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Abstract  Fire severity classifications determine fire dam-
age and regeneration potential in post-fire areas for effective 
implementation of restoration applications. Since fire dam-
age varies according to vegetation and fire characteristics, 
regional assessment of fire severity is crucial. The objectives 
of this study were: (1) to test the performance of different 
satellite imagery and spectral indices, and two field—meas-
ured severity indices, CBI (Composite Burn Index) and 
GeoCBI (Geometrically structured Composite Burn Index) 
to assess fire severity; (2) to calculate classification thresh-
olds for spectral indices that performed best in the study 
areas; and (3) to generate fire severity maps that could be 
used to determine the ecological impact of forest fires. Five 
large fires in Pinus brutia (Turkish pine) and Pinus nigra 
subsp. pallasiana var. pallasiana (Anatolian black pine)—
dominated forests during 2020 and 2021 were selected as 

study sites. The results show that GeoCBI provided more 
reliable estimates of field—measured fire severity than CBI. 
While Sentinel-2 and Landsat-8/OLI images performed sim-
ilarly well, MODIS performed poorly. Fire severity clas-
sification thresholds were determined for Sentinel-2 based 
RdNBR, dNBR, dSAVI, dNDVI, and dNDMI and Land-
sat-8/OLI based dNBR, dNDVI, and dSAVI. Among several 
spectral indices, the highest accuracy for fire severity clas-
sification was found for Sentinel-2 based RdNBR (72.1%) 
and Landsat-8/OLI based dNBR (69.2%). The results can 
be used to assess and map fire severity in forest ecosystems 
similar to those in this study.

Keywords  Remote sensing · Forest fire · Fire severity · 
Spectral indices · Composite burn index

Introduction

In many areas of the world, large forest fires have become 
more frequent in recent years. It is expected that there will 
be an increase in the number of forest fires and amount of 
burned areas due to climate change and increases in world 
population (Amatulli et al. 2013). However, fires are a nat-
ural process that affect ecosystems (Whitman et al. 2015) 
and influence biophysical processes at different tempo-
ral and spatial scales, from micro-scale impacts (e.g., on 
a single plant) to broad landscape patterns and processes 
(Cochrane and Ryan 2009). Forest areas that do not burn 
or are exposed to low-intensity fires and do not lose vitality 
contribute to biodiversity by creating heterogeneous spa-
tial structures (Turner and Romme 1994). To preserve this 
biodiversity, post fire-management should follow a sustain-
able ecological approach (Baysal et al. 2016). A good way 
to accurately characterize burned areas is to determine fire 
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severity, considered as the degree of ecological change in 
both vegetation and soil caused by fire (Kasischke and Bruh-
wiler 2002). Fire severity is generally accepted as a measure 
of fuel consumption and mortality. “Fire severity” and “burn 
severity” are used to determine the extent of environmental 
change caused by fire (Keeley 2009). The two terms have 
different ecological and temporal meanings. Fire severity 
describes short-term effects, while burn severity describes 
the long-term effects on ecosystems and vegetation (French 
et al. 2008). While fire severity is assessed immediately or 
within the first 30–45 days after a fire event (Key and Ben-
son 2006), burn severity may be estimated at different times 
and seasons (Key 2006).

Fires often occur in large areas which can result in dam-
age assessments taking considerable effort, money, and time. 
Therefore, remote sensing methods are frequently used after 
large fires to determine the extent of damage to ecosystems 
(Key and Benson 2006). Satellite data such as Sentinel-2, 
Landsat-8/OLI, and MODIS provide the most widely used 
free imagery datasets for monitoring (Song et al. 2021). 
Since remote sensing data provide a quantitative assessment 
of vegetation and soil-related information, these data are 
also used for fire severity assessment (Luo and Wu 2022).

Depending on the resolution of satellite sensors, sev-
eral satellite-based spectral indices can be correlated with 
data from field measurements. The most commonly used 
indices to detect fire effects through remote sensing are the 
Normalized Difference Vegetation Index (NDVI) (Mallinis 
et al. 2018; Ba et al. 2020), the Normalized Burn Ratio 
(NBR) (Lutes et al. 2006; Miller and Thode 2007; Fernán-
dez-García et al. 2018; Ba et al. 2020), the Enhanced Veg-
etation Index (EVI) (Wu et al. 2015; Ba et al. 2020), the 
Soil Adjusted Vegetation Index (SAVI) (Wu et al. 2015), 
the Global Environment Monitoring Index (GEMI) (Ba 
et  al. 2020), the Normalized Difference Water Index 
(NDWI) (Beltrán-Marcos et al. 2021), the Normalized Dif-
ference Moisture Index (NDMI) (Choubin et al. 2017), the 
Burned Area Index (BAI) (Chuvieco et al. 2002; Ba et al. 
2020), the Burned Area Index Modified–LSWIR (BAIML) 
(Fornacca et al. 2018), the Burned Area Index Modified-
SSWIR (BAIMS) (Fornacca et al. 2018), the Mid Infrared 
Burn Index (MIRBI) (McCarley et al. 2018), Char Soil 
Index (CSI) (Pletsch et al. 2019; Ba et al. 2020), Relative 
differenced Normalized Burn Ratio (RdNBR), and Relativ-
ized Burn Ratio (RBR) (Parks et al. 2014). Spectral reflec-
tance values from remote sensing satellite images depend 
on fire characteristics and vegetation type (French et al. 
2008). Severity varies with fire intensity, residence time, 
tree sizes and species-related physiological characteris-
tics (Michaletz and Johnson 2007; Valor et al. 2017). This 
results in different spectral responses and therefore differ-
ent fire severity values that need to be calibrated (Miller 

and Quayle 2015). To produce fire severity maps from 
satellite images alone, without the knowledge of site or 
vegetation conditions, is difficult. Therefore, calibrations 
using field measurements are necessary. The most widely 
used method is the Composite Burn Index (CBI) devel-
oped by Key and Benson (2006). The CBI divides the for-
est into five vertical strata and rates them with numerical 
scores from 0 (unburned) to 3 (completely burned) based 
on the visual assessment of the amount of fuel consumed, 
degree of soil scorched, blackening or scorching of trees, 
and plant regeneration (Key and Benson 2006). In previous 
studies, the CBI correlated well with spectral reflectance 
values of remote sensing data (Soverel et al. 2010; Cansler 
and McKenzie 2012). However, De Santis and Chuvieco 
(2009) found that the CBI was inconsistent and worked 
well in some ecosystems but not in others. Therefore, they 
proposed a modified version, the Geometrically structured 
Composite Burn Index (GeoCBI). The difference between 
the CBI and the GeoCBI is that the latter also estimates 
the fraction of vegetation cover (FCOV). Hence, it is more 
consistently related to spectral reflectance values than the 
CBI (De Santis and Chuvieco 2009).

Researchers from different countries have identified 
spectral thresholds for discriminating fire severity classes 
in different vegetation types such as steppe (White et al. 
1996), tundra (Zhu et al. 2006; Allen and Sorbel 2008), 
savannah (Alleaume et al. 2005; Borini Alves et al. 2018), 
meadows (White et al. 1996; Rogan and Franklin 2001), 
shrubs (White et al. 1996; Epting et al. 2005), temperate 
forests (French et al. 2008), coniferous forests (Miller and 
Thode 2007; Mallinis et al. 2018), and deciduous forests 
(Zhu et al. 2006).

However, only a limited number of studies have investi-
gated the relationship between fire severity data from remote 
sensing and field measurements of forested areas with dense 
vegetation cover in the Mediterranean basin, although it is a 
region heavily affected by forest fire (Lasaponara et al. 2006; 
Mallinis et al. 2018; Saulino et al. 2020). Further studies 
are needed that assess fire severity based on regional field 
measurements correlated with satellite imagery in Mediter-
ranean forest ecosystems (Epting et al. 2005; Hudak et al. 
2007; Mallinis et al. 2018).

The purpose of this study was to accurately map fire 
severity in forest ecosystems of Turkey using local thresh-
olds for the first time. The specific objectives were: (1) to 
evaluate the performance of different satellite imagery, 
spectral indices, and field measurements; and (2) to deter-
mine classification thresholds of best-performing spectral 
indices in order to generate fire severity maps to determine 
the ecological effects of fires in different fire-prone forest 
ecosystems.
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Materials and methods

Study area

This study focused on five forest fires that occurred during 
2020 and 2021 (Table 1). Three (Adana-Kozan, Denizli-
Çardak, and Antalya-Manavgat) were within the Mediter-
ranean climate region in southern Turkey (Fig. 1), an area 
at highest risk of forest fires. The other two fires were in 
Ankara-Nallıhan (western Inner Anatolia) and Kastamonu-
Taşköprü (western Black Sea region), both within the 
western Black Sea climate zone with high fire risk. All 
fires occurred during the fire season when fire weather 
conditions prevailed. Fires were selected that had occurred 
in forests dominated by Turkish pine (Pinus brutia Ten.) 
and/or Anatolian black pine (Pinus nigra Arn. subsp. pal-
lasiana (Lamb.) Holmboe var. pallasiana), as they are the 
two main forest types in Turkey most affected by fires. 
These forests are occasionally mixed with broad-leaved 
species and maquis shrubland species. The sites were het-
erogeneous in terms of topography and vegetation.

Imagery and preprocessing

Sentinel-2, Landsat-8/OLI, and MODIS satellite images 
are freely available and used in this study. Cloudless pre- 
and post-fire images closest to the fire dates were selected. 
Imageries were downloaded from USG Earth Explorer 
server. The Sentinel satellite consists of 13 bands with a 
revisiting time of 10 days. Landsat-8/OLI is 11 bands with 
a revisiting time of 16 days while MODIS is 7 bands with a 
revisiting time of 8 days (Table 2).

Preprocessing of satellite data included geometric (Itten 
and Meyer 1993), radiometric (Teillet 1986), and atmos-
pheric (Kaufman and Sendra 1988) corrections. Data were 
first defined in the same coordinate system using the Uni-
versal Transverse Mercator projection and WGS84 datum. 
Geometric corrections included the elimination of distor-
tions between satellite data using ground control points. 
Among the geometrically corrected data, the root-mean-
square error (RMSE) should be lower than 0.5 (Lunetta and 
Elvidge 1999). Landsat-8/OLI Collection 2 Level 1 satellite 
data were downloaded using the Digital Elevation model 

Table 1   Vegetation and climate characteristics of the study areas

1. Adana-Kozan Fire Fire date: 23.08.2020
Burned area 4201 ha
Main plant species Pinus brutia, Ceratonia siliqua L., Olea europaea L., Nerium oleander L., Myrtus communis L., Cistus creticus L
Climate characteristics Mean annual temperature: 19.5 °C

Total annual precipitation: 680.8 mm
2. Ankara-Nallıhan Fire Fire date: 01.09.2020
Burned area 1229 ha
Main plant species Pinus nigra subsp. pallasiana var. pallasiana, Quercus pubescens Willd., Platanus orientalis L., Erica arborea L
Climate characteristics Mean annual temperature: 12.6 °C

Total annual precipitation: 413.6 mm
3. Kastamonu-Taşköprü 

Fire
Fire date: 02.09.2020

Burned area 1681 ha
Main plant species Pinus nigra subsp. pallasiana var. pallasiana, Pinus sylvestris L., Populus tremula L., Quercus petraea (Matt.) 

Liebl.,
Climate characteristics Mean annual temperature: 10.1 °C

Total annual precipitation: 525.3 mm
4. Denizli-Çardak Fire Fire date: 03.09.2020
Burned area 401 ha
Main plant species Pinus brutia, Pinus nigra subsp. pallasiana var. pallasiana, Juniperus excelsa M. Bieb., Quercus coccifera L., 

Arbutus andrachne L., Pistacia terebinthus L
Climate characteristics Mean annual temperature: 16.9 °C

Total annual precipitation: 573.8 mm
5. Antalya-Manavgat Fire Fire date: 28.07.2021
Burned area 60,362 ha
Main plant species Pinus brutia, Pinus nigra subsp. pallasiana var. pallasiana, Pinus pinea L, Juniperus excelsa, Cupressus semper-

virens L., Ceratonia siliqua L., Quercus coccifera, Laurus nobilis L., Myrtus communis L
Climate characteristics Mean annual temperature: 19.0 °C

Total annual precipitation: 1059.4 mm
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with radiometric and geometric corrections already applied. 
Geometric, radiometric, and atmospheric corrections of Sen-
tinel-2 satellite data were made using the Sentinel-2 toolbox 
(Gascon and Ramoino 2017).

After the data were geometrically corrected, a RMSE 
of 0.44 was calculated. Radiometric corrections included 
the elimination of atmospheric effects that might cause 
data errors and the radiometric calibration of pixels that do 
not represent reflectance values. Atmospheric corrections 

used the extrapolated Rayleigh-corrected reflectance at 
NIR and SWIR bands to derive their ratios and visible 
aerosol single scattering contributions (aerosol epsilon). 
FLAASH (Fast Line-of-sight Atmospheric Analysis of 
Hypercubes) and flat field were used for atmospheric 
corrections to remove effects such as aerosols and water 
vapor from satellite data (Matthew et al. 2002; Ye et al. 
2016; Ilori et al. 2019). After these corrections were com-
pleted, spectral indices from the literature (Table 3) were 

Fig. 1   Location of the burned areas
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Table 2   Spectral characteristics used for estimating fire severity (Fernández-Manso et al. 2016; Choubin et al. 2017; Korhonen et al. 2017)

Sentinel-2 Landsat-8/OLI MODIS

Spectral 
bands

Wavelength 
range (nm)

Resolution (m) Spectral 
bands

Wavelength 
range (nm)

Resolution (m) Spectral 
bands

Wavelength 
range (nm)

Resolution (m)

B1-Coastal 
aerosol

433–453 60 B1-Coastal 
aerosol

433–453 30 B1-Red 620–670 250

B2-Blue 458–523 10 B2-Blue 450–515 30 B2-NIR 841–876 250
B3-Green 543–578 10 B3-Green 525–600 30 B3-Blue 459–479 500
B4-Red 650–680 10 B4-Red 630–680 30 B4-Green 545–565 500
B5-Red 

Edge1
698–713 20 B5-NIR 845–885 30 B5-SWIR1 1230–1250 500

B6-Red 
Edge2

733–748 20 B6-SSWIR-1 1560–1660 30 B6-MIR, 
SWIR2

1628–1652 500

B7-Red 
Edge3

773–793 20 B7-LSWIR-2 2100–2300 30 B7-MIR, 
SWIR3

2105–2155 500

B8-NIR 785–900 10 B8-Pan 500–680 15
B8a-NIRn 855–875 20 B9-Cirrus 1360–1390 30
B9-Water 

vapour
935–955 60 B10-TIR1 10 300–10,100 100

B10-SWIR /
Cirrus

1360–1390 60 B11-TIR2 11,500–12,500 100

B11-SSWIR 1565–1655 20
B12-LSWIR 2100–2280 20

Table 3   Spectral indices used 
for estimating fire severity

MIR mid infrared, R RED, NIR near infrared, SSWIR shorter short-wave infrared, LSWIR longer short-wave 
infrared

Spectral index Equation References

NDVI NDVI =
NIR−R

NIR+R
Tucker (1979)

NBR NBR =
NIR−LSWIR

NIR+LSWIR
Lutes et al. (2006)

EVI EVI = 2, 5
NIR−R

NIR−6R−7,5B+1
Huete et al. (2002)

SAVI SAVI = (1 + L)
NIR−R

NIR+R+L
L = 0, 5 Huete (1988)

BAI BAI =
1

(0,1+R)2+(0,06+NIR)2
Chuvieco et al. (2002)

MIRBI MIRBI = 10LSWIR − 9, 8SSWIR + 2 Trigg and Flasse (2001)
CSI CSI =

NIR

SWIR2
Smith et al. (2007)

GEMI GEMI = y(1 − 0, 25y) −
R−0,125

1−R

y =
2(NIR2−R2)+1,5NIR+0,5R

NIR+R+0,5

Pinty and Verstraete (1992)

NDWI NDWI =
NIR−SWIR1

NIR+SWIR1
Gao (1996)

NDMI NDMI =
NIR−SWIR

NIR+SWIR
Wilson and Sader (2002)

BAIML BAIM =
1

(NIR−0,05xNIR)2+(LSWIR−0,2xLSWIR)2
Fornacca et al. (2018)

BAIMs BAIMS =
1

(NIR−0,05xNIR)2+(sSWIR−0,2xsSWIR)2
Fornacca et al. (2018)

RdNBR RdNBR =
dNBR

√
|
||
|
(
NBRprefire

1000
)
|
||
|

Miller and Thode (2007)

RBR RBR =
dNBR

(NBRprefire+1,001)
Parks et al. (2014)
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calculated using pre- and post-fire satellite images and the 
Raster Calculator tab within the ArcMap software. Fire 
severity maps were generated from the differences between 
the two images (Mallinis et al. 2018; Saulino et al. 2020) 
(Table S1).

Field sampling

Fire severity measurements were conducted within 
5–45 days following the fire. Sampling plots were randomly 
selected within the burned area using the stratified random 
sampling approach. It was ensured that the number of plots 
was proportional to the area each fire class covered. A total 
of 478 sampling plots were determined. Depending on the 

burn size, the number of plots for the Adana-Kozan fire was 
70, 60 for Ankara-Nallıhan, 105 for Kastamonu-Taşköprü, 
15 for Denizli-Çardak, and 228 for the Antalya-Manavgat 
fire. At each 30 × 30 m sampling plot, fire severity condi-
tions were visually assessed according to the CBI field pro-
tocol proposed by Key and Benson (2006) for all five strata 
by assigning each a value from 0 (unburned) to 3 (severely 
burned) (Table 4). At the center of each plot, digital images 
covering different angles were acquired and GPS coordinates 
were recorded. The GeoCBI for each plot was assessed fol-
lowing the protocol described by De Santis and Chuvieco 
(2009).

Table 4   Measured CBI and GeoCBI values of different fire severity classes on some of the sampling plots
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Relationship between remote sensing 
and field‑measured fire severity

To determine the relationships between field-measured fire 
severity and the spectral indices from satellite imageries, 
Kendall’s correlation analysis was performed. Based on 
these results, subsequent analyses were only performed for 
GeoCBI and spectral indices from Sentinel-2 and Landsat-8/
OLI satellite imageries. Linear regression analysis was used 
to determine the relationship between GeoCBI and the spec-
tral indices with the highest Kendall’s correlation coefficient 
(Escuin et al. 2008; Mallinis et al. 2018; García-Llamas et al. 
2019).

Defining threshold values for spectral indices

Threshold values were determined for best performing 
spectral indices. For this, optimal binning analysis was car-
ried out using SPSS for spectral indices with the highest R2 
derived from Sentinel-2 and Landsat-8/OLI satellite images. 
In order to classify the values of the spectral indices, the 
classification proposed by Miller et al. (2009) was used: 
unburned (0–0.1), low (0.1–1.25), moderate (1.26–2.25), 
and high (2.26–3.0). This approach allowed for the identi-
fication of reflectance threshold values of the most suitable 
spectral indices based on the locally measured GeoCBI clas-
sification. Kappa statistics were then used to assess agree-
ment between GeoCBI classes and optimized classified 
threshold values. In addition, for each of these spectral indi-
ces, a comparison was made between the predicted classes 
and those obtained via field measurements, and prediction 
accuracy percentages were calculated (Tables S2 and S3).

Results and discussion

According to our results, spectral indices from both Senti-
nel-2 and Landsat-8/OLI satellite imageries correlated best 
with the GeoCBI measurements. After De Santis and Chu-
vieco (2009) suggested the use of GeoCBI, noting that CBI 
does not work well in some regions and/or vegetation types, 
some studies either used GeoCBI instead of CBI or both, 
to test which one correlates better with spectral reflectance 
values. Consistent with our results, Mallinis et al. (2018) 
found in their study from Greece, that GeoCBI was better 
correlated with spectral indices from both Landsat-8/OLI 
and Sentinel-2 satellite imagery than CBI. In a study from 
Australia (Parker et al. 2015), the dNBR spectral index from 
Landsat satellite images showed a strong correlation with 
GeoCBI. However, Cansler and McKenzie (2012) in the 
USA showed that the use of CBI led to better results than 
GeoCBI. Saulino et al. (2020), on the other hand, reported 
that spectral indices from Landsat-8/OLI correlated better 

with CBI while spectral indices from Sentinel-2 were better 
correlated with GeoCBI.

Of the 478 fire severity sampling plots from five differ-
ent fire areas, 78 were unburned, 62 were lightly burnt, 152 
were moderately burnt, and 186 showed high fire severity. 
In general, GeoCBI scores were lower than CBI scores for 
these sampling sites (Fig. 2). In cases where the sampling 
plots were unburned or all strata showed similar fire sever-
ity, CBI and GeoCBI were the same or similar to each other. 
However, in cases where the ground cover showed high fire 
severity but the upper crown layer remained unburned, 
GeoCBI resulted in lower values than CBI (Table 4). This 
is because GeoCBI is calculated by weighing each layer 
(stratum) according to its estimated coverage within the 
plot. Further, if the upper canopy is dense, it causes most of 
the satellite observed reflectance (De Santis and Chuvieco 
2009). Considering only the upper or lower stratum during 
fire severity classification can lead to incorrect results. It 
may therefore be concluded that, in cases where the upper 
canopy is dense and the level of damage is low, GeoCBI 
provides a better characterization of fire severity.

Of the three different satellite data used in this study, 
Sentinel-2 and Landsat-8/OLI were more closely correlated 
with field measurement data than MODIS (Table 5). Further, 
although Landsat-8/OLI has a lower resolution (30 m) than 
Sentinel-2 (10 m), it provided better results for some of the 
indices due to its higher resolution, but since the differences 
between results are usually minor, both Sentinel-2 and Land-
sat-8/OLI can be used (Mallinis et al. 2018; Saulino et al. 
2020). Correlation coefficients between MODIS and field 

Fig. 2   Comparison of CBI and GeoCBI values obtained for the 
respective sampling plots
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measurements were significantly lower for most spectral 
indices (Table 5), possibly because of the low resolution of 
MODIS satellite images (250 m).

Linear regression was performed to determine the rela-
tionship between the spectral indices that resulted in the 
highest correlation coefficients (Table  5) and GeoCBI 

Table 5   Kendall’s correlation 
coefficients between spectral 
indices and field measurements 
(CBI and GeoCBI)

All correlations are statistically significant at 0.05 level. Highest correlations are in bold

Spectral indices CBI GeoCBI

Sentinel-2 Landsat-8/OLI MODIS Sentinel-2 Landsat-8/OLI MODIS

dNDVI 0.68 0.68 0.37 0.68 0.69 0.38
dNBR 0.74 0.69 0.39 0.75 0.70 0.39
dEVI 0.56 0.62 0.16 0.56 0.62 0.15
dSAVI 0.69 0.68 0.10 0.69 0.69 0.11
dBAI 0.14 0.62 0.11 0.13 0.07 0.12
dMIRBI 0.53 0.48 0.36 0.54 0.49 0.37
dCSI 0.59 0.49 0.37 0.59 0.48 0.38
dGEMI 0.53 0.41 0.32 0.52 0.40 0.33
dNDWI 0.68 0.68 0.34 0.68 0.69 0.35
dNDMI 0.69 0.67 0.38 0.69 0.67 0.38
dBAIML 0.58 0.47 0.21 0.58 0.48 0.21
dBAIMS 0.29 0.35 0.03 0.30 0.34 0.05
RdNBR 0.74 0.70 0.41 0.74 0.70 0.42
dRBR 0.20 0.21 0.13 0.19 0.20 0.15

Fig. 3   Linear regression between spectral indices (dSAVI, RdNBR, dNBR, dNDVI, dNDMI and dNDWI) from Sentinel-2 satellite images and 
GeoCBI
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values (Figs. 3 and 4). The ones with the highest coeffi-
cients of determination (R2) were dSAVI (R2 = 0.73), and 
RdNBR (R2 = 0.73) for the Sentinel-2 data as well as dNDVI 

(R2 = 0.74) and dSAVI (R2 = 0.74) for the Landsat-8/OLI 
data.

Based on the GeoCBI classification, fire severity thresh-
olds of the best-performing spectral indices were calculated 
using optimal binning analysis. Optimal classification was 
performed for five spectral indices (except dNDWI) derived 
from Sentinel-2 (Table 6) and for three spectral indices 
(dSAVI, dNDVI, and dNBR) from Landsat-8/OLI (Table 7).

According to the literature, most fire severity studies 
determine thresholds of Landsat dNBR. For example, 
regional dNBR classification thresholds were determined 
for Alaska (Epting et al. 2005), Montana, USA (Key and 
Benson 2006), California, USA (Miller and Thode 2007), 
Indonesia (Hoscilo et al. 2013), Australia (Parker et al. 

Fig. 4   Linear regression between spectral indices (dSAVI, dNDVI, RdNBR dNBR, and dNDWI) from Landsat-8/OLI satellite images and 
GeoCBI

Table 6   Threshold values 
of the spectral indices from 
Sentinel-2 satellite images

SENTINEL-2

GeoCBI Classes dSAVI RdNBR dNBR dNDVI dNDMI

Unburned < − 0.030 < 0.541 < 0.012 < 0.099  < − 0.014
Low − 0.030 to 0.161 0.541 to 7 641 0.013 to 0.099 0.100 to 0.180 − 0.015 to 0.110
Moderate 0.162 to 0.371 7 642 to 10 292 0.100 to 0.219 0.181 to 0.292 0.111 to 0.239
High > 0.371 > 10 292 > 0.219 > 0.292 > 0.239

Table 7   Threshold values of spectral indices from Landsat-8/OLI 
satellite images

LANDSAT-8

GeoCBI Classes dSAVI dNDVI dNBR

Unburned < 0.072 < 0.048 < 0.034
 Low 0.072–0.150 0.049–0.103 0.035–0.129
 Moderate 0.151–0.251 0.104–0.167 0.130–0.172
 High > 0.251 > 0.167 > 0.172
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2015), and Greece (Mallinis et al. 2018). The Landsat 
dNBR threshold values from our study are closest to those 
of Miller and Thode (2007) for California. Our results 
differ from those of Mallinis et  al. (2018) for Greece, 
although their study was conducted in a Pinus brutia stand 
on Thasos Island which is close to Turkey with similar 
vegetation. Compared to other studies, our threshold 
classification values were overall lower. Regional differ-
ences can occur based on fire intensity, vegetation cover 
and species-specific reaction to the fire, leading to differ-
ent reflectance values corresponding to the fire severity 
classes (Miller and Quayle 2015). Thresholds of spectral 
indices can perform well in terms of fire severity classifi-
cation for a specific place and time but may not perform 
well elsewhere (Huang et al. 2016).

Based on Kappa statistics, the level of agreement between 
spectral indices and field GeoCBI was highest for Senti-
nel-2—based RdNBR (Kappa values for RdNBR: 0.653, 
dNBR: 0.622, dSAVI: 0.512, dNDMI: 0.506, and dNDVI: 
0.001) and Landsat-8/OLI—based dNBR (Kappa values for 
dNBR: 0.603, dSAVI: 0.588, and dNDVI: 0.588).

Accuracy percentages were calculated between observed 
and predicted GeoCBI. For all fire severity classes, high-
est accuracy was for Sentinel-2—based RdNBR (72.1%) 
and Landsat-8/OLI—based dNBR (69.2%). RdNBR and 
dNBR showed highest accuracies for unburned, low, and 
high severity classes but lower accuracies for the moderate 
class (Tables S3 and S4). Some studies found that dNBR 
was less sensitive to consumption in the lower strata while 
the upper canopy was still green (Hoy et al. 2008; De Santis 
and Chuvieco 2009) but our results show that RdNBR and 
dNBR are also successful in the low severity class.

According to the results of this study, spectral indices 
showing the highest accuracy and agreement with field 
measured GeoCBI were Sentinel-2—based RdNBR and 
Landsat-8/OLI—based dNBR. In most of studies that tested 
the performance of spectral indices to estimate fire severity, 
NBR—based dNBR and RdNBR proved to be the best in 
detecting fire-caused changes (Epting et al. 2005; Escuin 
et al. 2008; Veraverbeke et al. 2011; Cansler and McKen-
zie 2012; Fernández-García et al. 2018; Ariza et al. 2019; 
García-Llamas et al. 2019). Other studies showed that RBR 
provides a more accurate estimation of fire severity than 
dNBR and RdNBR and thus the use of the spectral index 
RBR is suggested (Parks et al. 2014; Ariza et al. 2019). 
However, in our study, RBR performed poorly. The perfor-
mance of NDVI, which was less than dNBR and RdNBR in 
our study, varied from superior (Chen et al. 2011) to good 
(García-Llamas et al. 2019) to poor (Fernández-García et al. 
2018) in other studies. Hudak et al. (2007) found that the 
performance of dNDVI and dNBR were comparable and that 
both could be used for fire severity classification. In another 
study by Arnett et al. (2015) for a low-intensity prescribed 

fire in Canada, dSAVI was the best performing index among 
others calculated from both Landsat and Rapideye satellite 
images. They stated that dSAVI better represented areas of 
low-intensity fires and low fire severity. However, in this 
study, although dSAVI was among the indices showing the 
highest correlation with ground measurements for both Sen-
tinel-2 and Landsat-8/OLI, overall agreement of dSAVI and 
field GeoCBI was inferior and its performance to accurately 
estimate fire severity classes was poor. dMIRBI is recom-
mended for use in areas with low fire severity as it shows 
higher spectral separability, especially when a dense canopy 
is present (McCarley et al. 2018). Based on our results, we 
were not able to support this conclusion.

NDVI and SAVI are indices using NIR and RED bands, 
while NBR and NDMI use NIR and SWIR bands. With the 
reflectance values of the Landsat-8/OLI satellite images, 
it can be seen that spectral bands 4 (RED), 5 (NIR), 6 
(SSWIR), and 7 (LSWIR) show high separability between 
fire severity classes (Fig. 5). With regards to the reflectance 
values of Sentinel-2, the bands that reached high separabil-
ity were bands 4 (RED), 5 (RED Edge1), 6 (RED Edge2), 
7 (RED Edge3), 8 (NIR), 8a (NIRn), 11 (SSWIR), and 12 
(LSWIR) (Fig. 6). This agrees with results from other stud-
ies (Lewis et al. 2007; Papageorgiou et al. 2012; Pleniou and 
Koutsias 2013; Liu et al. 2016; Ariza et al. 2019; Chuvieco 
et al. 2019; Luo and Wu 2022) and our study as indices using 
these bands provided the best results. Overall, in our study, 
NBR-based RdNBR and dNBR indices were more success-
ful in classifying fire severity than the other indices. This 
is because the NIR band is sensitive to chlorophyll levels, 
while SWIR is sensitive to plant and soil water contents 
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as well as to the ash content after a fire (Miller and Thode 
2007). However, although dNDVI and dSAVI were highly 
correlated with field measurements, they did not perform 
as well as RdNBR and dNBR in terms of fire severity clas-
sification. This is because RED bands, although sensitive 
to fire-related decreases in chlorophyll content, show only 
limited sensitivity to post-fire attributes such as black car-
bon or ash (García-Llamas et al. 2019). Further, the better 
performance of Sentinel-2 based RdNBR over dNBR may 
be explained by the differences in pre-fire chlorophyll levels 
and density of vegetation cover. Therefore, RdNBR allows 
for a more accurate estimate of fire severity in heterogeneous 
terrains (Miller and Thode 2007).

Fire severity maps were generated using the threshold 
values calculated for the Sentinel-2—based RdNBR (Fig. 7) 
and Landsat—based dNBR indices (Fig. 8). For all fires, 
the majority of the burned areas were classified as high fire 
severity (Tables S4 and S5). This was expected for fires 
that occurred during the fire season and during periods of 
extreme fire weather conditions.
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Conclusions

Fire severity maps are used to describe fire effects on flora 
and fauna habitats, soil, water systems, atmosphere, and 
society. They assist forest managers in post-fire decision-
making processes. This study evaluated the performance 
of field-based estimates (CBI and GeoCBI) and spectral 
indices derived from Sentinel-2, Landsat-8/OLI, and 
MODIS images to assess fire severity in heterogeneous 
forest ecosystems of Turkey. Classification thresholds 
were calculated for well-performing indices and used for 
fire severity mapping. According to the results, regard-
less of the satellite used, NBR-based RdNBR and dNBR 
indices estimated fire severity more accurately than indi-
ces based on RED and NIR bands. While Sentinel-2 and 
Landsat-8/OLI images produced similar good results, 
MODIS’s performed poorly. GeoCBI was closely related 
to spectral reflectance values than CBI and thus provided 
more reliable field measurements of fire severity. Spectral 
reflectance values can vary substantially depending on fire 
intensity, vegetation cover and species-specific reaction 
to the fire, and thus can cause regional differences when 
determining fire severity. This is why threshold values for 

dNBR in this study differ from those of other studies. Our 
results can be used in forest ecosystems with vegetation 
similar to that in this study and might also guide further 
research. Further, in order to better understand the effects 
of fire, especially in patchy, heterogeneous forest ecosys-
tems, further research is needed from different regions and 
fire types, testing and validating fire severity maps based 
on remote sensing data.
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