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no significant classification errors in the final classification 
results, and the low accuracy was attributed to the low num-
ber of objects count caused by incorrect segmentation. The 
multi-scale segmentation and object-oriented classification 
method could accurately identify trees discolored by PWD 
with a straightforward and rapid processing. This study pro-
vides a technical method for monitoring the occurrence of 
PWD and identifying the discolored trees of disease using 
UAV-based high-resolution images.

Keywords Object-oriented classification · Multi-scale 
segmentation · UAV images · Pine wilt disease

Introduction

Annually, more than 12.78 million hectares in China are 
seriously damaged by forest pests (Sun et al. 2021). Pests 
and diseases are not only the main causes of forest degrada-
tion (Montagne-Huck and Brunette 2018), but also cause 
extensive economic losses (Yemshanov et al. 2009) from 
the loss of forest assets, the discounted cost of the treatment, 
removal, and replacement of damaged trees (Kovacs et al. 
2011; Chang et al. 2012), and the losses related to forest 
recreation, landscape value (Bigsby et al. 2014), and carbon 
sequestration (Kim et al. 2018).

Pine wilt disease (PWD) caused by the pinewood nema-
tode (PWN) is the most destructive forest disease in global 
forest ecosystems. The nematode can be rapidly transmitted 
to other trees by other species such as Monochamus alter-
natus. The PWN is native to North America but currently 
found in the United States, Canada, Japan, Korea, China, 
Portugal, and Spain (Kwon et al. 2011; Lee and Kim 2013). 
PWD has become a common tree disease in North America, 
but it does not cause extensive damage to forests in this area 
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due to the long-term coevolution between the host and the 
PWN (Firmino et al. 2017). However, in other regions, PWD 
causes widespread death of pine trees and huge economic 
losses. Once a tree is infected, it only takes about 40 d from 
the onset of symptoms to the death of the tree, and an entire 
pine forest can be destroyed in only 3–5 years (Zhao 2008). 
The needles undergo a rapid color change from green to 
russet or reddish-brown, before they wither and die (Nguyen 
et al. 2017), and these changes can be monitored by remote 
sensing monitoring (Tetila et al. 2020).

For preventing and controlling PWD, damaged trees have 
been monitored in the field (Wulder et al. 2006) using satel-
lite remote sensing (Kim et al. 2018) and unmanned aerial 
vehicle (UAV) remote sensing (Kumar et al. 2012; Li et al. 
2012; Modica et al. 2020). Although remote sensing meth-
ods have advantages over field surveys, certain limitations 
still remain, including clouds, weather, and regional condi-
tions. Although an increasing number of satellite images 
are currently available, the resolution of most of them is not 
high enough for accurate monitoring; only few expensive 
satellite sensors provide images with the necessary submeter 
resolution. In recent years, UAV technology has significantly 
improved regarding the remote control distance, battery 
capacity, and image quality, providing an alternative to tra-
ditional aerial image acquisition with low resolution and 
high cost. UAVs typically fly below the clouds at altitudes 
as low as tens of meters. With the development of better 
technology and high-resolution, high-performance digital 
cameras, UAVs can now obtain high-resolution images of 
small areas. The maximum resolution is generally about 
0.02 m, providing fine-scale feature information for reli-
ably interpreting surface conditions. Therefore, UAVs are 
well suited for the high-precision mapping needs of forestry 
departments. UAV remote sensing has been widely used for 
forest resource assessments, monitoring of forest fires, for-
est diseases, insect pests and forest information extraction 
(Guillen-Climent et al. 2012; Zhang and Kovacs 2012). UAV 
remote sensing for monitoring diseased trees not only saves 
material and human resources, but also has advantages over 
traditional airborne remote sensing for identifying single 
diseased trees.

Among numerous studies on UAV-based identifica-
tion of diseased trees around the world, Näsi et al. (2015) 
developed a high-resolution hyperspectral imaging using 
a novel hyperspectral imaging sensor on a UAV to collect 
images of areas infested with spruce bark beetle that pro-
vided an overall classification accuracy of healthy and dis-
eased trees of 90%. Onishi and Ise (2018) used a commer-
cial UAV to obtain aerial images of forests and performed 
image segmentation to delineate individual tree crowns 
using an open-source deep learning framework. They also 
developed a machine vision system for automatic tree clas-
sification with an accuracy of 89% for seven tree species, 

thus providing a cost-effective tree classification tool for 
forest researchers and managers. Wyniawskyj et al. (2019) 
used satellite images and an image segmentation algorithm 
based on deep learning for automatic pixel-level classifi-
cation of a Guatemalan forest. Natesan et al. (2019) used 
residual neural networks in a new method for UAV-based 
tree species classification. The artificial neural network 
was trained with the UAV images collected over 3 years. 
In two sets of experiments, the classification accuracy for 
two tree species was 80% and 51%, respectively.

Although the use of deep learning for UAV remote 
sensing imagery analysis for tree species classification and 
diseased tree monitoring has become mainstream (Dash 
et al. 2017), developing a target detection model based on 
deep learning requires large amounts of data and a long 
training period. Different models have various advantages 
regarding the recognition accuracy or detection speed, but 
no model has performed well in both aspects. A target 
monitoring model is very complex and difficult to use for 
single monitoring tasks in forest areas. Although the moni-
toring methods reported so far have achieved good recog-
nition accuracy, the techniques are complex and require 
expensive hardware. In addition, the range covered by 
a UAV in one flight is limited, and there are limitations 
regarding large-area monitoring and multiple flights in 
real-world scenarios.

The use of traditional image segmentation algorithms 
to extract the crown of individual trees is now widespread. 
Nevalainen et al. (2017) used random forest and multi-layer 
perceptron algorithms to obtain accuracies of 40–95% for 
identifying individual trees in the test image. Modica et al. 
(2020) proposed a quick and reliable semi-automatic work-
flow to process multispectral UAV images to detect and 
extract olive and bergamot tree crowns to obtain vigor maps 
for precision agriculture applications with classification 
F-scores from 0.85 to 0.91 for olive and bergamot. Jing et al. 
(2012) improved a multi-scale image segmentation method 
by first determining the size of the canopy area and filtering 
the gray-scale image with a Gaussian filter, then using a 
watershed algorithm to segment the canopy to obtain a high-
quality map of the canopy. Lee et al. (2019) used a UAV to 
collect high-resolution images in PWD-affected areas and 
used an artificial neural network (ANN) and support vector 
machine (SVM) to monitor dead and withered pine trees 
affected by PWD. Also using and GPS data a UAV to collect 
images, Kim et al. (2017) created orthophotos of 423 pine 
trees suspected of having PWD in six areas and improved the 
monitoring efficiency and found that the PWD infection was 
not involved. Compared with traditional classification and 
based on a solid theoretical foundation, object-oriented clas-
sification has the advantages of low hardware requirements 
and rapid processing, contributing to the object-oriented 
multi-scale segmentation algorithm widely used in image 



1379Pine wilt disease detection in high‑resolution UAV images using object‑oriented…

1 3

processing and (Jasiewicz et al. 2018; Xie et al. 2019; Di 
Gennaro et al. 2020; García-Murillo et al. 2020).

In light of these studies, here we applied a multi-scale 
segmentation algorithm to extract individual tree crowns 
and classify the discolored trees affected by PWD using 
object-oriented classification. This approach represents a 
rapid identification method for PWD-infected trees based 
on UAV RGB images, laying a foundation for fast and low-
cost monitoring of forests for diseases and insect pests.

Materials and methods

Study site

This site in the collective forest area of Dayu county, Jiangxi 
province (25°19′ N, 114°08′ E) has a typical subtropical 
humid monsoon climate with abundant rainfall and four 
distinct seasons. The annual average temperature is 19.6 °C 
(maximum 41.2 °C, minimum–10 °C), and annual average 
precipitation is 1500 mm. The forest area is mainly conif-
erous forests composed of Cunninghamia lanceolata and 
Pinus massoniana. Trees of P. massoniana in the forest area 
were infected by PWN. After the attack, the trees died, and 
the PWNs spread rapidly in this area.

UAV flight and photogrammetric data acquisition

The DJI Phantom 4Pro UAV was used to acquire images 
of the study area and generate photogrammetric products 
as input data for the segmentation of single tree crowns. 
The UAV weighs only 1391 g and has a maximum take-
off altitude of 6000 m, a flight time of 28 min, and a top 
cruise speed of 50–72 km/h. Thanks to the built-in global 
navigation satellite system (GNSS) receiver, the take-off and 
landing are completely automatic. After setting the mission 
variables (mission area, flight height, overlap, etc.), the way-
points were transmitted to the drone, which automatically 
executed the task.

For the RGB flight, the UAV was equipped with a FOV 
84° 8.8 mm/24 mm lens, with a 1-inch CMOS sensor of 
20 MP (5472 × 3648), and a sensor size of 12.8 × 9.6 mm. 
The flight was planned using the DJI GO4 app, considering 
a photogrammetric overlap between images of 80% in the 
lateral and longitudinal direction, an altitude of 300 m, a 
speed of 10 m/s, and an average ground sample distance 
(GSD) of about 8 cm. Table 1 shows the characteristics of 
the photogrammetric flights. The data acquisition is a key 
step of the photogrammetric process since the quality of the 
final result depends on it.

Flights were done in the midday in August 2019 when 
there was sufficient light, low wind, and minimum shadows 
for optimum UAV image quality.

Photogrammetric data processing

The aerial image acquisitions were aimed to produce the 
RGB orthomosaics. All the UAV data were post-processed 
using the structure from motion (SfM) approach (Turner 
et al. 2012). The algorithms, which now are implemented 
in several commercial software, allowed us to rapidly and 
accurately align the images, compute a three-dimensional 
dense point cloud, then reconstruct a textured mesh of the 
object of study.

We processed images using Pix4D (2016) mapper soft-
ware (v4.4.12, Pix4D, Prilly, Switzerland) to produce an 
ortho-image by mosaicking images from the drone and cor-
recting for the topographic and camera distortions. After 
synthesizing the single image with standard overlap degree 
taken by UAV into the DOM of the study area, the diseased 
area as the research scope of this article was cut out (Fig. 1).

Multi‑scale segmentation

After the image preprocessing, we adopted the widely used 
multiresolution segmentation (MRS) algorithm (Baatz and 
Schäpe 2000), implemented in the eCognition software (v9.0, 
Trimble Germany GmbH, Munich, Germany) to produce 
semantically meaningful image objects. The method is well 
suited for high-resolution remote sensing images. This algo-
rithm is based on a bottom-up region-merging method and 
mainly controlled by three key parameters: scale parameter, 
shape, and compactness. Multi-scale segmentation produces 
image objects with similar attributes and arbitrary scales. In 
general, a remote sensing image contains multiple features. In 
comparison, the traditional pixel-based method only considers 
the spectral features of single-pixel, therefore thus restricting 
the uses of classification features and producing the “salt and 
pepper” effects in the results (Robson et al. 2015; Guo et al. 
2021). In contrast, multi-scale segmentation generates mean-
ingful objects at any scale with maximum homogeneity and 
minimum heterogeneity. Multi-scale segmentation is a bottom-
up hierarchical merging process. It uses a pixel as the central 

Table 1  UAV flight variables Variables Value

Mean height (m) 300
Mean GSD (cm) 8
Overlap (%) 80
Speed (m/s) 10
Area (ha) 105
Camera orientation Nadir
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point, merges adjacent pixels or smaller segments, and gener-
ates a homogeneous object by aggregating the small segments 
into larger objects (Fu et al. 2019). The heterogeneity of each 
merged object must be smaller than a given threshold. Each 
merged object has maximum homogeneity between the pixels 
within an object and minimum heterogeneity between objects. 
The homogeneity (f) of an object is defined as

where Wcolor is the spectral information weight, hcolor is the 
spectral homogeneity value, Wshape is the shape information 
weight, and hshape is the shape homogeneity value.

The spectral homogeneity value hcolor is determined by the 
standard deviation of different bands.

where n represents the number of pixels, σc represents the 
standard deviation of pixels within the element.

The shape homogeneity value hshape is composed of 
smoothness hsmooth and tightness hcmpct.

(1)f = Wcolorhcolor +Wshapehshape

(2)hcolor =
∑

c

wc

[

nmerge�
merge
c

−
(

nobj1�
obj1
c

+ nobj2�
obj2
c

)]

(3)hshape = wcmpcthcmpct +
(

1 − wcmpct

)

hsmooth

(4)hcmpct = nMerge

lMerge
√

nMerge

−

�

nobj1

lobj1

bobj1
+ nobj2

lobj2

bobj2

�

where l represents the perimeter of the object polygon, n 
represents the pixel number of the object, b represents the 
minimum side length of the polygon with the same area in 
the object.

In the MRS process, the scale, shape, and compactness 
parameters have to be determined using multiple tests. The 
scale parameter is an abstract term that in eCognition Devel-
oper software determines the maximum allowed heterogene-
ity for the resulting image objects and determines the size of 
the image objects, the segmentation quality, and the accu-
racy of information extraction (Karydas 2019). The larger 
the scale parameter, the larger is the segmented object, and 
the smaller the number of patches, and vice versa (Carleer 
et al. 2004; Happ et al. 2010; Stefanski et al. 2013). The 
criteria to evaluate the segmentation scale are the maxi-
mum internal homogeneity of the segmented objects and 
the maximum heterogeneity between the objects. Therefore, 
the larger the segmentation scale, the smaller is the compu-
tational complexity.

Determination of optimal segmentation scale

Scale is a dimensionless and ambiguous concept in eCogni-
tion Developer software. Among the three parameters (scale, 
shape, and compactness), the scale parameter has the largest 

(5)hsmooth = nMerge

lMerge

bMerge

−

(

nobj1

lobj1

bobj1
+ nobj2

lobj2

bobj2

)

Fig. 1  The study area in Dayu county
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range and the greatest significant influence on the segmenta-
tion results. Different scale settings will lead to very different 
segmentation results, affecting the final classification results 
and potentially reducing the accuracy of object extraction.

The optimal scale parameter is commonly determined 
using the estimation of scale parameter (ESP2) plugin in the 
eCognition Developer software. This tool was designed by 
Drǎguţ et al. (2010) as a plugin to calculate the optimal scale 
parameter for segmentation. However, a qualitative evalu-
ation of the segmentation scale is required. The ESP tool 
calculates the local variance (LV) of all the image objects 
to evaluate the segmentation results. The rate of change of 
the LV (Roc-LV) is used to evaluate the optimal segmen-
tation scale of a given object. The maximum value of the 
LV produces a peak, and the optimal segmentation scale 
corresponds to the peak of a given ground object. Different 
objects have different optimal scales. Since an image con-
tains multiple objects, multiple peaks are obtained, resulting 
in multiple optimal segmentation scales depending on the 
object of interest. The Roc-LV is calculated as follows:

where  LV(L) is the target layer, that is the local homogeneity 
variance of the L layer and  LV(L–1) is the homogenous local 
variance of the object layer at the next layer of the target 
layer.

The starting scale was 10, and the increment was 1 to 
obtain the most optimal segmentation scale. The number of 
loops was 100. A bottom-up iterative method was used, and 
the process was repeated 100 times to obtain the best scale. 
The calculation result of the ESP tool was output as a text 
file to generate a line graph. The shape and compactness 
parameters were set to 0.5.

Object‑oriented classification

After the segmentation, the image objects were clustered 
into different categories, and the next step was object clas-
sification. Object-based image analysis (OBIA) was then 
introduced into the sample pattern classification method. 
The OBIA is a methodological framework aiming at extract-
ing readily usable objects from images and meantime com-
bining image processing and geographic information system 
(GIS) functionalities for an integrative utilization of spectral 
and contextual information (Blaschke 2010). Segments of 
OBIA are generated by the criteria of homogeneity in one 
or more dimensions (of a feature space), and then additional 
spectral information (e.g., mean, minimum, maximum, and 
median values of per band) together with spatial information 
(e.g., image texture, contextual information, and geometric 

(6)RocLV =

[

LV(L) − LV(L−1)

LV(L)

]

× 100

features) can be assigned to objects (Hay and Castilla 2008). 
Since there were no buildings, rivers, and lakes in the study 
area, the images were divided into three categories: tree 
crown, trees discolored by PWD, and forest gaps. Spectral, 
texture, and geometry features were selected in the feature 
space for classification (Table 2).

Accuracy analysis

Accuracy was evaluated in terms of correspondence between 
the reference crowns and the segmented ones. The evalua-
tion methodology mainly includes the producer’s and user’s 
accuracy and F1 score. Particularly, the producer’s accuracy 
(PA) and the user’s accuracy (UA) are calculated using the 
following equations:

where PA is the producer’s accuracy, UA is the user’s accu-
racy, N is the number of correctly classified, RC´ is the num-
ber of reference crowns, and DC´is the number of defined 
crowns. The relationship between UA and PA is described 
by the F1 score, from the following equation:

The situation shown in Fig. 2a was considered as a cor-
rect segmentation of the crown, while the relationships of 
reference and segmented crowns in Fig. 2b-d were con-
sidered as incorrect segmentation. The segmented crowns 
were counted according to visual evaluation; all the incor-
rect segmentation is a misclassification. The omission and 
commission errors can describe more precisely the goodness 
of the segmentation. As illustrated by Ke and Quackenbush 
(2011), we took into consideration four possible cases of 
the relationship between the reference data set and the seg-
mented one: (1) complete, (2) simple omission, (3) omission 
through under-segmentation, and (4) commission through 
over-segmentation.

Results

Optimal segmentation scale

The optimal segmentation scale results obtained from the 
ESP2 tool are shown in Fig. 3. The x-axis shows the scale 
parameter, the y-axis shows the local variance (LV) and the 
z-axis shows the rate of local variance (Roc-LV). The peak 

(7)PA =
N

RC�

(8)UA =
N

DC�

(9)F1 =
2PA(UA)

PA + UA
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Table 2  Characteristics of the 21 features used for classification

Category Features Expression Parameters Description

Spectral features Mean
CL =

1

n

n
∑

i=1

CLi
CL is the mean,CLi is the image 

layer intensity value at pixel 
i, n is the number of pixels; 
feature value range: [0, 255]

Average pixel value of each 
band in image object

Brightness
B =

1

m

m
∑

j=1

CL
CL is the mean,
m is the number of layers;
feature value range: [0, 255]

Number of layers of image 
object divided by average 
of the layers containing the 
spectral information

Standard devia-
tion (SD) �L =

�

1

n−1

n
∑

i−1

�

CLi − CL

� n is the number of pixels,
CL is the mean,
CLi is the image layer intensity 

value at pixel i;
feature value range:
[0, depending on number of 

bits of data]

Fluctuation size of pixel value in 
image object

Ratio CL
m
∑

i=1

CL

CL is the mean intensity of 
image layer L of an image 
object;

feature value range: [0, 1]

Proportion of average value of 
object in a certain band in the 
sum of the average values of 
all spectral layers

Max.diff
Max.diff =

max
i,j∈Kb

|

|

|

Bi(v)−Bj(v)
|

|

|

B(v)

i, j are image layers,
B(v) is the brightness of image 

object v,
Bi(v) is the mean intensity 

of image layer i of image 
object v,

Bj(v) is the mean intensity 
of image layer j of image 
object v;

feature value range: [0,1]

Maximum difference of average 
gray level of object vs in dif-
ferent object layers

VI VI =
(

2G� − R� − B�
)

−
(

1.4R� − G�
)

R� = R∕(R + G + B)

G� = G∕(R + G + B)

B� = B∕(R + G + B)

R, G, B is band i (i = 1, 2, 3)

Geometry feature Length/Width Y =
l

w
=

eig1(s)

eig2(s)
eig1(s) > eig2(s)

l is the length,
w is the width,
s is the covariance matrix,
eig(s) is the eig(s) eigenvalues 

of the covariance matrix;
feature value range:
[0,∞]

Length-to-width ratio of image 
object

Shape index S =
e

4
√

A
e is the image object border 

length,
A is the image area;
feature value range:
[0, depending on shape of 

image object]

Smoothness of image object 
border
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of the Roc-LV indicates that this scale parameter is the opti-
mum segmentation scale of a certain ground object.

The peak values of the Roc-LV occurred at scales of 
19, 27, 34, 56, 66, and 79. These scales can be used as the 
optimal segmentation scale for the tree canopy objects in 

Table 2  (continued)

Category Features Expression Parameters Description

Texture features CLCM homoge-
neity Ghom =

N−1
∑

i,j=0

Pi,j

1+(i−j)2

i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns;
feature value range: [0, 1]

Measure of local homogene-
ity; the greater the ratio, the 
greater the homogeneity

GLCM Contrast
Gcon =

N−1
∑

i,j=0

Pi,j(i − j)2
i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns;
feature value range: [0, 65025]

Measure of difference between 
the maximum and minimum in 
the field

GLCM dissimi-
larity Gdis=

N−1
∑

i,j=0

Pi,j�i − j�
i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns;
feature value range: [0, 255]

Measure of degree of difference 
in gray values between row or 
column elements in the gray 
level co-occurrence matrix

GLCM entropy
Gent =

N−1
∑

i,j=0

Pi,j

�

− lnPi,j

� i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns;
feature value range: [0, 10404]

Measure of the disorder of the 
image; the greater the entropy, 
the more uneven the texture

GLCM mean
Gmea =

N−1
∑

i,j==0

Pi,j∕N
2

i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns;
feature value range: [0, 255]

An average expressed in terms 
of the GLCM

GLCM
SD �

2
i,j
=

N−1
∑

i,j==0

Pi,j(i, j − �i,j)

� =

√

�
2
i,j

i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns,
μi, j is the GLCM mean;
feature value range: [0, 255]

Standard deviation is a measure 
of the dispersion of values 
around the mean, similar to

contrast or dissimilarity

GLCM Correla-
tion Gcor=

N−1
∑

i,j=0

Pi,j

⎡

⎢

⎢

⎣

(i−�i)(j−�j)
�

(�2
i )
�

�
2
j

�

⎤

⎥

⎥

⎦

i is the row number,
j is the column number,
Pi,j is the normalized value in 

the cell i, j,
N is the number of rows or 

columns,
μi, j is the GLCM mean,
σi, j is the GLCM standard 

deviation;
feature value range: [0, 1]

Measure of linear dependency 
of gray levels of neighboring 
pixels
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this image. We then used the optimal segmentation scales 
obtained from the ESP2 and set the shape and compactness 
parameters to 0.5. The optimal scale is different for differ-
ent objects. In this case, we selected the optimal canopy 
segmentation scale by visual interpretation.

As shown in Fig. 4, the tree canopy is over-segmented 
when the scale is 19, 27, and 34. At a scale of 56, the tree 
canopy is well delineated, and at scales of 66 and 79, the 
canopy of the large trees is not accurately segmented. There-
fore, the optimal segmentation scale for the tree canopy is 56 
when the shape and compactness parameters are 0.5.

Determination of shape and compactness

We conducted tests to evaluate different shape and compact-
ness values at a segmentation scale of 56 because multiple 
tree crowns were not delineated and consisted of one object. 
The range of the shape and compactness was 0.1−0.9, and 
the interval was 0.1. One parameter was held constant, and 
the other parameter was adjusted. The optimal parameter 
combination was determined by evaluating the contrast and 
segmentation performance visually. As shown in Table 3, the 
optimal segmentation results were obtained when the scale 
was 56, shape was 0.5, and compactness was 0.8.

Feature space optimization and final results

We collected training samples for the three classes (tree 
crown, trees discolored by PWD, and forest gaps). Gener-
ally, the number of samples should be 1/5 to 1/3 of the 
number of image objects in the class. The classification 
accuracy typically increases with the number of image fea-
tures. However, too many features result in redundancy. 
The feature space optimization tool can find the optimum 
feature combination. We selected the aforementioned 21 
features for optimization in the feature space optimiza-
tion tool. The number of selected features is the maximum 
dimension.

Figure 5 shows that the separation distance reaches the 
maximum at five features, and the optimal features include 
ratio G, ratio B, ratio R, max. diff, and VI. We used these 
features and classified the tree crown, trees discolored 
by PWD, and forest gaps using the training samples. The 
result is shown in Fig. 6

After the classification, each classified object was 
counted according to the previous counting method. The 
accuracy results are listed in Table 4. The PA, UA, and 
F1 values of the tree crown class were 0.706, 0.584, and 
0.639, respectively. The PAs of the tree crown and trees 
discolored by PWD classes was 0.70, and that of the forest 
gap class was close to 0.70. The UAs of the tree crown and 

Fig. 2  Possible cases of the relationship between reference crowns (red border) and segmented crowns (blue border). a Complete. b Simple 
omission. c Omission through under-segmentation. d Commission through over-segmentation

Fig. 3  Line chart of the optimal 
segmentation scale
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trees discolored by PWD classes were 0.577 and 0.605, 
respectively, and that of the forest gap was 0.770. The F1 
values for the three classes were 0.633, 0.658, and 0.723, 
respectively, which were acceptable.

Discussion

Identifying trees discolored by PWD is a crucial aspect of 
monitoring forest for PWD and is usually carried out over 
relatively large areas. Rapid monitoring and detection to 
reduce the impact of diseases on the forest are the goals of 
forest pest monitoring. UAV images have sufficient resolu-
tion for extracting individual tree crowns (Grznárová et al. 
2019). In this study, image segmentation and object-ori-
ented classification were used to identify individual trees 
discolored by PWD. The proposed method meets the needs 
of rapid forest monitoring.

The total number of segmented crowns was larger than 
the number of reference crowns, which might be due to the 
high image resolution and the tree crown details. Overlap-
ping tree crowns were divided into separate trees, but some 
flaws were observed in the visual evaluation. The determi-
nation of the segmentation scale is highly subjective. The 

relatively low accuracy was attributed to omissions caused 
by under-segmentation or over-segmentation, which are 
incorrect segmentations. Similarly, the number of for-
est gap objects was also less than the number of refer-
ence gaps; some forest gaps were small and included tree 
branches and were thus identified as canopy areas. The F1 
score of the trees discolored by PWD was 0.658, which 
was similar to the PA and UA obtained by Ke (2011), 
but lower than the accuracy of single crown extraction 
reported by Mohan et al. (2017) and Qiu et al. (2020), 
who used a canopy height model (CHM) and very high-
resolution (VHR) images. The optimal features obtained 
from the feature space optimization tool in this study were 
all spectral features, indicating that the color of the tree 
affected by PWD is an important feature in the classifica-
tion. The geometry and texture features have a very small 
effect on the final classification result, perhaps because the 
discoloration of the trees from PWD has a relatively small 
effect on the geometry and texture in the image or the RGB 
image contains insufficient information; this point needs 
further study. The final classification requires fewer fea-
tures, so the amount of calculation required is small, and 
the image processing speed is faster, definite advantages of 
PWD monitoring using RGB images. After feature space 

Fig. 4  Comparison of tree crowns at different segmentation scales. The optimum segmentation scales are 19, 27, 34, 56, 66, and 79
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optimization, certain samples are selected and classified. 
Based on the sample pattern classification method, the 
classification effect is good. The results of correct segmen-
tation in Fig. 2 are basically correct after the training of 
this sample. However, due to the influence of segmentation 
results, over-segmentation and under-segmentation objects 

cannot be well classified. Incorrect segmentation results 
in low values for accuracy estimators F1, UA and PA. In 
eCognition software, incorrectly classified objects can be 
assigned to the correct categories by manual classification 
to improve the classification accuracy. However, since the 
automation of forest monitoring is the goal, manual editing 

Table 3  Segmentation results for different combinations of shape and compactness

Compactness

Shape

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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to improve the classification accuracy has little practical 
value; thus, we did not use this method in this study.

Object-oriented multi-scale segmentation meets the needs 
of forest monitoring and has been widely used for satellite 
remote sensing classification and regional tree species clas-
sification in forestry (Xie et al. 2019). No image processing 
algorithms exist for extracting individual tree crowns from 
UAV RGB images, and it is necessary to examine whether 
high-resolution images are suitable for the extraction of indi-
vidual tree crowns. It is difficult to extract structural infor-
mation from RGB images, such as the tree height and the 
diameter at breast height (DBH). Forest site conditions are 

complex and diverse, and the slope, canopy density, mixed 
species, and shadow influence image quality. Since this 
study focused on the application of the method, the influ-
ences of these factors were not considered here. However, 
more in-depth research is needed to ensure that the method 
has practical applicability.

As mentioned above, there are limitations to evaluating 
the segmentation quality visually. More comprehensive 
consideration is needed to assess the accuracy of individual 
crown delineation. For example, the circumference of the 
segmented crown may be larger than the actual circumfer-
ence, or the same crown may be over-segmented. However, 
the object types can be accurately classified in an over-seg-
mented image. The evaluation of the segmentation results 
requires a more appropriate method rather than simply per-
forming statistical analysis.

Conclusions

In the present study, we introduced an object-oriented multi-
scale segmentation method, based on UAV images col-
lected in the forest area in Dayu County, Jiangxi Province, 
to extract the tree canopies and identify the trees infected by 
PWD. Feature space optimization was used to determine the 
optimal feature combination for classification. The optimum 
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Fig. 5  Plot of the separation distance and dimension

Fig. 6  Identification results for 
trees discolored by pine wilt 
disease (PWD) using the train-
ing samples and the features 
shown in Fig. 5

Table 4  Results of visual 
evaluation

Classes No. of refer-
ence crowns

No. of defined 
crowns

No. of 
classified

No. mis-
classified

PA UA F1

Tree crown 117 142 82 35 0.701 0.577 0.633
Trees dis-

colored by 
PWD

36 43 26 10 0.722 0.605 0.658

Forest gap 69 61 47 22 0.681 0.770 0.723
Total crown 153 185 108 45 0.706 0.584 0.639
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segmentation results were obtained when the scale, shape, 
and compactness values were 56, 0.5, and 0.8, respectively. 
And finally, 26 trees discolored by PWD were accurately 
extracted (PA: 0.722, UA: 0.605, F1: 0.658). There were no 
significant classification errors in the results, and the low 
accuracy was attributed to the low number of objects counts 
caused by incorrect segmentation. This study demonstrated 
that trees discolored by PWD could be identified in the UAV 
RGB images using multi-scale segmentation and object-ori-
ented classification. This method undoubtedly can improve 
the efficiency of PWD monitoring and support conservation 
efforts in forests in southern China.
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