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of plant lifespan also differ among annual species. Here, 
we propose the concept of the Annual O3 Spectrum Pro-
file (AO3SP) and apply it to calculate the profile of AOT40 
throughout the year (AAOT40SP, Annual AOT40 Spectrum 
Profile) using the International Organization for Standardi-
zation (ISO) weeks as a shorter window ISO-based accu-
mulated exposure. Using moving time periods of three (for 
crops) or six (for forests) months, the isoAOT40 behavior 
throughout the year can be examined as a diagnostic tool 
for O3 risks in the short- or long-term during the lifecycle 
of local vegetation. From this analysis, AOT40 (isoAOT40) 
that is most representative for the local conditions and spe-
cific situations can be identified, depending on the exact 
growing season and lifecycle of the target vegetation. We 
applied this novel approach to data from five background 
monitoring stations located at different elevations in Cyprus. 
Our results show that the AAOT40SP approach can be used 
for improved and more realistic assessment of O3 risks to 
vegetation. The AO3SP approach can also be applied using 
metrics other than AOT40 (exposure- or flux-based), adding 
a new dimension to the way O3 risk to vegetation is assessed.

Keywords  Air pollution · AOT40 index · Ozone risk 
assessment · Critical levels · Vegetation exposure metric

Abstarct  In recognition of the rising threats of ground-
level ozone (O3) pollution to forests, agricultural crops, and 
other types of vegetation, accurate and realistic risk assess-
ment is urgently needed. The accumulated O3 exposure 
over a concentration threshold of 40 nmol mol−1 (AOT40) 
is the most commonly used metric to investigate O3 expo-
sure and its effects on vegetation and to conduct vegetation 
risk assessment. It is also used by international regulatory 
authorities for deriving critical levels and setting standards 
to protect vegetation against surface O3. However, fixed peri-
ods of the growing season are used universally, yet growing 
seasons vary with latitudes and elevations, and the periods 
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Introduction

Tropospheric ozone (O3) concentrations have shown a wide-
spread multi-fold increase in the northern hemisphere rela-
tive to their pre-industrial levels, and are continuously rising 
in several regions of the world (Diaz et al. 2020; Yin et al. 
2020; Sicard 2021; Singh and Kavouras 2022). Tropospheric 
O3 is a secondary air pollutant whose formation depends 
upon primary gases, e.g., volatile organic compounds 
(VOCs), and nitrogen oxides (NOx), and meteorological 
conditions such as air temperature, relative humidity, and 
global radiation (Deroubaix et al. 2021; Cao et al. 2022; 
Cordero et al. 2022; Nguyen et al. 2022; Wang et al. 2022a, 
b; Ding et al. 2023). Hence, O3 concentrations exhibit a 
considerable spatiotemporal variability, with peaks in O3 
exposures widely varying across space and time (Deroubaix 
et al. 2021; Cao et al. 2022; Cordero et al. 2022; Nguyen 
et al. 2022; Wang et al. 2022a, b; Ding et al. 2023). Since 
the 1990s, background O3 concentrations have decreased in 
rural areas but increased in many urban areas in Europe and 
North America, mainly due to emission control policies that 
decreased local NOx emissions; the increase in urban areas 
is due to local reduction of O3 titration by NO (Diaz et al. 
2020; Proietti et al. 2021; Sicard 2021). However, even if 
the O3 mean concentrations have decreased in several rural 
areas, O3 exposures remain as high as to be multi-fold (e.g., 
2 − 8 times) the critical levels adopted by worldwide regula-
tory authorities for the protection of vegetation (Diaz et al. 
2020; Proietti et al. 2021; Sicard 2021). Moreover, in con-
trast to the mean concentrations, low percentile and back-
ground concentrations increased, even in rural and remote 
stations, mainly due to climate change (Sicard 2021). There-
fore, it is imperative to use accurate and improved O3 met-
rics for continuous comprehensive O3 risk assessments from 
local to regional scales.

The accumulated O3 exposure over a concentration 
threshold of 40 nmol mol−1 (AOT40) is the most widely 
used metric in the literature to evaluate O3 exposure (Anav 
et al. 2016; Agathokleous et al. 2018; Lefohn et al. 2018; 
Mills et al. 2018; Blanco-Ward et al. 2021; Ascenso et al. 
2021). For example, a search in the Web of Science Core 
Collection with the keyword “AOT40” produced 345 results 
(search on 12 July 2022). Owing to its easy and fast-forward 
calculation, as it requires only hourly O3 concentration data, 
AOT40 is widely used, not only in scientific programs but 
also in worldwide regulatory standards for the protection of 
vegetation (Paoletti and Manning 2007). For the protection 
of agricultural crops, a critical level of 3,000 nmol mol−1 h 
has been adopted by European Union (EU) legislative 
bodies (2008/50/CE Directive), whereas the critical level 
of 5,000 nmol mol−1 h over the growing season is recom-
mended for the protection of forests (UNECE 2017). Flux-
based O3 metrics are more biologically sound compared to 

exposure-based metrics as they integrate vegetation charac-
teristics and physiology (e.g., phenology, stomatal conduct-
ance; how much O3 plants absorb), as well as other impor-
tant environmental factors that modify the amount of O3 
entering plant tissues, such as soil water content (Matyssek 
et al. 2007; Paoletti and Manning 2007; Büker et al. 2015; 
Anav et al. 2016; Agathokleous et al. 2018; Blanco-Ward 
et al. 2021; Paoletti et al. 2022). Although there is increas-
ing interest in the use of flux-based metrics (Proietti et al. 
2021 and 2022; Blanco-Ward et al. 2021; Shashikumar et al. 
2022), their use is restrictive in underdeveloped and develop-
ing countries as well as in remote areas where physiological 
and environmental data needed are not readily available. In 
fact, a search in the Web of Science Core Collection with 
the keyword “PODy”, the metric proposed for O3 fluxes, 
revealed only 44 results (search on 12 July 2022). Moreover, 
due to the complexity in its calculation and the many input 
data required, its adoption by worldwide regulatory agencies 
is also challenging. Therefore, the use of AOT40, and other 
exposure-based metrics, may prevail for some time.

Growing seasons shift across latitudes and elevations, 
and plant lifespans differ among annual species. However, 
fixed periods of the growing season are used for AOT40, for 
example from 1 April to 30 September for the protection of 
forest trees (AOT40f), and from 1 May to 31 July for agri-
cultural crops (AOT40c) for latitudes around 45°N (2008/50/
EC Directive; UNECE 2017). Hence, AOT40-based risk 
assessment, based on the proposed fixed integration periods 
currently adopted by worldwide regulatory guidelines, can-
not fully depict the risk for local vegetation. For this reason, 
new developments are needed to improve the efficiency of 
such metrics and decrease the uncertainty in risk estimation, 
especially across larger geographical areas. Here, we pro-
pose isoAOT40, a modification of the classic AOT40, which 
can identify more realistic local O3 risks to forests and other 
types of vegetation based on the ISO week system.

Methods

In this study, we used O3 monitoring data from Cyprus, 
the third largest Mediterranean island with a land area of 
9,250 km2, as a case study. The Republic of Cyprus had a 
population of 918,100 in October 2021 (Ministry of Finance 
2022). Mount Olympus (1,951 m a.s.l.), in the Troodos 
Mountains, is the highest elevation on the island. Accord-
ing to the Köppen classification, the climate is Mediterra-
nean, classified as both “hot semi-arid climate” (BSh) and 
“hot-summer Mediterranean climate” (Csa). Cyprus suf-
fers O3 episodes regularly (Kleanthous et al. 2014). Hourly 
O3 data from five background stations were obtained from 
Cyprus’s Air Quality Section of the Department of Labor 
Inspection. The stations were scattered across the island 
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and subjected to different meteorological influences. Two 
were inland regional background stations at high (Troodos, 
34.56 N − 32.51 E, 1819 m a.s.l.) and middle (Agia Marina 
Xyliatou, 35.02 N – 33.03 E, 532 m a.s.l.) elevations, which 
are representative stations in the European Monitoring and 
Evaluation Program (EMEP). Another was a rural station 
(Stavrovouni, 34.53 N − 33.26 E, 650 m a.s.l), while the 
remaining two were rural-marine stations, Ineia (34.57 N 
– 32.22 E, 672 m a.s.l.) and Cavo Greco (34.57 N − 34.04 
E, 23 m a.s.l.). Data were available for the three-year period 
2014 − 2016, except for Stavronouni, whose operation 
ceased in January 2016, and thus, for this station data for 
2014–2015 were used. The wide horizontal and vertical 
(elevation) distribution of the stations permits the evalua-
tion of how O3 risk estimation may be modified by the O3 
exposure metric.

AOT40 was calculated by summing the hourly excesses 
of O3 above 40 nmol  mol−1 during daylight hours using 
Eq. 1.

(1)
AOT40 =

∑n

i=1

([

O3

]

− 40
)

.dt, for
[

O3

]

> 40 nmolmol
−1

where [O3] is the hourly O3 mixing ratio (nmol mol−1), n is 
the number of hours in the calculation period, and dt is the 
time step (1 h).

The Annual O3 Spectrum Profile (AO3SP), the weekly 
O3 exposures throughout a year, was then calculated as a 
thorough tool for risk assessment of local vegetation (Fig. 1). 
AAOT40SP, the isoAOT40-based AO3SP, is created by 
plotting the weekly AOT40 values (y axis) along the ISO 
week numbers (x axis). The ISO week date system is part 
of the ISO-8601 standard of the International Organization 
for Standardization. An ISO year has 52 or 53 ISO weeks, 
and the ISO week can be obtained from the common date 
ISOWEEKNUM function syntax in MS Excel (versions 
2013 and newer). The weeks begin on Monday, and the first 
week is the first week in a year that includes a Thursday. 
Therefore, the ISO week can be easily and rapidly obtained 
by MS Excel users.

For each station, and for all stations together, we created 
the annual profile of AAOT40SPc spectrum over 13-weeks 
(~ 3 months) for crops and AAOT40SPf spectrum over 
24 weeks (~ 6 months) for forests, moving by weekly steps. 
Using the moving 3- or 6-month time periods, the behavior 
of isoAOT40 throughout the year can be examined as a diag-
nostic tool for O3 risks in the short- and long-term during 
the lifecycle of local vegetation. We identified the minimum 

Fig. 1   Annual isoAOT40 Spectrum Profile (AAOT40SP) over 
3-months weekly (± standard deviation) moving periods. Calcu-
lations are based on average data from five monitoring stations 
across Cyprus over the period 2014 − 2016. The dashed red line 
indicates the recommended AOT40c thresholds for the protec-

tion of crops (3,000  nmol  mol−1  h over three months), whereas the 
dashed blue line indicates the recommended threshold for forests 
(5,000  nmol  mol.−1  h over six months) (2008/50/EC Directive; 
UNECE 2017)
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and maximum values of isoAOT40c and isoAOT40f annual 
profiles and the corresponding ISO weeks. For the estima-
tion of isoAOT40, the average of three years was used, except 
for the Stavrovouni station that was based on two years. All 
data processing was done with MS Excel (Microsoft). The 
figures were produced with ggplot2 package of R language 
(Wickham 2016).

Results and discussion

This novel approach captured the temporal variability in 
AOT40 exposures well, and thus O3 risks (Fig. 1).

The results of the station-specific analyses showed that 
isoAOT40c and isoAOT40f have exceeded the critical levels 
in all the stations all year round, with the exception of Stav-
rovouni station toward the end of the year (Fig. 2). Impor-
tantly, isoAOT40 exposures were two to six times higher 
than the regulatory critical level for almost the entire year 
(Fig. 1). The AO3SP analyses revealed that persistent high 
O3 exposures are continuously threatening both annual and 
perennial species of the local flora throughout the year. In 
addition, the results show distinct AO3SPs among the sta-
tions (Fig. 2). Temporal differences in isoAOT40 peaks were 
observed across the different elevations (peaking later at 

higher altitudes; Table 1). Air quality and particularly O3 
pollution often worsens at higher elevations due to higher 
stratospheric intrusion and weaker NO titration (Musselman 
et  al. 1998; Musselman and Korfmacher 2014; Semple 
and Moore 2020). Furthermore, O3 levels on Mt Troodos 
might be influenced more by forest fires occurring during 
the warmer seasons (Cristofanelli et al. 2007). As an exam-
ple, the isoAOT40 exposures peaked earlier in the year and 
showed less variability throughout the most part of the year 
at the low-elevation station compared to the high-elevation 
station (Fig. 2).

These results are fundamentally important because 
they show that using the traditional AOT40 with the 
specified time windows would not capture actual risks for 
many plants, especially in warm climates. For instance, 
in Cyprus, favorable weather conditions permit the cul-
tivation of many crops especially vegetables throughout 
the year, whereas the peak of the warm season with heat 
waves may be avoided due to the harsh conditions for 
plants occurring concurrently with prolonged drought. For 
example, in July 2016 the total rainfall was 0 − 0.5 mm and 
the highest maximum temperature 29 °C − 39 °C in areas 
where the O3 monitoring stations operated (Meteorological 
Report for July 2015, Cyprus Department of Meteorol-
ogy, https://​www.​dom.​org.​cy/). For this reason, vegetable 

Fig. 2   Annual isoAOT40 Spectrum Profile (AAOT40SP) over 
3-months weekly moving periods (± confidence interval) in Cyprus 
over the period 2014 − 2016. A loess smoothing method has been 
applied for clarity. Calculations are based on data per monitoring 
station. The dashed red line indicates the recommended AOT40c 

thresholds for the protection of crops (3,000 nmol mol−1 h over three 
months), whereas the dashed blue line indicates the recommended 
threshold for forests (5,000 nmol mol−.1 h over six months) (2008/50/
EC Directive; UNECE 2017)

https://www.dom.org.cy/
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planting is often regulated to avoid harsh conditions in 
critical months of July–August. Many vegetables and other 
cultivated plants, e.g., beans, cantaloupe, carrot, lettuce, 
pea, potato, radish, and spinach, are widely sown in early 
January to February, and their cultivation ends before July. 
Therefore, including July in the calculation of AOT40 
would not provide accurate O3 risk estimates for several 
crops. Moreover, because of the weather conditions in 
Cyprus, many of the plants are cultivated again in the fall, 
sown mainly in July–August or September. Hence, the tra-
ditional AOT40 would be irrelevant yet the AAOT40SPc 
spectrum analysis reveals O3 exposures exceeding the 
critical levels, which can be captured by the isoAOT40c. 
Table grapes are also cultivated on lower mountain slopes 
and along the coastline (Markou and Stavri 2006), where 
the isoAOT40 exposures peak earlier in the year compared 
to higher elevations. Given that the maturity of grapes 
varies by area, Cypriot grape vines supply table grapes 
to Europe from June to September (Markou and Stavri 
2006). Therefore, these cultivations, which are economi-
cally and socially important at a national level (Markou 
1998), can be exposed to isoAOT40 peaks that occur earlier 
than the traditional accumulation period according to the 
E.U. Directive. Moreover, aromatic herbs and vegetables 
are often cultivated off-season (Markou and Stavri 2006), 
such as by seeding on fields much earlier in winter under 
plastic films. The O3 risks of such cultivations outside the 
typical growing season would be misrepresented by the 
traditional AOT40.

Finally, the growing season of trees is prolonged in 
Cyprus, with many species being physiologically active 
almost the entire year; thus, the traditional AOT40 would 
miss a considerable O3 risk. Hence, consideration of plant 
phenology during the specific growing season is important 
for more accurate AOT40-based risk assessment, and the 

current framework may be combined with other traditional 
methods for more integrated risk assessment.

The ISO weeks of the maximum isoAOT40c mismatched 
the ISO weeks of the traditional AOT40c (17 − 30 or 
18 − 31, depending on year). Specifically, the mismatch was 
up to two weeks for the three middle elevation stations i.e., 
Agia Marina, Stavrovouni, and Ineia (532 − 672 m a.s.l.), 
shifting however, 3 − 4 weeks earlier for the lowest eleva-
tion station of Cavo Greco (23 m a.s.l.) and 6 − 7 weeks later 
for the highest elevation station of Troodos (1,819 m a.s.l.) 
(Fig. 2; Table 1). These results indicate that the traditional 
AOT40c may not reflect the actual O3 risks, which can be 
underestimated at the lowest and highest elevation stations 
due to inaccurate delimitation of the accumulation period 
(May − July), while some crops are grown year round on 
the island and are exposed to higher AOT40 than those 
of May–July. However, the ISO weeks of the maximum 
isoAOT40f had lower deviation from the ISO weeks of the 
traditional AOT40c (Table 1). Therefore, the 6-month time 
window for forests may be less sensitive than the 3-month 
time window for crops because it captures much of the 
period that is most conductive to increased O3 concentra-
tions. Nevertheless, the AO3SPs indicated that AOT40f is 
still insufficient to identify considerable risks for vegetation 
grown outside its specific time window and/or for a longer 
time. The benefit of this analysis is higher for the Mediterra-
nean area, with warmer conditions and a prolonged growing 
season, relative to other areas of Europe.

Conclusion

The proposed AAOT40SP can be used for more realistic 
assessment of vegetation risks to O3, and the same AO3SP 
approach can be applied for O3 metrics other than AOT40. 

Table 1   Minimum and maximum values of isoAOT40c and isoAOT40f annual profiles and the corresponding iso-weeks of their appearance (wk) 
in parentheses, in Cyprus (2014 − 2016)

The average of the five stations is considered the average at the national level. AOT40f: 6-month time window for the protection of forest trees. 
AOT40c: 3-month time window for the protection of agricultural crops. Min: minimum value along the moving 3-month base periods. Max: 
maximum value along the moving 3-month base periods. As a point of reference, the 1st of May is ISO week 18, 18, and 17 in 2014, 2015, and 
2016, respectively, and the 31st of July is ISO week 31, 31, and 30 in 2014, 2015, and 2016, respectively (AOT40c time window). The 1st of 
April is ISO week 14, 14, and 13 in 2014, 2015, and 2016, respectively, whereas the 30th of September is ISO week 40, 40, and 39 in 2014, 
2015, and 2016, respectively (AOT40f time window). S.D.: standard deviation

Station Elevation (m) max isoAOT40c (nmol 
mol−1 h)

min AOT40c (nmol 
mol−1 h)

max AOT40f (nmol 
mol−1 h)

min AOT40f (nmol 
mol−1 h)

Cavo Greco 23 16,815 (wk 14 − 26) 4,937 (wk 44 − 04) 27,995 (wk 12 − 35) 13,089 (wk 36 − 07)
Agia Marina 532 19,286 (wk 19 − 31) 3,193 (wk 46 − 06) 32,905 (wk 12 − 35) 9,392 (wk 40 − 11)
Stavrovouni 650 17,081 (wk 18 − 30) 2,897 (wk 47 − 07) 29,200 (wk 14 − 37) 8,658 (wk 39 − 10)
Ineia 672 18,833 (wk 16 − 28) 4,492 (wk 44 − 04) 31,987 (wk 13 − 36) 12,358 (wk 40 − 11)
Troodos 1,819 25,040 (wk 24 − 36) 4,800 (wk 48 − 08) 41,998 (wk 14 − 37) 12,088 (wk 40 − 11)
Average ± SD 19,411 ± 3,324 4,064 ± 950 32,817 ± 5,507 11,117 ± 1,962
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Thus, the AAOT40SP is proposed as an easy-to-use and 
flexible approach, adaptive to different geographical areas 
(in latitudes and altitudes) and to any plant species (in life 
span and cultivation periods). Different geographical areas 
and different plant species can vary considerably in their 
AAOT40SP, and new comprehensive studies are needed to 
reveal how the AAOT40SP varies spatially and across plant 
taxonomic or functional groups.
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