.3 ± 3.8 a 11.3 ± 1.3 a 26.7 ± 2.5 a 2.5 ± 1.1 b 1.4 ± 1.0 b 3.9 ± 1.9 c 17.8 ± 4.3 a 12.7 ± 0.6 b 30.5 ± 4.2 b
FO 2.1 ± 0.8 c 8.5 ± 2.0 a 10.6 ± 2.1 b 19.8 ± 4.5 a 13.5 ± 2.6 a 33.3 ± 3.8 a 21.9 ± 5.2 a 22.0 ± 4.6 a 43.9 ± 4.8 a

Table 4   Mean (± SD) total phenolic compounds and tannic acid con-
tent in litter layer in the three old forest climax communities

Note: Different letters indicate significant differences in total phenolic 
compounds and tannic acid content in litter layer among the commu-
nities according to Tukey’s HSD test (α < 0.05); means ± SD; N = 3

Community Total phenolics (mg/L) Tannic acids (mg/g)

Abies bornmuelleriana 53.2 ± 3.55 b 0.553 ± 0.22 b
Pinus nigra 288.2 ± 41.47 a 1.833 ± 0.42 a
Fagus orientalis 69.7 ± 13.63 b 0.783 ± 0.14 b

Table 5   The correlation coefficients between the soil annual net NH4
+–N and NO3

−–N nitrogen yield (kg Nmin ha–1 a–1) and soil characteristics 
in the 0–5 cm and 5–20 layer of soil, significance levels and regression equities [n = 45; 0.05]

Boldface letters indicate the significant correlation (α < 0.05)

Soil depth (cm) Variable NH4
+–N NO3

−–N

r α y = a + bx r α y = a + bx

0–5 Moisture (%) 0.341 0.022 NH4
+–N = –0.0247 + 0.0087Moisture 0.472 0.001 NO3

––N =  − 0.0800 + 0.0130Moisture
WHC (%) 0.184 0.227 NH4

+–N = –0.0436 + 0.0035WHC − 0.201 0.186 NO3
––N = 0.5272 − 0.0041WHC

pH (H2O) 0.151 0.321 NH4
+–N = –0.3901 + 0.1148pH 0.231 0.127 NO3

––N =  − 0.7146 + 0.1888pH
COrg (kg/ha) − 0.220 0.147 NH4 –N = 0.4834 − 0.0000COrg 0.166 0.275 NO3

––N = 0.0106 + 0.0000COrg

COrg (%) 0.127 0.405 NH4
+–N = –0.2344 + 0.1290COrg 0.343 0.021 NO3

––N =  − 0.9996 + 0.3752COrg

NTotl (kg/ha) − 0.280 0.062 NH4
+–N = 0.5289 − 0.0002NTotl 0.115 0.451 NO3

––N = 0.0984 + 0.0001NTotl

NTotl (%) − 0.052 0.734 NH4
+–N = 0.2633 − 0.1867NTotl 0.041 0.791 NO3

––N = 0.1889 + 0.1568NTotl

C/N ratio 0.255 0.091 NH4
+–N = –0.0740 + 0.0276C/N 0.048 0.753 NO3

––N = 0.1920 + 0.0056C/N
5–20 Moisture (%) 0.399 0.007 NH4

+–N = –0.0571 + 0.0178Moisture 0.577 0 NO3
––N = –0.1005 + 0.0153Moisture

WHC (%) − 0.182 0.232 NH4
+–N = 0.5604 − 0.0074WHC 0.187 0.219 NO3

––N = –0.0728 + 0.0045WHC
pH (H2O) 0.349 0.019 NH4

+–N = –0.6378 + 0.1776pH − 0.103 0.501 NO3
––N = 0.2870 − 0.0312pH

COrg (kg/ha) 0.467 0.001 NH4
+–N = –0.4144 + 0.0000COrg − 0.016 0.918 NO3

––N = 0.1494 − 0.0000COrg

COrg (%) 0.286 0.057 NH4
+–N = –0.3432 + 0.1823COrg 0.033 0.829 NO3

––N = 0.0979 + 0.0126COrg

NTotl (kg/ha) 0.083 0.586 NH4
+–N = 0.1432 + 0.0000NTotl 0.358 0.016 NO3

––N = –0.0555 + 0.0001NTotl

NTotl (%) − 0.048 0.756 NH4
+–N = 0.2560 − 0.1940NTotl 0.323 0.031 NO3

––N =  − 0.0160 + 0.7841NTotl

C/N ratio 0.155 0.308 NH4
+–N = 0.0933 + 0.0069C/N − 0.329 0.027 NO3

––N = 0.2944 − 0.0087C/N
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et al. 2000). In addition, Lovett et al. (2004) reported that 
the regulatory mechanisms involved in the mineralization 
process are much more complicated than for basic soil and 
litter properties such as lignin:N ratio, polyphenol concen-
trations, and/or the C:N ratio.

Only the relationship between soil moisture and net 
NO3

––N and NH4
+–N yield in both soil layers was statisti-

cally significant (α < 0.05) (Table 5). Soil moisture was a 
major factor controlling seasonal fluctuations in nitrification 
and net N mineralization within communities. Net N miner-
alization peaked earlier in the summer while the moisture of 
the soil was highest. Our results are consistent with studies 
indicating that moisture plays a significant role in attempts 
to control net N mineralization (Pérez et al. 2004; Knoepp 
and Vose 2007; Güleryüz et al. 2010b).

A seasonal fluctuation in mineral N accumulation was 
found during the field incubations. Differences in the 
weekly NH4

+–N yield were significant for all communi-
ties (α < 0.05) (Fig. 4). A negative ammonium yield was 
recorded in the F. orientalis community from May to June 
and from August to September. The highest nitrification 
rates in the 0–5-cm soil layer were observed in communities 
AB (0.79 ± 0.2 kg NO3

––N ha–1 week–1), PN (0.17 ± 0.12 kg 
NO3

––N ha–1  week–1) and FO (1.13 ± 0.48  kg NO3
––N 

ha–1  week–1) during May and June. Similarly, Xiao and 
Huang (2012) found that NO3

––N and NH4
+–N concentra-

tions in soils of three different forest types in the subalpine 
Abies fabri forests of Gongga Mountain were higher in April 
and June and decreased in August and October. On the vol-
canic Karadivrit mountain (Kula, Manisa), the mineral N 
yield for the Pinus brutia community (750–850 m a.s.l.) was 
high in spring and autumn in parallel with the Mediterranean 
climate precipitation regime (Gökçeoğlu 1988).

The PN community had the highest yield of NH4
+-N in 

the soil of 0–20-cm layer (26.7 ± 2.5 kg NH4
+–N ha–1 a–1), 

whereas the FO community had the lowest (10.6 ± 2.1 kg 
NH4

+–N ha–1 a–1) (Table 3) compared with 5.7 ± 4.3 kg 

NH4
+–N ha–1 a–1 for P. nigra in Spil Mountain (Güleryüz 

et al. 2010b) and 16 ± 0 kg NH4
+-N ha–1 year–1 for pine plan-

tations and 22 ± 2 kg NH4
+–N ha–1 a–1 for natural oak com-

munities on the Uludağ University campus (100 m) (Arslan 
et al. 2010).

Nitrification rates were mostly significantly higher in soils 
of the FO community (33.3 ± 3.8 kg NO3

––N ha–1 a–1) than 
in the PN (3.9 ± 1.9 kg NO3

––N ha–1 a–1). Although the AB 
community is also a coniferous forest, its annual nitrate yield 
(15.8 ± 3.7 kg NO3

––N ha–1 a–1) was considerably higher 
than in the PN community. This result is similar to that of 
Güleryüz and Everest (2010) who used a standard incuba-
tion method to determine that the Abies cilicica community 
had a higher nitrate yield than in two other communities (P. 
nigra and Cedrus libani) in the Central Toros Mountains. 
They even reported a negative nitrate yield. However, Gül-
eryüz et al. (2010b) estimated the annual nitrate yield of the 
P. nigra cover at the high altitude on Spil Mountain to be 
12.4 kg NO3

––N ha–1 a–1 for the 0–15-cm layer soil. This 
value is higher than in our PN on Uludağ Mountain and 
is closer to that in the AB community. The differences in 
nitrification rates between tree species in this study agree 
with the finding that soils from Picea abies, Pinus sylvestris, 
and Betula pendula in Tönnersjöheden; B. pendula plots had 
higher nitrification rates than in the other plots (Olsson et al. 
2012) and soils under Fagus sylvatica had higher potential 
nitrification rates than under Picea abies and Pinus sylves-
tris (Zhong and Makeshin 2006). These results generally 
support the hypothesis that deciduous species promote the 
presence of more soil microflora compared with coniferous 
trees (Scheu and Parkinson 1995).

Annual net Nmin yield values in 0−20 cm soil layer 
were calculated as 43.9 ± 4.8 kg Nmin ha–1 a–1 for FO, 
37.8 ± 4.9 kg Nmin ha–1 a–1 for AB and 30.5 ± 4.2 kg Nmin 
ha–1 a–1 for PN community. In a Pinus brutia forest, annual 
net Nmin yield was similar to our finding (28 kg Nmin 
ha–1 year–1) (Gökçeoğlu 1988). However, the ammonium 
yield was negative for P. nigra on Spil Mountain (Güleryüz 
et al. 2010b). Arslan et al. (2010) reported an annual net 
mineral N yield of 40 ± 1 kg Nmin ha–1 a–1 for pine planta-
tions and 47 ± 3 kg Nmin ha–1 a–1 for natural oak forests. 
The N cycle of forest ecosystems is greatly influenced by 
tree species and practices of forest management. Annual net 
mineral N yield in Betula pubescens, P. abies, and P. syl-
vestris communities on drained peatlands was estimated at 
127.5 kg Nmin ha–1 a–1, 87.7 kg Nmin ha–1 a–1, and 11.8 kg 
Nmin ha–1 a–1, respectively (Becker et al. 2018). In our forest 
communities, the annual mineral N yield was higher than 
in their P. sylvestris forest but lower than in their two other 
communities. Our result is similar to the findings of Stump 
and Binkley (1993), that the net N mineralization rate in 
the forest floor of lodgepole pine is much lower than that of 
trembling aspen (Populus tremuloides) or of an Engelmann 

Table 6   Correlation coefficients between the annual net soil NH4
+–N 

and NO3
––N nitrogen production and total phenolic compounds (Lit-

ter TFC) and tannic acid (Litter TA) in litter, significance levels and 
regression equations (N = 9)

Boldface letters indicate the significant correlation (α < 0.05)

Variable r α y = a + bx

Litter TFC-NH4
+–N 0.774 0.014 NH4

+–N = 3.3439 + 0.0406Lit-
terTFC

Litter TA-NH4
+–N 0.539 0.134 NH4

+–N = 3.5140 + 5.1082Lit-
terTA

Litter TFC-NO3
––N –0.850 0.004 NO3

––N = 19.763 − 0.0587Lit-
terTFC

Litter TA-NO3
––N –0.764 0.017 NO3

––N = 21.785 − 9.522Lit-
terTA
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spruce (Picea engelmannii)–subalpine fir (Abies lasiocarpa) 
community. Our results are also consistent with those of 
Prescott et al. (1992) who discovered that during a 1-month 
incubation, the N mineralization rate in the forest floor of 
lodgepole pine was lower rate than that of subalpine fir. The 
potential net nitrification is high in the soils of Douglas 
fir (Pseudotsuga menziesii), Corsican pine (P. nigra), and 
beech (F. sylvatica) plantations is high but low in spruce 
(P. abies) and Nordmann fir (A. nordmanniana) plantations 
as it is in native forest stands (Andrianarisoa et al. 2010). 
The high nitrification rates in soils of the F. orientalis 
community in this study were similar to those in soils of 
F. sylvatica (Andrianarisoa et al. 2010). In contrast, in our 
analysis, nitrate in soils of A. bornmuelleriana was high but 
low in soils of P. nigra. Differences in N transformation 
rates seemed to be related not only to plant type but also to 
soil properties. Also unlike our results, Hackl et al. (2004) 
stated that compared to beech and oak forests with smaller 
N pools, N mineralization potential is typically higher in 
pine, floodplain, and spruce–fir–beech forests with larger 
N pools. These results imply that differences in potential N 
transformation between forests are related to the total N pool 
size in the vegetation and soil.

Mineralization rates also differ significantly between 
deciduous and coniferous species. Birch soils have higher 
N transformation rates than soils of spruce and pine (Priha 
and Smolander 1999), and much higher net N mineralization 
than in a pine plot (Smolander and Kitunen 2002). In studies 
of the relationship between N cycles and various types of 
vegetation, areas with different vegetation types generally 
exhibit vary considerably in their C:N ratios and N con-
centrations in the forest floor and soil (Garten 2004; Ross 
et al. 2004). Other studies have shown differences not only 
between deciduous and coniferous species but even among 
coniferous species (Fernandez et al. 2000; Ross et al. 2004).

In an evaluation of the soil of four broad-leaved forest 
communities—alder–maple–hornbeam–beech (Alnus glu-
tinosa–Acer velutinum–Carpinus betulus–Fagus orienta-
lis), maple–hornbeam–beech, hornbeam–beech, and pure 
beech—in the Caspian-Hyrkania ecoregion of Iran, the 
abundance of beech trees in pure beech and other mixed 
broadleaf forests affects the nutrient cycle through litter 
quality, turnover time, and the soil fertility in beech forests 
has increased as a result of incorporating broadleaf species 
(Haghverdi and Kooch 2019). According to Guckland et al. 
(2009), acidification levels and fertility of surface soil vary 
depending on the abundance of beech and tree species and 
the amount of nutrient cycling. In addition, in a study of 
the effects of tree cover on N mineralization throughout 
the development of a natural old-growth Norway spruce 
(P. abies) forest in the temperate belt, Bade et al. (2015) 
found that the more open stands at the decay and regen-
eration stages had lower rates of net N mineralization (and 

ammonification) than in the closed stands of the optimal and 
overmature stages.

In our study, the secondary compound concentrations 
were clearly varied among the litter from the three tree com-
munities (Table 4). Total phenolic concentrations in litter 
for FO, AB, and PN varied from 53.2 mg/L to 288.2 mg/L 
and were five times higher in the P. nigra litter than in the 
A. bornmuelleriana and F. orientalis litter. Hydrolyzed 
tannic acids in the litter ranged from 0.553 ± 0.2 mg/g to 
1.833 ± 0.4 mg/g for the three communities and was quite 
low in A. bornmuelleriana and F. orientalis communities 
compared to P. nigra. In fact, communities of Pinus nigra 
had the highest concentrations of tannic acid and total phe-
nolic compounds. Total phenolic concentrations in the litter 
had positive (r = 0.774, α < 0.05) and negative (r = –0.850, 
α < 0.05) correlations with annual net NH4

+-N yield and 
annual net NO3

−–N yield, respectively, in the top layer 
of soil (0–5-cm). Tannic acid was not significantly corre-
lated with soil NH4

+-N yield (r = 0.539, α > 0.05), but was 
negatively correlated with soil NO3

−–N yield (r = –0.764, 
α < 0.05) (Table 6).

Plants are the primary source of phenolics in the soil 
(Swift et al. 1979), and the tree species influences the com-
position and concentration of soil phenolic compounds. 
When comparing P. nigra to F. orientalis and A. bornmuel-
leriana communities, total phenolics, and tannic acid have 
a different effect on N mineralization because of their struc-
tural differences. Higher yields of ammonium in the P. nigra 
community indicate that the high phenolic compounds in the 
litter have a positive effect on ammonification. This finding 
is consistent with the findings of Kanerva et al. (2008), who 
discovered that pine needles contained more total phenolic 
compounds than birch leaves. But, their concentrations are 
very similar. However, in comparison to birch leaves or pine 
needles, spruce needles had a significantly higher total phe-
nolic content. In our study, net NO3

––N yield was negatively 
correlated with phenolic compounds and tannins concentra-
tion for pure forest communities. Low rates of net N min-
eralization may be associated with higher concentrations of 
phenolic compounds and tannins in pine litter, consistent 
with the hypothesis that N mineralization may be inhibited 
by high concentrations of litter tannins and polyphenols 
(Schimel and Bennett 2004). The level of condensed tan-
nins and plant decomposition rate were discovered to be 
strongly positively correlated in several plant species (Vala-
chovic et al. 2004). Talbot and Finzi (2008) reported that a 
decline in net N mineralization in the presence of low tannin 
levels is due to greater microbial immobilization and that the 
decline in mineralization when tannin levels are high is due 
to the formation of tannin–protein complexes. In contrast to 
our work, Kanerva et al. (2008) showed that there is no lin-
ear correlation between condensed tannins or total phenolic 
compounds and net N mineralization within the humus layer 
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using information from various birch and coniferous stands. 
Our results do not agree with those of Norris et al. (2011), 
who investigated condensed tannins in six various species of 
plants, that tannins had no significant and noncontradictory 
impacts on soil C and N mineralization rates.

Several reports indicate that adding condensed tannins 
reduces N mineralization in litter and in soil (Schimel et al. 
1996; Fierer et al. 2001; Kraus 2002; Schweitzer et al. 2004; 
Kanerva et al. 2006; Kraal et al. 2009; Norris et al. 2011; 
Zong et al. 2018). Our results support these previous find-
ings. Although some studies suggest that phenolic com-
pounds inhibit nitrification (Kraal et al. 2009), others do 
not (Fierer et al. 2001; DeLuca et al. 2002).

In the McCarty and Bremner study (1986), the addition of 
five different tannins to soils up to 250 μg g−1 concentrations 
with ammonium sulfate did not affect nitrification. De Boer 
and Kester (1996) suggested that dwarf shrubs with consid-
erably high polyphenolic content had no significant control 
over nitrification. Likewise, studies by DeLuca et al. (2002) 
found no correlation between nitrification rates and total 
sorbed polyphenolic compounds. However, polyphenols or 
condensed tannins had an inhibitory effect on nitrification in 
laboratory experiments. For example, Baldwin et al. (1983) 
found that purified condensed tannins inhibited nitrification. 
A study with several plant extracts containing condensed 
tannins showed a slight effect on nitrification but a decline 
in net N mineralization (Nierop et al. 2006). In this study, 
the main trend was similar in the soil of all communities, 
tannins and total polyphenols in forest litter inhibited soil 
nitrification. But there is also the possibility that the soil is 
not affected by additional tannins as it is by the soil’s natural 
tannins. It is worth noting that the species of ground vegeta-
tion and the dominant trees affect phenolic composition and 
concentration in the soil.

Conclusions

Based on our results, soil moisture largely controls seasonal 
fluctuations in nitrification and net N mineralization. In for-
est ecosystems, tannins and total phenolics appear to be key 
regulators of N transformation. Different soil N transfor-
mations may be explained by secondary compound differ-
ences that are specific to different trees. There is a need to 
better understand how other secondary compounds in soils 
and significant communities of the eastern Mediterranean 
affect N mineralization. Consequently, our findings agree 
with the concept that tree species effectively control the N 
cycle (Lovett et al. 2004; Olsson et al. 2012), in particular 
nitrification (Zeller et al. 2007).
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