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Abstract Forests are exposed to changing climatic condi-
tions reflected by increasing drought and heat waves that 
increase the risk of wildfire ignition and spread. Climatic 
variables such as rain and wind as well as vegetation struc-
ture, land configuration and forest management practices 
are all factors that determine the burning potential of wild-
fires. The assessment of emissions released by vegetation 
combustion is essential for determining greenhouse gases 
and air pollutants. The estimation of wildfire-related emis-
sions depends on factors such as the type and fraction of fuel 
(i.e., live biomass, ground litter, dead wood) consumed by 
the fire in a given area, termed the burning efficiency. Most 
approaches estimate live burning efficiency from optical 
remote sensing data. This study used a data-driven method 
to estimate live burning efficiency in a Mediterranean area. 
Burning severity estimations from Landsat imagery (dNBR), 
which relate to fuel consumption, and quantitative field data 
from three national forest inventory data were combined to 

establish the relationship between burning severity and live 
burning efficiency. Several proxies explored these relation-
ships based on dNBR interval classes, as well as regression 
models. The correlation results between live burning effi-
ciency and dNBR for conifers (R = 0.63) and broad-leaved 
vegetation (R = 0.95) indicated ways for improving emis-
sions estimations. Median estimations by severity class (low, 
moderate-low, moderate-high, and high) are provided for 
conifers (0 .44 − 0.81) and broad-leaves (0.64 − 0.86), and 
regression models for the live fraction of the tree canopy 
susceptible to burning (< 2 cm, 2 − 7 cm, > 7 branches, and 
leaves). The live burning efficiency values by severity class 
were higher than previous studies.

Keywords Forest wildfires · Emissions · Greenhouse 
gases · Satellite images

Introduction

Wildfires burn hundreds of thousands of hectares in the 
Mediterranean Basin annually (Ganteaume et al. 2013). 
Depopulation and rural exodus occurring since the 1950s, 
with abandonment of traditional forest management and 
accompanying forest densification and expansion, have 
resulted in fuel buildup and continuity that have led to higher 
intensity fires with increased destruction (Bodí et al. 2012). 
Beyond the loss in biodiversity and damaged habitats, wild-
fires can contribute a large and highly variable fraction of 
biomass emissions (Collier et al. 2016). Biomass combustion 
releases greenhouse gases (GHG) (Zavala et al. 2014), that 
contribute to global warming (Whelan 1995). Depending on 
the type of fuel burnt, other gases such as carbon monoxide, 
methane, and nitric oxide may be released (Castillo et al. 
2003; Balde and Vega-García 2019). These gases contribute 
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to air pollution and health-related impacts on people (Liu 
et al. 2015; Williamson et al. 2016). To date, there are a 
number of inventories that estimate  CO2 output from wild-
fires worldwide, mostly based on remote sensing imagery, 
burned area and burning efficiency estimations (Wiedinmyer 
et al. 2011; Giglio et al. 2013). The most common estima-
tions relies on moderate resolution sensors (e.g., MODIS) 
and the greenhouse gases observing satellite (GOSAT) (Ross 
et al. 2013; Guo et al. 2015; Guo 2020). However, recent 
developments highlight limitations in these approaches due 
to the inability to capture the actual contribution of small-
sized fires (van der Werf et al. 2017).

Spatial differences in fire frequency, size and intensity 
result in widely variable socioecological impacts (Viegas 
et al. 2009). The effects of fires are often gauged as a func-
tion of intensity—the amount of energy released by burn-
ing—or severity—the level of damage caused (Bodí et al. 
2012). For instance, fire intensity has been extensively 
used to estimate tree mortality rates or damage to buildings 
(Stephens et al. 2018), while severity has been related to 
the fraction of biomass consumed (De Santis et al. 2010b; 
Turetsky et al. 2011; Kukavskaya et al. 2014; Murphy et al. 
2019). Within any burned area, different levels of fire sever-
ity can be found, depending on fire behaviour (Oliva 2013). 
The estimation of severity for the assessment of fire effects 
has commonly relied on spectral indices from remote sens-
ing imagery; both the normalized burn ratio (NBR) and the 
delta normalized burn ratio (dNBR) have often been used 
(Fernández-Manso and Quintano 2015; Stambaugh et al. 
2015; Chu et al. 2016; Warner et al. 2017; Fernández-García 
et al. 2018a; Parks et al. 2018; García-Llamas et al. 2019; 
Lotufo et al. 2020). Fire severity assessments are linked to 
the amount of biomass and organic matter consumed in the 
combustion process (Davies et al. 2016), usually defined in 
relative terms (adimensional) (Pausas 2012; Oliva 2013). 
Changes in fire severity are related to large differences in 
the amount of fuel consumed during the fire. Therefore, 
knowledge of both the degree of fire damage (severity) and 
the amount of pre-fire fuel consumed is essential to improve 
emissions estimates (Conard and Solomon 2008). Fuel con-
sumption can proceed at variable rates during a wildfire, 
so an estimation of the fraction of the total fuel potentially 
available that is actually burned must be considered as a 
spatial and temporal dynamic variable related to the severity 
level (Oliva 2013). An incorrect estimation of this burned 
fraction can result in large errors (from 23 to 46%) in the 
quantification of emissions from wildfires (De Santis et al. 
2010b), since fire emissions are typically estimated as the 
product of burned area, fuel load, burned fraction and a spe-
cific emission factor (g  kg−1 of dry matter burned) (Urbanski 
2014).

Previous work has designated the fraction of available 
biomass or fuel consumed as burning efficiency (Seiler and 

Crutzen 1980), combustion completeness ( van der Werf 
et al. 2017) or combustion factor ( Akagi et al. 2011), with 
similar and dimensionless definitions (Oliva 2013). In this 
study, the percentage or fraction of available biomass or fuel 
consumed by fire in a specific area is referred to as burning 
efficiency (BE) (De Santis et al. (2010a). Methods for the 
estimation of BE can be grouped in two categories: (1) those 
based on field measurements (Araújo et al. 1999; Fearnside 
et al. 2001; Righi et al. 2009); and, (2) those based on spec-
tral changes in the vegetation caused by biomass burning 
(Wiedinmyer et al. 2006; De Santis et al. 2010b; der Werf 
et al. 2010; Garcia et al. 2017); both estimate fuel consump-
tion from the state of the vegetation before and after a fire. 
There is still no standard method to perform field-based 
estimations, partly due to the wide range of factors that may 
be considered (Chuvieco et al. 2006). These kinds of stud-
ies are usually restricted to prescribed fires, which do not 
experience the range of severities of an unplanned wildfire. 
The Intergovernmental Panel on Climate Change (IPCC) 
Tier 3, state-of-the art level (EEA 2019), assimilates vegeta-
tion types to the National Fire Danger Rating System fuel 
types (Deeming et al. 1977): each of the five components 
of the fuel types (live, dead fine, dead small, dead large, 
duff) are assigned a specific burning efficiency and emission 
factor depending on their flaming or smoldering combus-
tion, which is related to the diameter of the fuel compo-
nent (Leenhouts 1998; Köble et al. 2008a). However, the 
level of uncertainty is large (EEA 2019), and the number of 
fuel types to fit all cases small (Köble et al. 2008a). Remote 
sensing methods currently prevail because of the continu-
ous technical improvements in spectral, spatial, and tem-
poral resolution, good coverage, and the expense and effort 
required by field surveys using field data only for validation. 
While these methods have been valuable in global, national 
and regional estimations, the remaining uncertainties related 
to the quantification of consumed fuel require exploring 
other approaches (Ellicott et al. 2009). Burning efficiency 
has been the main cause of divergences when estimating 
smoke emissions (Ottmar et al. 2009), Knorr et al. 2012) 
since fuel consumption varies with fuel types and their com-
ponents. Ottmar et al. (2009) further indicated that not only 
vegetation types but both prescribed and wildfire fires need 
to be considered for more accurate emissions estimations 
due to their different severities.

In this study, a methodology combining national forest 
inventory (NFI) data and burn severity estimates was devel-
oped to calibrate the live fraction of the canopies, which is 
the fraction estimated from RS methods through spectral 
changes. This method builds upon the Spanish National 
Forest Inventory programme which provides detailed for-
est inventory data since the 1970s. It provides the neces-
sary allometric information to estimate live standing bio-
mass (LSB) at the stand level. The long NFI data available 
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on those plots affected by wildfire were used to estimate 
the fraction of live biomass loss, or live burning efficiency 
(LBE). LBE was then linked to burn severity estimations via 
Landsat imagery (dNBR) to produce empirical LBE-dNBR 
relationships. Traditionally, emission estimates assume an 
average value of BE for all fuel components of each fuel 
type, considering the total standing biomass which is inaccu-
rate. The reality of different severity levels occurring within 
any fire make it evident that BE should be a dynamic and 
compounded factor (Oliva 2020), in which relationship to 
each component must be considered separately.

The novelty of our proposal lies in the focus on the live 
fraction which may account for 10– 48% of the total biomass 
consumed (estimated from forest classes in Table 3, (Köble 
et al. 2008b), and the use of three consecutive NFI records 
(NFI2, 1990s; NFI3, 2000s; and NFI4, 2010s) to character-
ize and spatialize standing live biomass fuel consumption. 
Live burning efficiency was derived from forest structural 
changes in plots affected by various severity levels in several 
Mediterranean forest types in NE Spain, a region in which 
such studies are lacking despite high fire incidence. Burning 
efficiencies have been estimated in some studies (De San-
tis et al. 2010b; Garcia et al. 2017) for Mediterranean-type 
climate zones in California. In comparison, in the Medi-
terranean area of Europe, where intense summer fires with 
increasing frequencies are often uncontrolled (Evtyugina 
et al. 2014), there is a scarcity of studies on BE (De Santis 
et al. 2010b). To our knowledge, only Oliva and Chuvieco 
(2011) have performed this type of study in a European 
Mediterranean area (Spain).

Materials and methods

The methodology was implemented in four steps: (1) all 
plots affected by fires larger than 50 ha between the  2nd 
and  4th NFI surveys were identified (1992 to 2016); (2) live 
standing biomass (branches plus leaves) was calculated 
using the algometric equations from Montero et al. (2005); 
(3) the burn severity at plot level was determined based on 
the perimeters of those fires affecting NFI plots and the Nor-
malized Burn Ratio (dNBR) was calculated using Landsat 
imagery; and, (4) the differences between biomass in each 
plot was calculated using the closest NFI survey before and 
after fire to output the LBE factor and model severity-LBE 
relationships.

Study area

This study was in Catalonia, a fire-prone region in NE Spain. 
Catalonia covers 32,108  km2 (Fig. 1) of which forests are 
approximately 60% (Cervera et al. 2015). The predominant 
climate is Mediterranean, with mild winters and dry and 

warm summers; mean temperatures oscillate between 0 
ºC and 17 ºC, and annual precipitation between 400 and 
1200 mm. The region has complex mosaics of agricultural 
lands intermingling with shrubs and trees on abandoned 
marginal land. Species diversity is high and rich in endemics 
(Fady-Welterlen 2005), with Aleppo pine (Pinus halepensis 
Mill.) predominant in the lowlands, replaced with altitude by 
black pine (Pinus nigra Arn), Scots pine (Pinus sylvestris L.) 
and mountain pine (Pinus uncinata Ram.), irregularly and 
locally mixed with Quercus spp., beech (Fagus sylvatica L.), 
chestnut (Castanea sativa Mill.), and other species.

The region is frequently subject to forest fires (González-
Olabarria et al. 2015), although in terms of area burned, it 
generally aggregates in the extreme northeast, as well as in 
the interior of the central zone and the southwest (Rodrigues 
et al. 2019). An annual average of 650 fires are recorded, 
burning around 11.5 thousand ha, and most of these fires 
are human-caused, starting near urban settlements or roads 
(González-Olabarria et al. 2015).

Forest inventory data

All available forest field survey data on forests structure and 
composition in fire-affected plots in the period 1986–2016 
were used. The study period spanned the last three national 
forest inventories (NFI2, NFI3 and NFI4). The Spanish NFI 
creates a permanent network of plots using a regular sam-
pling strategy at the intersections of a 1 km × 1 km UTM grid 
established over digital maps (1: 25,000) and revisited every 
10 years. Each plot consists of four concentric fixed circles 
with radii of 5, 10, 15 and 25 m and used for the acquisi-
tion of stand and site variables (Alberdi et al. 2014). Plots 
affected by fires in the period 1986 − 2016 were selected to 
match dates between fires (pre-fire and post-fire data) and 

Fig. 1  Study area and location of NFI plots affected by fires in 1986–
2016
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NFI surveys; fire perimeters were retrieved from the GenCat 
repository (http:// agric ultura. gencat. cat; (Table 1). A total of 
60 plots surveyed 3 − 7 years after a fire were selected. Plots 
sampled less than two years after a fire event were excluded 
since they were not properly measured (e.g., most trees were 

considered dead and no information was retrieved). These 
plots were affected by 22 fires larger than 50 ha, many of 
which occurred in 1994. The largest (Casserres) burned 
22,243.2 ha (Table 1). Pre-fire vegetation was mainly com-
posed of pine (Pinus halepensis, Pinus sylvestris) and ever-
green Holm oak (Quercus ilex L.) forest types (Table 2). As 
the number of plots was related to the frequency with which 
fires burn a community type and the area it occupies, in this 
study there were more plots of conifers than of broad-leaved 
species.

Estimation of standing live biomass

The estimation of standing biomass of the live potentially 
burnable fractions of the crowns for the 60 plots was deter-
mined using the algometric equations by Montero et al. 
(2005), which relate total dry biomass or some of the tree 
fractions (t) with normal diameter (dbh) (Eq. 1). The live 
burnable biomass fractions of the individual trees (leaves 
and branches up to 7 cm) were added to provide total plot 
values in t/ha.

where CF is a corrective coefficient (CF = e SEE*2/2) of 
the standard error of the estimation (SEE), e Euler’s number, 
dbh the diameter at breast high in cm, a and b are model 
constants that depend on the species, and N is the number of 
trees. Scarce species in the plots with similar structure to the 
predominant ones were assimilated to these (e.g., Quercus 
pubescens Willd.) and Quercus petraea Liebl.) were esti-
mated with the same equation as Quercus ilex; Table 3).

(1)Tree biomass = CF ∗ e
a ∗ dbh

b ∗ N ∗ 10000

Table 1  List of fires in the study area, date of occurrence, and total 
area burnt

Fires Date of occurrence Total area burnt (ha)

Casserres 04/07/1994 22,243.2
Aguilar de Segarra 18/07/1998 15,272.3
Cardona 19/07/1998 8668.0
La Pobla de Massaluca 14/09/1994 6508.3
Collbató 04/07/1994 3164.8
Ponts 23/08/1994 2542.8
Badalona 11/08/1994 688.7
Mediona 10/08/1994 405.5
Forallac 16/03/2014 380.2
Terrassa 04/07/1994 345.5
Castellbell i el Vilar 21/08/1994 334.9
Santa Cristina d’Aro 09/03/2012 328.5
Olivella 29/07/2000 291.3
Calders 01/07/1994 288.7
Pontils 10/04/1994 261.1
Torrelles de Llobregat 08/07/1995 238.1
Prats de Lluçanès 23/08/1994 231.6
Torrelles de Foix 20/07/1994 158.8
Bassella 18/07/1998 157.1
Gaià 22/06/1998 146.4
Tarragona 09/07/1995 145.3
Subirats 07/04/1994 103.7

Table 2  Forest types with number of plots, mean diameter (dm) and mean height (Hm)

Forest type No plots dm (cm) Hm (m)

Pinus sylvestris forests 11 16.8 9.7
Mixed autochthonous broadleaves and coniferous forest of the Mediterranean biogeographical region 10 17.1 6.4
Quercus ilex forests 9 27.4 7.9
Pinus halepensis forests 9 23.3 8.3
Pinus pinaster Ait. forests 3 18.6 7.8
Birch forests 3 22.1 7.7
Mixed autochthonous broadleaved and coniferous forest of the Alpine biogeographical region 3 27.6 12.6
Riparian forests 2 13.8 6.8
Pinus nigra forests 2 16.3 5.8
Fir forests 2 20.9 13.5
Mixed autochthonous broadleaved forest of the Alpine biogeographical region 2 20.5 8.9
Mixed coniferous forest of the Mediterranean biogeographical region 1 20.4 7.4
Mixed broadleaves forest of the Mediterranean biogeographical region 1 17.9 8.9
Mixed autochthonous coniferous forest of the Alpine biogeographical region 1 20.5 9.7
Beech forests 1 24.5 8.3

http://agricultura.gencat.cat
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Estimation of burn severity in NFI plots

Burn severity levels were estimated from Landsat imagery 
using the delta of the Normalized Burn Ratio (dNBR; (Key 
and Benson 2006). dNBR is calculated is the difference 
observed in the normalized burn ratio (NBR), an index 
specifically designed to identify burnt areas. Similar to the 
NDVI, the NBR is a normalized index that combines near 
infrared and short wave infrared wavelengths (NIR and 
SWIR between 0.7 y 1.3 μm and 1.3 y 2.5 μm, respectively) 
bands (Wang et al. 2009) (Eq. 2).

where NIR = near infrared, SWIR = short wave infrared 
wavelengths.

The values of the dNBR for pixels in the plots were clas-
sified according to the standard burn severity interval classes 
of the United States Geological Survey (Key and Benson 
2006). The normalized burn ratio is positive in areas with 
intense photosynthetic activity and negative in areas with 
low plant productivity or without vegetation. To discrimi-
nate burned from unburned areas and provide a quantita-
tive measure of the change in the area, the post-fire NBR 
is subtracted from the pre-fire NBR, producing the dNBR 
index. The index is multiplied by 103 to get a continuous 
range of values between <  − 0.25 and 1.30. Negative val-
ues are usually the result of the presence of clouds in the 
pre-fire image or rapid plant regeneration (herbaceous) in 
the post-fire image (< − 0.25 < dNBR <  − 0.1). The positive 

(2)NBR = (NIR − SWIR)∕(NIR + SWIR)

values (between 0.1 and 1.30) are produced by the degree of 
impact of the fire on the vegetation and the soil, which can 
be categorized into different classes of severity (Table 4). 
Both raw dNBR and burn severity classes were linked to NFI 
plots. All plots were located at least at 30 m inside fire scars, 
thus dNBR values come from fully burnt pixels. Landsat 
imagery (TM and ETM + sensors) and dNBR calculations 
were performed using the Google Earth Engine platform. 
Pre- and post-fire NBR were calculated for all fires affect-
ing NFI plots using the Tier 1 Surface Reflectance product.

Estimation of plot‑level live burning efficiencies  (LBEi)

Plot-level live burning efficiencies  (LBEi) were calculated 
as the ratio between the standing biomass before and after 
the fire, according to Eq. 3.

where:  LBEi is the live burning efficiency, Biopre the live 
potentially burnable biomass measured before the fire (pre-
IFN computed value), Biopost the biomass measured after fire 
(post-IFN computed value).

Analysis of the relation between severity and standing 
living biomass consumption

A summary of the values in the plots was produced, reflect-
ing the before and after living burnable biomass load, dNBR 
and  LBEi for the species grouped for analysis based on struc-
tural characteristics. The relation between  LBEi and burn 
severity class was determined using three methods. First, 
a simple exploratory correlation analysis was applied; sec-
ondly, the average value of  LBEi based on dNBR classes was 
calculated (Table 4); thirdly, empirical relationships were 
modelled via log-linear regression.

Estimations based on dNBR classes

To determine the  LBEi according to burn severity intervals, 
plots were split according to the four burn severity classes 

(3)LBEi = Biopre − Biopost∕Biopre

Table 3  Function parameters β0 and β1 for biomass estimation and 
standard error (SEE) according to Montero et al. (2005)

 BR7 = biomass of branches with diameters > 7 cm, BR2-7 = bio-
mass of branches with diameters between 2 and 7 cm, BR2 = bio-
mass of branches with diameters ˂ 2 cm, BA = biomass of needles, 
BH = biomass of leaves; scarce species with similar tree structure 
were assimilated to these species

Species Symbols β1 β0 SEE

Pinus halepensis BR7 −9.550  3.611 0.926
BR2-7 −4.727 2.335 0.413
BR2 −2.745 2.037 0.226

Pinus sylvestris BR7 −15.047 4.804 0.816
BR2-7 −4.079 2.141 0.721
BR2 −2.084 1.510 0.625

Pinus nigra BR7 −13.810 4.632 0.958
 BR2-7 −6.625 2.925 0.527
BR2 −2.835 2.045 0.211

Pinus pinaster BR7 −23.042 6.524 0.324
BR2-7 −6.663 2.639 0.744
BR2 −4.667 2.380 0.528

Pinus pinea BR7 −4.337 2.600 0.537

Table 4  Burn Severity Classes from (Key and Benson 2006)

Burn Severity dNBR

High post-fire regrowth  <  − 0.25
Low post-fire regrowth  − 0.25 to − 0.1
Unburned  − 0.1 to + 0.1
Low-severity burn  + 0.1 to + 0.27
Moderate-low severity burn  + 0.27 to + 0.44
Moderate-high severity burn  + 0.44 to + 0.66
High-severity burn  + 0.66 to + 1.30
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in Table  4 (dNBR > 0.1; low, moderate-low, moderate-
high, high). For each severity class reported, an averaged 
LBE value was calculated as the mean of all plots in the 
same severity class. Complementary central (median) and 
dispersion (standard deviation, sd), quartiles and interquar-
tile range (IQR) statistics were also reported. To assess 
the degree of similarity of the observed LBE, significant 
inter-class differences were tested using the Dunn’s/Kruskal 
Wallis test for a rank classification, a non-parametric test 
suitable when testing more than two independent groups. 
The Bonferroni method was used for the correction of the 
significance level.

Estimations based in regression models

A log-linear regression model was fitted to calibrate the 
relationship between unclassified dNBR values and LBE. A 
regression model in which LBE acted as response variable 
and dNBR was the sole predictor was trained and tested. The 
performance of the prediction was evaluated by implement-
ing a leave-one-out cross-validation (LOOCV) procedure. 
The LOOCV consists of an iterative procedure where a 
model is trained with all observations but one, which is used 
to evaluate its predictive ability. This process is repeated 
as until each record has intervened once in the validation. 

Performance was summarized as the Pearson’s R square 
coefficient.

Results

The results from the 60 plots analyzed indicated that the two 
species most often affected by fire were Pinus halepensis 
and Pinus nigra (44 plots). Values found in the estimation of 
the compounded burnable fractions of live biomass (+ 7 cm 
branches, 2 − 7 cm branches, branches < 2 and leaves) are 
presented in Table 5. Severity and consumption were higher 
for the oak species than for the pines.

The correlation analysis suggested a fair degree of asso-
ciation between LBE and dNBR. The Pearson correlation 
coefficient showed a strong log-linear association between 
plot-BEi values and severity (dNBR) by species and glob-
ally (R = 0.68). The correlations were statistically significant 
(p < 0.05), with correlation coefficients R 0.63 in conifers, 
and 0.95 in broadleaves (Fig. 2).

Estimations of LBE based on burn severity classes

Conifers sustained all severity levels, while broadleaves 
started moderately low as the lower severity occurrence. 
This suggests that conifers experience the full range of burn 

Table 5  Summary of biomass (t/ha), dNBR mean according to number of plots and species grouped as conifers and broadleaves)

Dominant Species Species grouped Nº Biomass Biomass Median IQR Mean sd
Plots Before After dNBR dNBR dNBR dNBR

Pinus halepensis; Pinus pinaster; Pinus pinea; 
Pinus nigra;Pinus sylvestris

Conifers 49 42.9 13.5 0.56 0.36 0.53 0.21

Quercus ilex; Quercus pubescens; Quercus petraea Broadleaves 11 39.88 9.28 0.71 0.3 0.67 0.27

Fig. 2  Linear association between plot-LBEi and dNBR, by species group



1201The relationship between fire severity and burning efficiency for estimating wildfire emissions…

1 3

severities possible in the Mediterranean environment but 
not the broadleaved species. Significant differences between 
mean and median LBE values were not found; median values 
are typically less susceptible to extreme values or outliers, so 
LBE values computed as median were selected for the pair-
wise comparison in the Kruskal–Wallis test. The differences 
in LBE median values between all severity classes was sig-
nificant according to the Dunn’s/Kruskal Wallis test for rank 
classification (Kruskal–Wallis P < 0.05). The median values 
of LBE in conifers increased with severity class (low = 0.44, 
moderate-low = 0.55, moderate-high = 0.60 and high = 0.81). 
The increment was significant between the moderate-high 
(0.60) and high (0.81) classes. The broadleaved species 
showed a similarity between the median LBE values for 
moderate-high = 0.84 and high = 0.86, but the increase in 
value between the moderate-low (0.64) and moderate-high 
(0.84) classes was significant (Table 6; Fig. 3).

The standard deviation of LBE values showed higher dis-
persion in the moderate classes, but IQR displayed a higher 
variability in the moderate-high and high severity classes 

(Table 7). Values reflect the trend of fires in the study area 
towards the higher spectrum of severity.

Estimations based in regression models

The Pearson’s correlation coefficient (0.68, above) pointed to 
a dependency relation between LBE and dNBR which led to 
the fitting of a predictive model. The log-linear model fitted 
to predict LBE from dNBR for conifers and broadleaves is 
described in Eqs. 4 and 5 for dNBR < 1. Where dNBR > 1, 
Eq. 6 is applied to both conifers and broadleaves. Given 
that the log-linear fit can predict values over 1, which would 
mean a total consumption of biomass (100%), predicted val-
ues over the threshold dNBR > 0.66 matching high-severity 
burning, the maximum in the study by Key and Benson 
(2006) were also assigned value 1. The goodness of fit of the 
predicted regression estimated by the coefficient of determi-
nation on observed and predicted values was  R2 ≈ 0.46 for 
conifers (Fig. 4) and R2 ≈ 0.41 for broadleaves (Fig. 5). A 
slight underestimation of LBE was detected, especially in 
plots affected by high severity fires (high dNBR).

Despite the relatively low value of the coefficient of 
determination, it can be accepted from the results that it 
is possible to estimate LBE as a function of dNBR, since 
all coefficients in the log-linear regression were significant 
according to the Fisher test (F; p < 0.05). The Durbin-Wat-
son test revealed no autocorrelation in our data (statistic 
DW = 1.92 and p-value = 0.688).

Table 6  Summary of LBEs 
values according to standard 
dNBR interval classes by 
species grouped as conifers and 
broadleaves

N is the number of plots, IQR is the quartiles and interquartile range, sd is the standard deviation

Severity class N Species Mean Median IQR sd

Low 15 Conifers 0.429 0.440 0.150 0.138
Moderate-low 7 Conifers 0.597 0.550 0.095 0.083
Moderate-high 4 Conifers 0.600 0.605 0.135 0.138
High 23 Conifers 0.777 0.810 0.245 0.166
Moderate-low 3 Broadleaves 0.645 0.645 0.195 0.276
Moderate-high 1 Broadleaves 0.840 0.840 0.000 NA
High 7 Broadleaves 0.825 0.860 0.085 0.122

Fig. 3  Distribution of the plot-BEi across standard intervals of sever-
ity; brackets indicate pairwise comparison and significance level 
according to the Kruskal–Wallis test. ns, P > 0.05; **, P < 0.01; ****, 
P < 0.0001

Table 7  Summary of LBE values according to standard dNBR inter-
val classes by all species

N is the number of plots, IQR is the quartiles and interquartile range, 
sd is the standard deviation

Severity class N Mean Median IQR sd

Low 15 0.404 0.381 0.113 0.086
Moderate-low 13 0.569 0.514 0.138 0.221
Moderate-high 12 0.617 0.582 0.190 0.189
High 20 0.806 0.809 0.174 0.142
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Discussion

dNBR was used to estimate fire severity was a good indi-
cator over other severity indices such as RdNBR and CBI 
(Composite Burn Index) (Cocke et al. 2005; Hudak et al. 
2007; Soverel et al. 2010). Our dNBR analysis indicated 

(4)dNBR < 1.0 → LBE = e
1.029dNBR−1.052

(5)dNBR < 1.0 → LBE = e
1.669dNBR−1.618

(6)dNBR > 1.0 → LBE = 1

that most plots belonged in the moderate-high and high 
severities classes (Fig. 3), in agreement with findings by 
Fernández-García et al. (2018b) and Saulino et al. (2020) in 
Mediterranean areas. Severity levels from moderate to high 
are common within burned areas in this region (De Santis 
et al. 2010a), as also reported in this study.

Live burning efficiencies (LBE) were derived from the 
changes in live standing biomass estimated in NFI plots in a 
Mediterranean region exposed to high fire incidence and low 
to high severities. Recent studies on burning efficiency have 
increasingly relied on remote sensing data but have been 
limited in their calibration and validation of relationships by 
scarce field data due generally to budget constraints. Numer-
ous environmental monitoring programs often face similar 
constraints and have had to rely on ongoing inventories 

Fig. 4  Goodness-of-fit of the log linear model for plot-LBEi and severity (dNBR). Left: relation severity-LBE; right: comparison LBE 
observed-predicted (conifers)

Fig. 5  Goodness-of-fit of the log linear model for plot-LBEi and severity (dNBR). Left: relation severity-LBE; right: comparison LBE 
observed-predicted (broadleaves)
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(Smith et al. 2013). The use of NFI plot data overcomes this 
limitation for forest vegetation, as these data are routinely 
and extensively by national forestry bodies. NFIs apply pre-
cise and systematic statistical methods to the estimation of 
forest characteristics and consider spatial changes in stand 
structure (Barrett and Gray 2011). They save field time and 
funds and have proved valuable over the last decades for 
many natural resource applications (Corona et al. 2011). 
Tailored field measurements in a range of vegetation types 
might allow for more accurate estimations of LBE (live 
burning efficiency) but y are not easily acquired and cannot 
be timely programmed to before and after a fire that is not 
prescribed. The particular conditions of sampling and then 
burned were not common in our study area; the number of 
plots that met the requirements were sixty. While enough 
for exploring dNBR-LBE relations and model development 
at this stage, widening the study area could provide more 
plots for more species to analyze, provided fire incidence 
is similar.

The available national forest inventory data did not pro-
vide quantitative information on all burned fuel fractions, 
only the standing biomass of the tree crowns. In Mediter-
ranean environments, the understorey vegetation (shrubs, 
herbs) can be burned almost completely, depending on fire 
severity (Cadena et al. 2020), but these fractions are not 
estimated in NFI plots. Additionally, no data is available, at 
least in Spanish NFI, for estimation of the fuel load of dead 
woody material and duff components which have their own 
specific burning efficiencies and emission factors, depending 
on their flaming or smoldering combustion, related to the 
diameter of the fuel component (Leenhouts 1998).

This indicates that our approach specifically provides 
burning efficiencies for the live fraction of the standing 
biomass in forests, excluding the understorey. Nevertheless, 
the overstorey is the part of the forest vegetation remotely 
sensed by most passive sensors for Earth observation (Car-
reiras et al. 2006). While this is also true in all previous work 
that have used the vegetation channels for burning efficiency 
estimations, it must be noted that consumption and emission 
estimations may be largely underestimated by considering 
only the live fraction of the top vegetation layer, or assum-
ing it is the largest contributor. According to our estimation 
from Table 3 in Köble et al. (2008b), the live fraction burned 
may account for only 10–48% of the total forest biomass 
consumed (33% on average).

While this study may be limited by data, it is accurate 
in the definition of the fraction analyzed, which was deter-
mined from NFI pre-fire and post-fire biomass in the crown 
(+ 7  cm branches, 2 − 7  cm branches, branches < 2 and 
leaves). However, the largest branches (equivalent to 1000-h 
lag dead fuels) would only burn under severe conditions, but 
they are predominant in Mediterranean forests. The use of 
Montero et al. (2005) formulas added to sources of error to 

the estimation of live plot biomass, but in all cases, values 
were less than 1 t/ha (SEE, Table 3).

The high and significant correlations found between 
dNBR (normalized burn ratios) and LBE (live burning effi-
ciencies), r = 0.7 for conifers and r = 0.88 for broadleaves, 
indicates that these values can be considered very good esti-
mations when used for the forest conditions in NE Spain. 
Our LBE values by severity class (Table 7, between 0.38 and 
0.81) were somewhat higher than those in previous studies, 
and t more discrimination in the medium range of severity 
(moderate-low, moderate-high) are provided. However, for 
further studies, it may be possible to expand the sample of 
plots of low and moderate severity by analyzing prescribed 
burns with ad hoc inventories, especially for broadleaved 
species.

Araújo et  al. (1999) estimated burning efficiencies 
for different tree diameters as small- size (5 to 10  cm 
dbh), medium- size (10 to 30  cm dbh) and large- size 
(dbh > 30  cm). High burning efficiency values were 
found for leaves (0.83) and branches (0.61) of small trees 
(dbh < 10 cm), with a mean of 0.72. Branches for medium 
and large trees (dbh > 10 cm) had BE values of 0.31. Fearn-
side et al. (2001) also found similar values to ours in the 
estimation of biomass for branches, high BE values (0.80) 
were found for branches with diameters ˂ 5 cm, followed 
by branches of diameters between 5 and 10 cm (0.52). The 
lowest value was for branches with diameters > 10 cm (0.17). 
They found a decrease in burning efficiency with an increase 
in size of tree components, as expected, but they did not 
consider different severity levels and nor species. It has been 
common in previous studies for BE to be applied as an aver-
age value to a full wildfire and to all species present, but our 
results show that the variability in severity and species type 
should be considered.

Oliva and Chuvieco (2011) estimated burning efficien-
cies in another area in Spain and established three burn-
ing efficiency values by vegetation type and level of dam-
age. For conifers, they reported the following: low severity 
(0.25), medium (0.42) and high (0.57); for broadleaves, 
values were similar: low (0.25), medium (0.40) and high 
(0.57). De Santis et al. (2010a) established severity levels 
and burning efficiencies for three vegetation types: shrubs, 
broadleaves, and conifers. They adjusted the values based 
on the burn severity Geo Composite Burn Index (GeoCBI) 
as: conifers, low (0.25), medium (0.47) and high (0.65); 
broadleaves: low (0.25), medium (0.40) and high (0.56). 
These ratios were applied in two very large forest fires in 
California, in conditions comparable to the ones in our study 
area, but divergences are possible, given that the geometri-
cally modified Composite Burn Index is a qualitative, visual 
measure that considers the vegetation fraction cover to deter-
mine burn severity of the total plot (De Santis et al. 2009). 
These researchers did not separate biomass into fractions 
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or different components for burn efficiency calculations, 
but beyond considering severity class and species, it would 
be beneficial to differentiate more fuel fractions by size in 
future studies, since all tree components do not burn in the 
same manner. However, future work should consider and 
standardize the definition of fuel fractions by size, as many 
studies have used variable size intervals (i.e., 5 − 10/10 − 
30/ + 30 cm; < 5 cm/5 − 10/ + 10 cm; + 7 cm/2–7/ < 2 and 
leaves), depending on data availability.

The log-linear model was adequate for modelling the 
relationship dNBR-LBE, beyond the proviso of providing 
predicted values > 1, which required that they be truncated. 
Data showed no autocorrelation, and diagnostics were sig-
nificant. The availability of a model such as this one presents 
several advantages over ratios by severity classes; we avoid 
having to average values by categories and provide more 
accurate quantitative estimations of consumption, hence, 
also more accurate estimations of emissions. The spatial dis-
tribution of consumption can be mapped, and forest recovery 
actions adjusted more precisely.

Conclusions

To better characterize the burning efficiencies of wildfires 
and reduce uncertainties in emissions estimations, it is nec-
essary to consider the different consumptions of live and 
dead fuels of different sizes, by species, and how they are 
affected by changing fire severity levels. This study focused 
on live burning efficiencies and linked national forest inven-
tory biomass data to burn severity estimations via Landsat 
imagery (dNBR) to produce empirical LBE-dNBR relation-
ships for the live fuel fraction in conifers and broadleaves. 
Correlations between LBE and dNBR for conifers (R = 0.63) 
and broadleaves (R = 0.95) suggest appropriate LBEs for 
improving current emissions estimations. Median LBE esti-
mations were provided by severity class (low, moderate-low, 
moderate-high, and high) for conifers and broadleaves, and 
regression models for the live fraction of the tree cover sus-
ceptible to burning.

Global methods for estimations of fire emissions consider 
average burning efficiency values for general vegetation 
types that are assumed to burn partially, but homogeneously. 
However, large errors can be produced by not considering 
how species and burn severity influence greenhouse gas 
emissions, as suggested by our results.
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