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conducted on ten defective larch boards, and the experimen-
tal results showed that this method can accurately invert the 
shapes of defects in solid wood boards with the advantages 
of low cost and easy operation.

Keywords Timber knot inversion · Distance regularized 
level set segmentation (DRLSE) · Ellipse fitting · 
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Introduction

Comprehensive utilization of wood is the main goal of log 
cutting optimization. The existence of knot defects in the 
log not only increases the difficulty of wood processing, 
but also affects the visual and mechanical properties of the 
boards after log cutting (Chang and Lin 2021). At present, 
researchers have carried out detection based on ultrasonic, 
X-ray, stress wave and other methods, attempting to establish 
a correlation between electrial signals and internal defects 
and invert the internal defects of logs (Qin et al. 2018; Ber-
tolin et al. 2020; Cheng et al. 2020). However, acquisition 
of the spatial data of the deects in the log is still the primary 
task and a difficult problem of modeling and analysis. The 
spatial morphology of knot defects can be inversed by the 
integration of the boards after log sawing. In other words, 
through the relative positions of the internal defects of the 
board, the information of knot defects can be inverted. For 
the defect detection in the board, Olsson et al. (2013) used 
laser imaging technology to calculate the microfibril angles 
of the surface, and then described the internal defects of 
the board. Hittawe et al (2015b) used X-ray technology to 
describe the shapes of knot defects in solid wood boards, 
and to predict their mechanical parameters by calculating the 
sectional area and spatial depth of knot defects. Huber et al. 
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(2022) presented a method for reconstructing the geometry, 
pith, knots, and local fiber orientations in timber boards, 
based on X-ray computed tomography scans. Yu (2019) 
used near infrared spectroscopy to construct the relation-
ship between edge angles and spectral characteristics and 
used inclination values to describe the positions of knots. 
Despite the ability to detect the morphology of knots, these 
methods have the disadvantages of high equipment cost and 
difficult technology.

Image processing has the advantages of simple system 
composition, strong ability in information acquisition and 
flexibility in detection. In the process of image processing, 
the defect regions can be segmented effectively through the 
effective fusion between algorithms (Li et al. 2020). Hittawe 
et al. (2015a) extracted the LBP & SURF features of the 
sheet, used an image processing process combining contrast 
enhancement, entropy maximization and image filtering to 
detect potential defect areas. Zhang et al. (2015) proposed a 
region growing segmentation method based on image fusion 
to realize fast and accurate segmentation of defect regions. 
Luo and Sun (2019) proposed an optimization algorithm for 
image binarization based on local thresholds to solve the 
problem of uneven background of wood defect images. In 
recent years, level set methods have ovecome the shortcom-
ings of complex steps and cumbersome calculations required 
in the fusion process of various methods. These level set 
methods naturally change the topology with continuous evo-
lution curves to obtain more detailed features, and thus can 
segment target objects with complex shapes (Ramu et al. 
2021; Gao et al. 2022). Li et al. (2010) proposed the model 
of distance regularized level set evolution (DRLSE), and the 
internal energy of the distance regular term is used to reduce 
the deviation between the level set function and the distance 
sign function based on the level set. The regulaized level set 
model has higher segmentation accuracy compared with the 
traditional level set methods.

Although the segmentation algorithm can capture the 
defect contour of the board, how to use image processing 
technology to inverse the internal shape of defects has not 
been fully studied. Guindos and Guaita (2013) held that 
knots exist in the shape of 3D cones. In the processing of 

boards, elliptical knots usually show on the top and bottom 
surfaces. However, as wood is a heterogeneous and aniso-
tropic biomaterial, such ellipses will often be warped and 
distorted, which brings difficulties to the image inversion 
of the cone. This paper used DRLSE to segment the edge 
region of the defect, thus eliminating the influence of noise 
caused by texture and depression in the background, and 
then fitted the defect boundary by elliptic equation. In addi-
tion, angle correction was carried out to solve the problem 
of the non-coplanar major axes of the ellipses. Aiming at 
the deviation in proportion to the major and minor axes of 
the ellipses that cause the non-intersection of the edge lines 
and difficulty in vertex determination, this paper employed 
a clustering method, K-medoids, eliminating interference 
points to locate the vertices. Finally, the shapes of knots in 
the boards were inverted according to the bottom ellipse and 
vertex position information, which provided data support for 
the inversion of internal knots of the log.

Materials and methods

Materials

Ten larch boards with knots on top and bottom surfaces were 
selected as experimental materials. Camera JHUM130m-E 
and lens HM5014MP5 were used to collect images of the 
defects in sufficient light. Examples of board defect images 
are shown in Fig. 1. In the experiment, the image resolution 
is 762 × 176 pixels. The boards varied in length and width. 
In order to facilitate analysis, the fitting accuracy was meas-
ured by pixel scale.

DRLSE algorithm for defect segmentation

Compared with the traditional active contour models, 
DRLSE adds an internal energy function which can auto-
matically adjust the deviation between the level set function 
and the signed distance function. As a result, there is no need 
to repetitively initialize the level set function in the iterative 
process. The energy functional is set as in Eq. 1:

Fig. 1  Defects on a top and b bottom surfaces of boards
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Where ▽ is the derivative operator; 𝜇 > 0 and is a con-
stant; ∫

Ω
p(|∇�|)dx is the internal energy function; 

p is the energy density function, defined as in Eq.  2. 
� ∫

Ω
g��(�)|∇�|dx + � ∫

Ω
gH�(−�)dx is the external energy 

function, which controls the zero level set curve to move 
towards the target boundary, where, 𝜆 > 0 ; Ω refers to the 
image region; ��(x) is the Dirac formula, as shown in Eq. 3; 
H�(x) is the Heaviside formula, as shown in Eq. 4; g(I) is 
the edge detection function of the input image I(x, y) , as 
shown in Eq. 5.

Where  ε represents the width of the function, usually 1.5.

where ▽ is the space derivation operator; Gσ indicates the 
Gaussian filter with the standard deviation σ; I represents the 
image; * represents the convolution operation.

The goal of the DRLSE model is to minimize the energy 
function E(�) , and the iterative process of the level set function 
is solved by using the partial differential equation, as shown 
in Eq. 6.

Where � is �(x, y, t) , representing the level set function; div 
indicates divergence; �div

(
dp(|∇�|)∇�

)
 is the internal 

energy function, 𝜇 > 0 ; ���(�)div
(
g(I)

∇�

|∇�|
)
 is the energy 

determinant of the function, the value of which keeps getting 
smaller in the iterative process until reaching the edge con-
tour of the detected region, 𝜆 > 0 ; �g(I)��(�) can determine 
the change direction of the level set function contour in the 
iterative change process (Zhang and Zhang 2018). When 
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𝛼 < 0 , the contour curve expands outward; when 𝛼 > 0 , the 
contour curve shrinks inward; when � = 0 , the contour curve 
will not move but makes the contour smoother.

Ellipse fitting and angle correction

After image segmentation of the knots, the top and bottom 
defect boundary coordinates are obtained. Since the defects 
are not ideal ellipses, the least squares-based ellipse fitting 
algorithm is used to obtain the coefficient equation, as shown 
in Eq. 7:

Where x and y are elliptic plane coordinates, while A, B, C, 
D, E and F are the coefficients of the equations.

The center of elliptic parameters O(x0, y0) and plane inclina-
tion angle θ (angle between the major axis and X axis of the 
ellipse in the horizontal plane), semi major axis a and semi 
minor axis b can be obtained from the elliptic equation. The 
relationship between elliptic equation coefficients and elliptic 
parameters is shown in Eq. 8 (Flores and Rivera 2020):

As the inclination angles θ1 and θ2 of the ellipses fitted 
from the top and bottom surfaces are different, the major axes 
of the two ellipses are not coplanar, and the data of the cone 
vertex coordinate set is highly dispersed. Eq. 9 is introduced 
to correct the inclination angles. After angle correction, two 
parallel ellipses with different heights and sizes are formed. 
The large ellipse is selected as the cone bottom, and the small 
ellipse is regarded as the cross-section between the cone and 
the top plane of the board.

Vertex location based on K‑medoids

Taking the major axis points of the ellipse as the start, the 
edge points of the corresponding angles of the two ellip-
ses every 15° are connected to form edge lines, totaling 22 
edge lines (excluding two major axis points). Theoretically 
after angle correction, both the top and bottom ellipses have 

(7)Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

(8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A = a2 sin2 � + b2 cos2 �

B = −2(a2 − b2) sin � cos �

C = a2 cos2 � + b2 sin2 �

D = −2(a2 sin2 � + b2 cos2 �) ∗ x0 + 2(a2 − b2) sin � cos � ∗ y0

E = −2(a2 cos2 � + b2 sin2 �) ∗ y0 + 2(a2 − b2) sin � cos � ∗ x0

F = −2(a2 − b2) sin � cos � ∗ x0y0 + (a2 sin2 � + b2 cos2 �) ∗ x2
0

+(a2 cos2 � + b2 sin2 �) ∗ y2
0
− a2b2

(9)�3 =
�1 + �2

2
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identical length–width ratios, and the edge lines and the 
major axis plane would intersect at the same point, i.e., the 
vertex of the cone. However, in fact, there would be devia-
tion in length-width ratios of the top and bottom ellipses, 
and in the calculation during angle correction of the ellip-
ses, so the edge lines and the major axis plane will intersect 
at different points within a certain range and an ideal cone 
cannot be formed. To locate the vertex position of the cone, 
a clustering algorithm is introduced to eliminate the influ-
ence of interference points and obtain more accurate vertex 
position.

Twenty-two edge lines form a vertex dataset, yet with 
extreme values further away from the main cluster. The 
K-means algorithm is a popular cluster analysis method, 
and the clustering algorithm takes Euclidean distance as the 
measurement standard, which is subject to significant influ-
ence of the extreme values and thus is not conducive to the 
accurate selection of clustering center. Instead, K-medoids 
uses Manhattan distance as the measurement standard, 
and the sample points are taken as the center which is less 
affected by extreme values (Yu et al. 2018). Therefore, the 
K-medoids was selected as the clustering method for vertex 
coordinates, its loss function shown in Eq. 10.

where K is the number of clusters; N is the number of ele-
ments contained in each cluster; rkn indicates that when the 
data point n is classified into class k, n = 1, otherwise n = 0; 
||xn − �k

|| indicates the Manhattan distance from the element 
to the center of cluster.

The specific process of this method is shown in Fig. 2.

Results

RLSE‑based defect segmentation

In the iterative process of the DRLSE algorithm, the time 
step τ is positively correlated with the update speed and 
convergence state of level set curve (Zhang and Guo 2015). 
Here, τ = 6. To maintain the stability of level set evolution 
curve, it is necessary to meet τ*μ < 0.25 (Shen and Zhu 
2015). After a number of experiments, the parameters of 
DRLSE are set as follows: μ = 0.04, λ = 4.2, α = 2.2, ε = 
1.5, and Gaussian filter parameter σ = 2.3.

Figure 3 shows the result of board defect image segmen-
tation by DRLSE and that by the traditional edge detection 
Canny. By Canny, the segmentation result contains a large 
number of interferences from texture and groove on board 
surface. On the contrary, the DRLSE will gradually elimi-
nate the influence of wood surface dent and texture in the 

(10)J = min

K∑
k=1

N∑
n=1

rkn
||xn − �k

||

iterative process and finally accurately capture the boundary 
of the knot defect in the image.

Ellipse fitting and correction results

Table 1 shows the ellipse parameters fitted on the top and 
bottom surfaces of 10 boards. For the convenience of cal-
culation, all ellipses with a large area are set as bottom 
ellipses to ensure the positive ordinates of the cone points. 
All experimental boards are of the same 96-pixel length, 
recorded as h = 96. According to the data in the table, there 
is a certain deviation in the length–width ratio of the bottom 
surface and section ellipse, but as the deviation is small, it 
can approximately form a cone.

Vertex location using K‑medoids

Vertex clustering is carried out for the ellipse parameters 
(Table 1), and the clustering results of cone vertex data for 
some board defects are given in Fig. 4. The vertex dataset 
has a linear spatial distribution to a certain extent, featured 
as “convex”, and presents the distribution characteristics of 
one central cluster with two lateral clusters. The data in the 
central cluster are valid, while those in both lateral clusters 
are invalid; the cluster number Kp is set to be 3. Cluster 
analysis is made by using K-medoids, with the average value 
of the cluster center of the intermediate cluster as the cone 
vertex.

Analysis of defect inversion results

The cone morphology is related to three parameters: let bot-
tom area of the model be (fS1), sectional area of the model 
be (fS2) and the midpoint of the model section be (l2) (the 
midpoint of model bottom coincides with the midpoint of 
actual defect image by default). These three parameters of 
the cone model are compared with the parameters S1, S2 and 
O2 of the original image, as shown in Fig. 5. Their calcula-
tions are shown in Eqs. 11−13.

As shown in Table 2, the deviation rates of the bottom 
area of the model compared with the actual area, fS1 are 

(11)fs1 =
S�
1
− S1

S1

(12)fs2 =
S�
2
− S2

S2

(13)l2 =

√
[O�

2
(x) − O2(x)]

2 + [O�
2
(y) − O2(y)]

2
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Fig. 3  Comparison of edge segmentation results between a canny operator and b DRLSE
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between 1 and 4%, with an average value of 2.4%, which 
is a minor deviation from the actual value, indicating that 
the data is reasonable. Tables 3, 4 show the comparison 
between the results of K-medoids and K-means algorithms. 
In the case of K-medoids algorithm, the deviation rate of 
sectional area f s1 = 2.80%, and the deviation distance of 
section midpoint l2 = 0.281 pixel length, which is slightly 

better than 2.98% and 0.363 pixel length, respectively, in 
the case of K-means algorithm, but the difference is not 
obvious.

Table 1  Parameters of top and 
bottom ellipses

θ3 is the inclination angles of elliptic plane, x and y are the center coordinates, a and b are length and width 
of ellipse, respectively

Board no. Inclination angle of 
elliptic plane (θ3)

Parameters of section ellipse Parameters of bottom ellipse

Center (x, y) Length–width 
ratio (a:b)

Center (x, y) Length–
width ratio 
(a:b)

1 46.00° (327.6, 68.3) 20.6:19.2 (356.2, 57.8) 25.5:24.3
2 1.84° (217.3, 47.3) 18.8:17.6 (284.6, 51.0) 24.0:21.0
3 5.38° (304.8, 35.7) 18.5:16.6 (285.7, 50.7) 23.8:21.1
4 − 38.40° (432.8, 127.6) 18.4:16.5 (408.7, 78.6) 31.3:29.0
5 4.95° (283.3, 52.0) 16.9:15.2 (458.3, 141.0) 18.9:17.4
6 17.50° (170.6, 49.6) 25.3:23.5 (393.0, 71.4) 33.9:31.8
7 85.00° (432.9, 87.5) 23.4:21.9 (523.5, 113.8) 26.7:25.3
8 − 72.00° (283.7, 49.5) 16.2:15.0 (245.5, 68.2) 21.4:20.3
9 23.00° (216.5, 62.8) 17.5:16.1 (198.3, 98.3) 22.5:21.2
10 − 18.00° (301.8, 56.9) 18.2:16.7 (328.9, 44.2) 23.2:21.6

Fig. 4  K-medoids clustering results of some vertex datasets for Board No. 1−3 a−c 

Fig. 5  Schematic diagram of model verification

Table 2  Comparison between bottom area of the model S1′ and 
actual image area S1

Board no. Bottom area of 
the model S1′

Actual area S1 Deviation 
rate fS1 (%)

1 1892 1846 2.5
2 1576 1532 2.9
3 1577 1538 2.6
4 2842 2769 2.6
5 1033 1002 3.1
6 3387 3314 2.2
7 2122 2078 2.1
8 1364 1334 2.2
9 1499 1466 2.3
10 1574 1548 1.7
Mean value – – 2.43
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Further analysis of the reasons for the insignificant 
improvement with K-medoids compared with K-means 
showed that: most of the defective boards selected in the 
experiment are small, which leads to more concentrated 
vertex dataset and the minor influence of extreme val-
ues. As a result, compared with K-means, the K-medoids 
algorithm does not contribute to an obvious improve-
ment. However, with larger test-pieces, such as Boards 
no. 6 and 7 in the Table 4, the vertex data will be more 
dispersed and the extreme values will have greater influ-
ence, so the deviation is greatly reduced with K-medoids 
compared with K-means, thus making greater improve-
ment. In conclusion, K-medoids clustering is better than 
K-means clustering.

Conclusion

In view of the complexity and high cost of existing inver-
sion methods for knot defects of boards, this paper proposed 
to segment the knot by DRLSE and realize the inversion 
of knot defects through ellipse fitting, angle correction, 
spatial line generation and vertex clustering. The experi-
mental results showed that the level set image segmentation 
alogrithm has the advantages of strong anti-interference abil-
ity, good robustness and high segmentation accuracy. Ellipse 
fitting and angle correction were carried out to generate the 
fitting ellipses of the top and bottom surfaces with coplanar 
major axes. The vertex dataset was obtained by spatial line 
fitting, and the influence of interference points was elimi-
nated by clustering the vertex dataset of the model through 
K-medoids. In this way, the defect vertex can be accurately 
located, the defect shape can be inverted, and then we can 

Table 3  Comparison between 
sectional area of the model 
S2′ and actual value O2 with 
different methods

fS2-kmeans and fS2-kmedoid are the deviation rates using k-means and k-medoids method, respectively

Board no. Actual area S2 K-means 
algorithm S2′

fS2-kmeans (%) K-medoids 
algorithm S2′

fS2-kmedoid (%)

1 1223 1262.63 3.24 1259.93 3.02
2 1016 1045.77 2.93 1053.63 2.72
3 962 984.90 2.38 984.22 2.31
4 958 996.89 4.06 995.65 3.93
5 805 828.91 2.97 829.15 3.00
6 1859 1904.73 2.46 1897.11 2.05
7 1601 1642.47 2.59 1635.42 2.15
8 759 784.50 3.36 783.36 3.21
9 879 904.67 2.92 904.05 2.85
10 951 978.58 2.90 977.44 2.78
Mean value – – 2.98 – 2.80

Table 4  Comparison between 
model section center O2′ and 
actual position O2 with different 
methods

l2-kmeans and l2-kmedoids are the deviation distance based on k-means and k-medoids method, respectively. 
Boards no. 6 and 7 show that the vertex data of the cone will be influenced greatly by the extreme values 
and be more dispersed

Board no. Actual area O2 K-means O2′ l2-kmeans K-medoids O2′ l2-kmedoids

1 (327.44,68.11) (327.76,68.36) 0.406 (327.67,68.31) 0.305
2 (216.98,47.06) (217.34,47.33) 0.450 (217.30,47.31) 0.406
3 (304.91,35.48) (304.84,35.66) 0.193 (304.88,35.61) 0.136
4 (432.65,127.48) (432.83,127.57) 0.201 (432.84,127.54) 0.199
5 (283.55,52.11) (283.28,51.95) 0.314 (283.30,52.93) 0.310
6 (170.48,49.50) (170.07,49.13) 0.552 (170.23,49.29) 0.326
7 (433.05,87.38) (433.51,87.03) 0.578 (433.31,87.17) 0.334
8 (283.91,49.22) (283.70,49.44) 0.304 (283.74,49.39) 0.240
9 (216.11,63.01) (216.46,62.89) 0.370 (216.42,62.93) 0.320
10 (301.65,57.13) (301.85,56.95) 0.269 (301.82,56.98) 0.227
Mean value – – 0.363 – 0.281
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obtain the spatial coordinates of the defect in the log. Our 
proposed method is capable of detection and inverting the 
knots’ shape inside the plate with defects existing on the top 
and bottom.
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