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default values for SLA and leaf C:N embedded in the Biome-
BGC v4.2 were higher than the five computational methods 
produced across the nine sites, with deviations ranging from 
28.0 to 73.3%. In addition, there were only slight devia-
tions (< 10%) between the whole plant community sampling 
(AP_BW) predicted NPP and the four simplified selective 
sampling methods, and no significant difference between 
the predictions of AT_BW and AP_BW except the Shen-
nongjia site. The findings in this study highlights the critical 
importance of computational strategies for community-level 
parameterization in ecosystem process modelling, and will 
support the choice of parameterization methods.

Keywords Biome-BGC · Community traits · Forest 
Ecosystems · Model parameterization

Introduction

Modelling provides an ultimate solution to integrate multi-
source and multi-scale data for projecting spatiotemporal 
ecosystem dynamics. Apart from critical issues in defining 
logical algorithms to represent various components of eco-
system processes and their complex interrelationships, one 

Abstract Parameterization is a critical step in modelling 
ecosystem dynamics. However, assigning parameter values 
can be a technical challenge for structurally complex natu-
ral plant communities; uncertainties in model simulations 
often arise from inappropriate model parameterization. Here 
we compared five methods for defining community-level 
specific leaf area (SLA) and leaf C:N across nine contrast-
ing forest sites along the North–South Transect of Eastern 
China, including biomass-weighted average for the entire 
plant community (AP_BW) and four simplified selective 
sampling (biomass-weighted average over five dominant tree 
species [5DT_BW], basal area weighted average over five 
dominant tree species [5DT_AW], biomass-weighted aver-
age over all tree species [AT_BW] and basal area weighted 
average over all tree species [AT_AW]). We found that the 
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of the major sources of uncertainty in modelling arises from 
an inadequacy of parameterization for key input variables 
(Zaehle et al. 2005; Scheiter 2013). Generally, a vegetation 
model requires meteorological data, geophysical information 
and ecophysiological parameters as inputs to simulate eco-
system processes and dynamics (Running and Hunt 1993). 
The ecophysiological parameters typically include leaf and 
root traits as well as physiological variables depicting plant 
carbon, nutrient and water relations (Running and Hunt 
1993; Running et al. 1995; Ren et al. 2022). With increas-
ing data availability and better understanding of the controls 
on ecosystem processes, incorporating plant traits beyond 
the traditional use of simplified plant functional types has 
become a common practice in vegetation modelling (Van 
Bodegom et al. 2012, 2014; Fisher et al. 2015; Sakschewski 
et al. 2015; Wang et al. 2017; Berzaghi et al. 2020). How-
ever, for communities with complex plant functional types 
and life forms and contrasting structural attributes, modulat-
ing model runs by considering differential traits of diverse 
plant groups can be tedious and exhausting tasks, especially 
at increasing spatial coverage. For modelling across contrast-
ing ecosystems and biomes, integration of individual plant 
traits to represent community-level values could impose a 
great challenge in practice.

The plant traits can be characterized across a range of 
organizational scales from organs to communities, with 
scale-specific representation of numerical values (He et al. 
2019). Most vegetation models require data inputs by eco-
system types or plant functional groups, usually with inte-
grated community-level traits as ecophysiological param-
eters (Golinkoff 2010; Liu et al. 2022). However, due to a 
lack of universally-applicable methods for deriving commu-
nity-level attributes, integration of plant trait values is often 
performed arbitrarily with self-perceived feasibility. Most of 
the recent literature on vegetation models that we compiled 
either omitted the information on how the ecophysiological 
parameterization at the forest stand-level was achieved, or 
gave very vague descriptions of the procedures (Table S1). 
An inconsistency in value assignment of ecophysiological 
parameters can contribute to varying degrees of uncertain-
ties in model outputs (White et al. 2000; Li and Sun 2018; 
Ren et al. 2022).

Scaling up the plant functional traits from individuals to 
communities for modelling require not only a prior knowl-
edge of species-dependent trait values, but also the speci-
ficity weighting of the given trait types (Violle et al. 2007; 
Borgy et al. 2017; He et al. 2019). While measurements of 
plant functional traits can be easily made experimentally, 
decision on assigning the weighting ratio for contrasting 
trait specifications is often fraught with unknown degree of 
biases or subjectivity (Liu et al. 2022). The commonly used 
computation approaches for community-level plant traits 
in literature included weighting by species mixing-ratio or 

calculating as arithmetic means of co-dominant plant spe-
cies. In forest stands, partitioning the total cross-section area 
at breast height by species could be a useful attribute for 
quantifying species-mixing ratio as there usually exist stable 
allometric relationships between the radial growth of trees 
and the net productivity of forest stands, hence a probable 
analogy to specificity weighting. However, the relationships 
between the cross-section-based species mixing ratio and the 
weighting of contrasting plant functional traits are not easily 
established. Therefore, the use of computational approaches 
for community-level traits in ecosystem modelling remain 
largely a personal choice rather than a scientifically-proven 
technical procedure.

To date, it remains an open question that how differ-
ent approaches of parameterization for community-level 
ecophysiological traits would affect the model simula-
tions of ecosystem processes. In this study, we compared 
five methods for attaining community values of specific 
leaf area (SLA) and leaf carbon to nitrogen ratio (C:N 
ratio) based on either biomass weighted means or basal 
area weighted means, which are biomass-weighted aver-
age for the entire plant community (AP_BW), for only five 
dominant tree species (5DT_BW), and for all tree species 
(AT_BW), respectively, and basal area-weighted average 
for only five dominant tree species (5DT_AW) and for all 
tree species (AT_AW), respectively. SLA and leaf C:N ratio 
were selected as the two crucial physiological and ecologi-
cal parameters characterizing the photosynthetic carbon 
assimilation in the Biome-BGC model (Golinkoff 2010). 
The community-level SLA and leaf C:N were determined 
for nine contrasting natural forest ecosystems (from cold-
temperate to tropical forests along a 3,700-km transect in 
China). This study seeks to address two scientific questions 
that will inform the choice of model parameterization meth-
ods: (1) Could the default values provided by the Biome-
BGC be safely adopted without introducing uncertainties, 
and how far would they deviate from the five parameteriza-
tion methods? (2) How much bias would occur in the pre-
dicted NPP when incorporating trait values from different 
parameterization approaches in the Biome-BGC model, and 
which approach would more feasible both economically and 
scientifically?

Materials and methods

Study sties and sampling

In order to make our study more applicable on a large 
scale, we selected nine typical forest sites along the 
North–South Transect of Eastern China for field survey 
(Fig. 1). The transect spanned a latitude ranging from 51.8 
to 18.7°N, mean annual temperature from − 4 to 23 °C and 
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mean annual precipitation from 470 to 2270 mm respec-
tively. The soil types included podzol, luvisol, ferralsol, 
greyzem and acrisol (Table S2). These sites represent 
tropical monsoon forest, subtropical monsoon evergreen 
broad-leaved forest, subtropical evergreen broad-leaved 
forest, subtropical mixed deciduous and evergreen forest, 
warm temperate deciduous broad-leaved forest, temper-
ate mixed coniferous and broad-leaved forest and boreal 
forest, respectively, covering almost all forest types in the 
Northern Hemisphere (Wang et al. 2016).

Field survey data were obtained from the measure-
ments during an intensive field champion in July and 
August 2013, in the peak growth season for all forests. 
Sampling plots were all located within the protected natu-
ral forests. Each forest type was characterized by survey 
of four 30 × 40 m plots for tree layer, with measurements 
on shrubs within two 5 × 5 m subplots and on herbaceous 
plants within four 1 × 1 m quadrats (see Fig. S1 for the 
layout of the various levels of plots). Measurements of 
height and diameter at breast height (DBH) were made on 
all woody plants with DBH ≥ 3 cm on each tree plot. Her-
baceous plants were measured for aboveground biomass 
by harvesting and oven-drying. For measurements of 
specificity leaf traits, twenty healthy and fully expanded 
leaves were collected from four individuals for each plant 
species (total of 803 tree, shrub and herb species), as 
described in detail in Wang et al. (2016) and Zhang et al. 
(2020).

Computations of community‑level ecophysiological 
traits

Plant functional traits refer to the measurable characteristics 
of plants after long-term acclimation and evolution under 
prevailing environmental conditions (He et al. 2019). In 
this study, we used two critical leaf traits required by most 
ecosystem process models in simulations of canopy photo-
synthetic capacity, i.e. SLA and leaf C:N ratio, to test the 
differences and applicability of varying computational meth-
ods for community-level ecophysiological parameters (Foley 
et al. 1996; Sacks et al. 2006; Beer et al. 2007). Modified 
from He et al. (2019), the community traits were calculated 
from the specificity values as:

where n is the number of representative plant species in the 
community; WIi is the weighting index of the ith species; and 
Qi is the measured trait value of the ith species.

We tested five methods for computation of the com-
munity-level trait values for each of the study sites, based 
on either biomass weighted means or basal area weighted 
means. The five computational methods included biomass-
weighted average for the entire plant community (AP_BW), 
for only five dominant tree species (5DT_BW), and for all 
tree species (AT_BW), respectively, and basal area-weighted 

Traitcommunity =

n
∑

i=1

WIi × Qi

Fig. 1  Geographic distributions 
of the nine forest sites along 
the North–South Transect of 
Eastern China included in this 
study. JF, Jianfeng Mountains; 
DH, Dinghu Mountains; JL, 
Jiulian Mountains; SN, Shen-
nongjia; TY, Taiyue Mountains; 
DL, Dongling Mountains; 
CB, Changbai Mountains; LS, 
Liangshui; HZ, Huzhong



 M. Fang et al.

1 3

    7  Page 4 of 11

average for only five dominant tree species (5DT_AW) vs. 
all tree species (AT_AW), respectively (Table 1).

Biome‑BGC modelling

We used Biome-BGC v4.2 (http:// www. ntsg. umt. edu/ proje 
ct/ biome- bgc. php) to evaluate the effects of varying meth-
ods of community parameterization on model simulations. 
The model requires three types of input data to run: Ini-
tialization file, meteorological data, and ecophysiological 
parameters (Running and Hunt 1993; Thornton et al. 2002). 
The initialization file covers information on geographic 
location and basic site conditions. The meteorological data 
comprise key climatic variables such as the maximum, mini-
mum and average air temperatures, precipitation, average 
water vapor pressure difference, average daytime shortwave 
radiation flux density and day length, etc. In this study, the 
daily time-series of the meteorological variables required 
for running Biome-BGC at the nine study sites were derived 
through the simulation of MTCLIM v4.3 (http:// www. ntsg. 
umt. edu/ proje ct/ mt- clim. php) based on the datasets for the 
nearest meteorological stations for the period 2008–2018, 
which were obtained from the National Weather Science 
Data Centre (daily meteorological dataset of basic meteoro-
logical elements of China, National Surface Weather Sta-
tion V3.0; http:// data. cma. cn). These data were corrected 
for geographic location, elevation and main slope aspect 
of the given study sites. The Biome-BGC model provides 
default values of ecophysiological parameters for a variety of 
vegetation types (ecophysiological files), including decidu-
ous broadleaf forest, evergreen broadleaf forest, evergreen 
needleleaf forest, shrubs, and grassland (Thornton et al. 
2002). In this study, we used the default ecophysiological 
parameters for all but SLA and leaf C:N ratio, on the pre-
vailing forest stand type at each of the nine study sites, with 
modifications for the mixture of contrasting tree species in 
the forest canopy.

The simulations with Biome-BGC were performed for 
the nine study sites using the entire default ecophysiological 
parameters, substitution with the site-specific values for either 
SLA or leaf C:N ratio, and substitution with the site-specific 
values for both SLA and leaf C:N ratio, respectively. The 

site-specific values for SLA and leaf C:N ratio were distin-
guished by the computational methods listed in Table 1.

The simulation process of Biome-BGC consists of a spin-
up mode and a normal mode. The spin-up mode involves the 
model run to equilibrium based on user input of meteorologi-
cal, geographical and ecophysiological parameters. This was 
done for between 891- and 6000-year cycles depending on the 
specific sites targeted by the simulations. Afterwards, the nor-
mal model simulations were performed (Thornton et al. 2002). 
The Biome-BGC model can only be simulated in a single run 
at each site, and we used batch commands to cycle the model 
according to established rules (i.e. three parametric modes and 
six variations of ecophysiological parameters).

Statistics and simulation data evaluation

One-way ANOVA was used to test the effects of different 
computation methods on community SLA and leaf C:N ratio 
and model simulation results. Comparison of multiple means 
was made with LSD post-hoc tests. We used Taylor diagrams 
to compare the extent to which the model simulation results 
with other computation methods match with that based on trait 
computation for the whole plant community (i.e. AP_BW) as 
a baseline. A Taylor diagram is a method of data analysis that 
presents the correlation coefficient, root mean square error and 
standard deviation of multiple sets of data in a single graph. 
It is often used to compare the closeness of a set of simulated 
values to a set of baseline values (Taylor 2001). In this study, 
we arbitrarily used the results of the model simulations under 
the AP_BW method as the baseline values to determine the 
closest simulation effect to the AP_BW method of computing 
community-level traits. The one-way ANOVA and LSD post-
hoc tests were performed with SPSS 24.0 and Taylor diagrams 
were drawn in R studio.

Table 1  The five computational approaches of ecophysiological parameterization adopted in this study

Weighted category Computation tactic Methods of calculation Abbreviation

All plants: trees, shrubs and herbs Biomass weighted average Biomass-weighted average over all plant species including 
trees, shrubs and herbs

AP_BW

Dominant tree species Biomass weighted average Biomass-weighted average over five dominant tree species 5DT_BW
Basal area weighted average Basal area-weighted average over five dominant tree species 5DT_AW

All tree species Biomass weighted average Biomass-weighted average over all tree species AT_BW
Basal area weighted average Basal area-weighted average over all tree species AT_AW

http://www.ntsg.umt.edu/project/biome-bgc.php
http://www.ntsg.umt.edu/project/biome-bgc.php
http://www.ntsg.umt.edu/project/mt-clim.php
http://www.ntsg.umt.edu/project/mt-clim.php
http://data.cma.cn
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Results

Community‑level SLA and leaf C:N ratio by different 
computational methods

Significant deviations are observed between the default val-
ues and the five computational methods (P < 0.05; Tables 2 

and 3). Specifically, the default value for SLA in the Biome-
BGC is defined as 16.5; whereas the values derived from the 
five computational methods for community-level SLA vary 
from 9.52 to 11.22 across the nine sites, which are mark-
edly lower than the default value. For the leaf C:N ratio, 
the default value is also consistently higher than that esti-
mated based on the five computational methods across study 

Table 2  Variability in the estimates of community specific leaf area (SLA,  m2  kg−1) by different computational methods across nine forest sites 
along the North–South Transect of Eastern China

Mean values with the same superscript letters are not significantly different at P < 0.05 level (LSD post hoc test)
JF Jianfeng Mountains; DH Dinghu Mountains; JL Jiulian Mountains; SN Shennongjia; TY Taiyue Mountains; DL Dongling Mountains; CB 
Changbai Mountains; LS Liangshui; HZ Huzhong. DEFAULT the default parameters from Biome-BGC v4.2 (The default parameters for DH, 
TY, CB, and LS sites are obtained by weighting the mixing ratio of the default parameters for coniferous and broad-leaved forests); AP_BW 
biomass weighted average for entire plant community; 5DT_BW biomass weighted average of five dominant tree species; 5DT_AW basal area 
weighted average of five dominant tree species; AT_BW biomass weighted average of all trees; AT_AW basal area weighted average of all trees

Sites Specific leaf area (SLA,  m2  kg−1) Forest type Climatic zone

DEFAULT AP_BW 5DT_BW 5DT_AW AT_BW AT_AW

JF 12.00 9.58 8.55 11.55 9.55 10.57 Tropical monsoon evergreen broad-leaved forest Tropical
DH 12.00 6.92 5.55 5.57 6.14 5.98 Subtropical monsoon evergreen broad-leaved forest Subtropical
JL 12.00 7.84 6.68 7.63 7.43 8.07 Subtropical evergreen broad-leaved forest
SN 12.00 11.92 7.31 7.76 10.44 12.06 Subtropical mixed deciduous and evergreen forest
TY 18.30 6.92 5.14 5.29 5.12 5.34 Warm temperate mixed coniferous and broad-leaved 

forest
Temperate

DL 30.00 17.40 16.21 16.16 16.2 16.14 Warm temperate deciduous broad-leaved forest
CB 24.60 21.59 19.84 15.42 20.67 16.52 Temperate mixed coniferous and broad-leaved forest
LS 15.60 10.16 8.47 8.24 7.47 8.91 Temperate mixed coniferous and broad-leaved forest
HZ 12.00 8.62 7.95 8.42 7.95 8.42 Boreal forest Cold temperate
Mean 16.50a 11.22b 9.52b 9.56b 10.11b 10.22b

Table 3  Variability in the estimates of community leaf C:N ratio by different computational methods across nine forest sites along the North–
South Transect of Eastern China

Mean values designated with the same superscript letters are not significantly different at P < 0.05 level (LSD post hoc test)
JF Jianfeng Mountains; DH Dinghu Mountains; JL Jiulian Mountains; SN Shennongjia; TY Taiyue Mountains; DL Dongling Mountains; CB 
Changbai Mountains; LS Liangshui; HZ Huzhong. DEFAULT the default parameters from Biome-BGC v4.2 (The default parameters for DH, 
TY, CB, and LS sites are obtained by weighting the mixing ratio of the default parameters for coniferous and broad-leaved forests); AP_BW 
biomass weighted average of entire plant community; 5DT_BW biomass weighted average of five dominant tree species; 5DT_AW basal area 
weighted average of five dominant tree species; AT_BW biomass weighted average of all trees; AT_AW basal area weighted average of all trees

Sites Specific leaf area (SLA,  m2  kg−1) Forest type Climatic zone

DEFAULT AP_BW 5DT_BW 5DT_AW AT_BW AT_AW

JF 42.0 26.7 23.7 23.8 26.3 26.3 Tropical monsoon evergreen broad-leaved forest Tropical
DH 42.0 29.4 31.4 31.9 30.1 31.0 Subtropical monsoon evergreen broad-leaved forest Subtropical
JL 42.0 28.1 28.5 26.6 28.1 27.4 Subtropical evergreen broad-leaved forest
SN 42.0 38.8 24.2 25.5 25.0 25.2 Subtropical mixed deciduous and evergreen forest
TY 35.7 38.3 40.0 39.0 39.9 38.9 Warm temperate mixed coniferous and broad-leaved 

forest
Temperate

DL 24.0 20.2 20.7 20.6 20.4 20.4 Warm temperate deciduous broad-leaved forest
CB 29.4 20.9 22.0 25.1 21.2 24.5 Temperate mixed coniferous and broad-leaved forest
LS 38.4 35.9 38.5 36.6 37.7 35.9 Temperate mixed coniferous and broad-leaved forest
HZ 42.0 25.3 25.3 24.9 25.3 24.9 Boreal forest Cold temperate
Mean 37.5a 29.29b 28.26b 28.22b 28.22b 28.28b
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sites. The results of ANOVA show that the community-level 
trait values (including SLA and leaf C:N ratio) did not sig-
nificantly differ among the five computational methods 
(P > 0.05; Tables 2 and 3).

Simulated annual NPP by Biome‑BGC based 
on varying estimates of SLA and leaf C:N ratio

In the mode where SLA and leaf C:N are parameterized at 
the same time, compared to the NPP predicted by default 
values, the predicted values by the five parameterization 
methods were 3.7% to 65.3% lower at the DH and SN sites, 
but 23.9% to 27.5% higher at the HZ site (P < 0.05; Fig. 2). 
For the remaining six sites, there was no significant differ-
ence between the NPP predicted based on the default values 

and that based on values from the five parameterization 
methods (P > 0.05; Fig. 2).

When SLA are leaf C:N are parameterized in Biome-
BGC independently, only the DH site shows significant vari-
ations in the simulated annual NPP (P < 0.05) with the use 
of values from different sources, but the differences are all 
small (within 7% deviation) (Figs. 3 and 4).

Parameterization of community‑level SLA and leaf C:N 
ratio with varying sampling schemes

When parameterized simultaneously with both SLA and 
Leaf C:N, we found that the NPP based on the AP_BW 
estimates for the SN site were 111.7% and 48.5% higher 
than those based on the 5DT_BW and 5DT_AW estimates, 

Fig. 2  Differences in annual NPP simulated with differential param-
eterizations of SLA and leaf C:N ratio across nine forest sites. The 
histogram values are mean annual NPP during 2008–2018 (Fig. S2). 

Vertical bars show one standard error. Above each bar, the mean is 
given. Significant differences are denoted using different letters 
(P < 0.05)
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but lower by 16.9% and 23.4% than those based on the 
AT_BW and AT_AW estimates, respectively (P < 0.05). In 
the analyses for the remaining eight sites, there were only 
slight deviations (< 10%) between the simulations based 
on the AP_BW values and those with other four param-
eterization methods. In addition, there was no significant 
difference between the predicted NPP by the AP_BW 
value and the AT_BW value, regardless of whether SLA 
and leaf C:N were included in the model at the same time 
(P > 0.05; Figs. 2, 3 and 4).

Taylor diagram analyses of the four sites with signifi-
cant differences showed that the NPP predicted by the val-
ues of AT_BW and AT_AW were consistently close to that 
predicted by the AP_BW value (Fig. 5).

Discussion

Accuracy in the estimation of vegetation productivity 
based on ecosystem process models is one of the critical 
challenges faced by ecologists; inadequate parameteriza-
tion of key input variables has been a significant source of 
uncertainty in model simulations (Li et al. 2018). Default 
values are widely applied in regional modelling of ecosys-
tem processes where measurements of the input variables 
are difficulty to attain or not readily available. The default 
values provided by given models are often based on data 
compiled from literature (White et al. 2000; Thornton 
and Running 1999). Although the drawbacks of utilizing 
default values are commonly recognized, there is a lack 

Fig. 3  Differences in annual NPP simulated with differential param-
eterizations of SLA across nine forest sites. The histogram values are 
mean annual NPP during 2008–2018 (Fig. S2). Vertical bars show 

one standard error. Above each bar, the mean is given. Significant dif-
ferences are denoted using different letters (P < 0.05)
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of knowledge on how much the default values of mod-
els deviate from the measured values in different climatic 
zones and for different vegetation types (White et al. 2000; 
Thornton and Running 1999). This study examines the 
implications of the computational methods for deriving 
community-level parameters with measurements for night 
forest sites across four climatic zones, ranging from tropi-
cal to cold temperate, tested using the well-established 
ecosystem process model Biome-BGC. We found that 
for all climate zones and forest types, the default values 
assigned by the Biome-BGC model deviated significantly 
from the measured values (the deviation greater than 28%) 
(Tables 2 and 3). On this basis, we call for the inclusion of 
measured trait-based parameters in large scale modelling 
forest ecosystem processes.

Although findings from this study and those in litera-
ture all confirm the importance of including community-
level traits in the model, it is not clear what computa-
tional approach would be more appropriate to quantify 
the community-level trait parameters (Scheiter et al. 2013; 
Berzaghi et al. 2020). Currently, there are five calculation 
methods that are often applied in ecosystem modelling stud-
ies (Table 2). The biomass-weighted average of all species 
in a community has been suggested to be a most reliable 
approach to calculate community-level trait values (AP_BW) 
because it accounts for the entire forest communities and 
is considered to have a strong explanatory power for forest 
ecosystem productivity (Li et al. 2018; He et al. 2019, 2022). 
However, the disadvantage of using AP_BW is that it must 
be based on field measurements to obtain large amounts 

Fig. 4  Differences in annual NPP simulated with differential param-
eterizations of leaf C:N ratio across nine forest sites. The histogram 
values are mean annual NPP during 2008–2018 (Fig. S2). Vertical 

bars show one standard error. Above each bar, the mean is given. Sig-
nificant differences are denoted using different letters (P < 0.05)
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of data, which is labor intensive and impractical for large 
scale ecosystem studies. In comparison, it would be easier 
to sample on tree species or the dominant tree species in 
forest communities. In this context, exploring how much 
the AP_BW-based prediction of NPP deviates from the sim-
plified weighting approach and default values would help 
inform our selection of field sampling strategies for purpose 
of quantifying ecosystem processes and function. We found 
that the trait values based on the AP_BW approach were not 
significantly different from the four simplified approaches 
(P > 0.05; Tables 2 and 3). The predicted NPP based on AP_
BW for SLA and leaf C:N ratio at five of the study sites (JF, 
JL, TY, DL and LS) did not significantly differ from the one 
based on four simplified computational methods (P > 0.05; 
Fig. 2). Of the four sites where differences occurred, there 
was no significant difference between the predicted NPP by 
AP_BW-derived and AT-BW-derived parameter values for 
sites DH, CB and HZ, and the deviation of the predictions 
based on the AT_BW values from that based on the AP_BW 
values at the SN site is reasonably small (16.9%) (Fig. 2). 

When considering only SLA or leaf C:N independently in 
the Biome-BGC model parameterization, no significant dif-
ference was found between the predicted NPP based on the 
AT_BW values and that based on the AP_BW values across 
all sites (Figs. 2 and 3). The results indicate that the AP_
BW method for community-level parameterization, which 
requires more investment, does not necessarily provide a 
significant advantage in predicting NPP. On the other hand, 
the simplified sampling method of AT_BW appears to be a 
viable alternative to AP_BW for all climatic zones and forest 
types included in this study.

It is also important to emphasize that the composition of 
species within communities should not be overlooked when 
discussing the choice of community-level weighting. For 
example, in this study, only three tree species appeared in 
the sampling plot of HZ (Fig. S3), so the calculated values of 
community-level traits using 5DT_BW and AT_BW meth-
ods were the same. In addition, for the subtropical monsoon 
evergreen broad-leaved forest (site DH), temperate forest 
(sites TY, DL, CB and LS) and cold temperate forest (HZ), 

Fig. 5  Comparison of the 
annual NPP simulated with 
differential parameterizations 
of SLA and leaf C:N ratio at 
four representative forest sites 
along the North–South Transect 
of Eastern China using Taylor 
diagram. Parameterization 
method of AP_BW is arbitrarily 
treated as baseline with graphic 
positioning of (x = 1, y = 0). 
The closer the dot is to the (1,0) 
point, the better the fitting effect 
of the specific method com-
pared with AP_BW. AP_BW, 
biomass weighted average for 
entire plant community; 5DT_
BW, biomass weighted average 
of five dominant tree species; 
5DT_AW, basal area weighted 
average of five dominant tree 
species; AT_BW, biomass 
weighted average of all trees; 
AT_AW, basal area weighted 
average of all trees
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due to the relatively simple species composition of the tree 
layer (Fig. S3), the accuracy of weight values from five dom-
inant tree species (5DT) approach exceeded 80%, hence a 
result of insignificant difference between the NPP predic-
tions based on 5DT values and the all tree-based approach 
(Figs. 2, 3, 4 and 5). Therefore, for forest ecosystems in 
northern China with a simple tree species composition, sam-
pling only the dominant tree species for community trait 
values would suffice.

Conclusions

The simulation results (annual NPP) of the Biome-BGC 
model by using different ecophysiological parameterization 
methods were compared among nine forest sites covering 
four climatic zones and eight forest types. We found that the 
default values embedded in the Biome-BGC v4.2 for specific 
leaf area and leaf C:N ratio were significantly higher than 
derived from five different computational methods based on 
measured data, with deviations ranging from 28.0 to 73.3%. 
In addition, the full community plant weighting (AP_BW), 
which requires more investment, does not necessarily pro-
vide a significant advantage in predicting NPP compared 
to the simplified selective sampling (especially for biomass 
weighted average of all trees) for all climatic zones and veg-
etation types. This study highlights the critical importance of 
computational strategies for community-level parameteriza-
tion in ecosystem process modelling.
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