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the crown asymmetry) using an airborne laser scanning 
point cloud obtained from two forest stands in Oxfordshire, 
UK. Quantitatively and vectorially marked spatial patterns 
were developed, with corresponding null models established 
for a significance test. We analyzed eight types of univari-
ate and bivariate spatial patterns, after first proposing four 
types. The accuracy of the pattern analysis based on an 
algorithm-segmented point cloud was compared with that 
of a truly segmented point cloud. The algorithm-segmented 
point cloud managed to detect 70–86% of patterns correctly. 
The eight types of spatial patterns analyzed the spatial dis-
tribution of trees, the spatial correlation between tree size 
and facilitated or competitive interactions of sycamore and 
other species. These four types of univariate patterns jointly 
showed that, at smaller scales, the trees tend to be clustered, 
and taller, with larger crowns due to the detected facilitations 
among trees in the study area. The four types of bivariate 
patterns found that at smaller scales there are taller trees and 
more facilitation among sycamore and other species, while 
crown size is mostly homogeneous across scales. These 
results indicate that interspecific facilitation and competi-
tion mainly affect tree height in the study area. This work 
further confirms the connection of tree size with individual 
facilitation and competition, revealing the potential spatial 
structure that previously was hard to detect.
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Introduction

The spatial pattern of forest trees is the distribution 
and spatial arrangement of trees in a population and 
can be described by the spatial correlation of the marks 

Abstract Analysis of spatial patterns to describe the 
spatial correlation between a tree location and marks (i.e., 
structural variables), can reveal stand history, population 
dynamics, competition and symbiosis. However, most stud-
ies of spatial patterns have concentrated on tree location and 
tree sizes rather than on crown asymmetry especially with 
direct analysis among marks characterizing facilitation and 
competition among of trees, and thus cannot reveal the cause 
of the distributions of tree locations and quantitative marks. 
To explore the spatial correlation among quantitative and 
vectorial marks and their implication on population dynam-
ics, we extracted vertical and horizontal marks (tree height 
and crown projection area) characterizing tree size, and a 
vectorial mark (crown displacement vector characterizing 

Project Funding: This work was supported by the China 
Scholarship Council (Grant No. 201906010036).

The online version is available at http:// www. sprin gerli nk. com.

Corresponding editor: Tao Xu.

 * Alexander Shenkin 
 alexander.shenkin@ouce.ox.ac.uk
1 Institute of Remote Sensing and Geographic Information 

Systems, School of Earth and Space Science, Peking 
University, Beijing 100871, People’s Republic of China

2 Environmental Change Institute, School of Geography 
and the Environment, University of Oxford, South Parks 
Road, Oxford OX1 3QY, UK

3 Department of Plant Sciences, University of Cambridge, 
Downing Street, Cambridge CB2 3EA, UK

4 College of Surveying and Geo-Informatics, Tongji 
University, Shanghai 200092, People’s Republic of China

5 SICCS, Northern Arizona University, Flagstaff, AZ 86001, 
USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11676-021-01417-6&domain=pdf
http://www.springerlink.com


1302 H. Xin et al.

1 3

characterizing the structure of individual trees in a forest 
stand (Wang et al. 2010; Podlaski 2019). The spatial pat-
tern can also characterize the spatial correlation of potential 
intraspecific and interspecific interactions among individu-
als (Pillay and Ward 2012; Erfanifard and Sheikholeslami 
2017) and reveal information on stand history, population 
dynamics, competition and their survival in different envi-
ronments (Zhang et al. 2010; Alvarez et al. 2011; Lin et al. 
2011; Genet et al. 2014).

Spatial patterns can be divided into unmarked and quan-
titatively marked patterns depending on the involvement 
of mark and into univariate, bivariate and multivariate pat-
terns according to the number of species involved. A mark 
is information that characterizes individual trees and can be 
qualitative or quantitative (Wiegand and Moloney 2013). 
A quantitative mark is a scalar that describes a size vari-
able of an individual tree, such as tree height, diameter at 
breast height, and crown width; whereas a qualitative mark 
is a descriptor such as tree species or tree habit. Summary 
statistics have frequently been used to quantify statistical 
properties of spatial patterns and to provide a brief and con-
cise description of patterns using numbers, functions and 
diagrams at multiple scales (Wiegand and Moloney 2004; 
Illian et al. 2008). Commonly used summary statistics are 
the pair correlation function, mark connection function and 
its variations. Specific null models are also used to rand-
omize certain aspects of the data, while holding others con-
stant according to the specific type of patterns (Wiegand and 
Moloney 2013), aiming to create patterns that are expected 
in the absence of a particular ecological mechanism of inter-
est (Graves 1996).

However, the spatial correlations of tree location and 
facilitated or competitive interaction and of size and facili-
tated or competitive interaction are still not clear due to the 
lack of corresponding marks and summary statistics. Previ-
ous research with traditional census data has usually focused 
only on tree height and diameter at breast height, which lack 
insight into the three-dimensional structure of individual 
trees. Laser scanning technology, which can provide a three-
dimensional structure of a forest tree, has provided a new 
solution (Henning and Radtke 2006; Packalen et al. 2013; 
Taubert et al. 2015; Lin et al. 2016; Fischer et al. 2020). 
Airborne laser scanning (ALS) technology can be used to 
collect a point cloud covering a large area, and individual 
trees can be delineated from the ALS point cloud through 
segmentation algorithms, from which tree marks can be fur-
ther extracted (Zhao et al. 2014).

Aiming at exploring whether there are spatial correlations 
(1) among individual locations based on a given coordinates 
(i.e., if trees are spatially clustered, random, or segregated), 
(2) among quantitative marks representing tree size (i.e., if 
trees are significantly large or small at certain scales), (3) 
among vectorial marks representing individual facilitated 

or competitive interactions (i.e., if trees are spatially facili-
tated or competitive at certain scales), (4) among quantita-
tive and vectorial marks (i.e., if facilitated trees are large or 
competitive trees are small at certain scales). Four types of 
patterns were investigated: (1) unmarked pattern, (2) quan-
titatively marked pattern, (3) vectorially marked pattern and 
(4) quantitatively and vectorially marked pattern. For the 
vectorial mark-related patterns, we developed new methods 
to analyze. All patterns were tested with the 1-ha plot both 
univariately and bivariately, so eight types of patterns are 
presented in this study. However, because the species infor-
mation of the 9-ha plot was not specified, we did only a 
univariate pattern analysis for the 9-ha plot and thus present 
only four types of patterns. The analysis based on the 9-ha 
plot showcases the implementation of ALS for forest trees 
patterns analysis over a much wider area compared with tra-
ditional measurements.

Materials and methods

Data collection and mark extraction

Study area and data collection and preparation

A 1-ha plot and a 9-ha plot were established in a decidu-
ous forest located in Wytham Woods (1°20′ W, 51°47′ N), 
Oxfordshire, UK. These two plots are part of the ForestGEO 
global network run by the University of Oxford (Butt et al. 
2009; Calders et al. 2018). The mean annual temperature is 
10 °C, the mean annual rainfall is 726 mm, and the mean 
annual radiation is 118 W/m2. The plots are dominated 
by Acer pseudoplatanus (sycamore), Fraxinus excelsior 
(ash) and Corylus avellana (hazel), followed by Quercus 
robur (English oak) and Crataegus monogyna (common 
hawthorn).

We collected a terrestrial laser scanning (TLS) point 
cloud of the 1-ha plot with a RIEGL VZ-400 terrestrial laser 
scanner in leaf-off (December 2015, January 2016) condi-
tion at multiple locations, which were connected by reflec-
tive targets (Calders et al. 2016). The vegetation point den-
sity was about 11,000 points per  m2 according to the visual 
interpretation. We also collected an ALS point cloud with a 
Leica ALS-50 II scanner during leaf-on (June 2014) (Butt 
et al. 2009; Calders et al. 2018). The point cloud density was 
6.0 points per  m2. The southwest coordinate of the 1-ha plot 
is located at latitude 51.7750579, longitude − 1.33904729, 
accurately measured with the differential GPS. We collected 
census data containing species information for the 1-ha plot, 
which was used for a bivariate pattern analysis. We also 
collected an ALS point cloud of the 9-ha plot on the side of 
the 1-ha plot.
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Through careful visual inspection, 523 individual trees 
were manually extracted from the 1-ha TLS point cloud, 
then manually assigned species information using the census 
data. The 1-ha plot contains 364 sycamore trees and 159 
other species. The average tree height is 15.42 m, median 
height is 16.08 m, average crown width is 6.18 m, and 
median crown width is 5.61 m.

Because an ALS point is most likely from the same tree 
as its spatially nearest TLS point, we tagged all ALS points 
with corresponding trees based on TLS points that had been 
georeferenced. These tagged ALS points are called “true 
ALS” hereafter. We also segmented the ALS point cloud of 
the 1-ha and 9-ha plot with automatic segmentation algo-
rithms, including canopy height model-based approach, 
pit-free canopy height model-based approach, and point 
cloud–layer stacking seed point-based approach and a meta-
bolic transporting distance-based approach (Millikan et al. 
2019; Zaforemska et al. 2019; Hastings et al. 2020; Xin 
et al. 2021). The approach with highest accuracy was then 
selected for segmenting ALS. The segmented ALS points 
are hereafter called segmented ALS. The true ALS was used 
to assess the accuracy of the segmented ALS-based marks 
in the pattern analysis of the 1-ha plot.

Mark extraction

Tree height and crown projection area (CPA) were used as 
quantitative marks and were extracted from the segmented 
ALS point cloud. The height of a tree is the elevation from 
ground to the highest ALS point of the tree (Kwak et al. 
2007). The CPA, an essential factor describing horizontal 
tree size, is the area of the convex hull of ALS points in 
a horizontal plane (Xu et al. 2013). However, the CPA is 
often overlooked in patterns analysis due to the inaccessibil-
ity of census data and is replaced by crown widths in two 
directions.

The essential mark we extracted from the tree crown is 
the crown displacement vector (CDV), a vectorial mark. 
CDV is the vector from tree top to crown centroid, which is 
the centroid of the convex hull of the ALS points. Note that 
the CDVs we used in this study are two-dimensional vectors 
in a horizontal plane, although they have vertical compo-
nent. An essential assumption is that the x-, y-coordinates 
of the tree top are the same as that of the tree root and tree 
location; thus, CDV can represent the crown displacement. 
The ecological significance of CDV pairs of two trees lies 
in their characterization of the facilitation or competition 
between the two trees (Mead 1966; Brisson 2001).

We analyzed eight types of patterns based on the quantita-
tive and vectorial marks, four of which were new developed 
here, then developed corresponding summary statistics and 
null models. The patterns characterize the forest from several 
perspectives, including the spatial distribution of trees (i.e., 

if trees are spatially clustered, random or segregated), spatial 
correlation of tree size (i.e., if trees are significantly large 
or small at certain scales), spatial correlation of facilitation/
competition (i.e., if trees are spatially facilitated or competi-
tive at certain scales), and spatial correlation between tree 
size and facilitation/competition (i.e., if facilitated trees are 
large or competitive trees are small at certain scales), all 
considered both univariately and bivariately. In this study, 
we employed 19 Monte Carlo simulations with a confidence 
level of 95% to determine whether a pattern is significantly 
different from that produced by null models (Wiegand and 
Moloney 2013). The summary statistics can be tested for sig-
nificance against the corresponding null model, and whether 
there is a structure in the pattern that does not exist in the 
null model (Wiegand and Moloney 2013).

In general, summary statistics can be divided into cumu-
lative and noncumulative according to the mode of recruit-
ment of individual trees, as shown in Fig. 1. Bandwidth b, 
a buffer zone threshold, equals half the value of ring width, 
used to determine whether a neighbour tree is distance r 
away from a focal tree. According to Illian et al. (2008), 
bandwidth can be set as.

where � is the tree density of the plot. There 
are 523 trees in the 1-ha plot of this study, then 
d = 0.1∕

√
523∕10000 ≈ 0.44m . However, the values of 

summary statistics at different scales fluctuate strongly with 
the bandwidth of 0.5 m. Thus, we set bandwidth as 1.0 m for 
all the patterns for the 1-ha and 9-ha plots to avoid poten-
tial strong fluctuation. It is clear that the cumulative statis-
tics gloss over some details of the spatial patterns shown 
in their noncumulative counterpart, while noncumulative 

(1)d = 0.1∕
√
�,

Fig. 1  Schematic diagram of a noncumulative and b cumulative 
summary statistics. Each dot stands for an individual tree, r stands 
for scale, and b stands for bandwidth. a Noncumulative summary sta-
tistics recruit trees at the distance of scale r with bandwidth b from 
the focal tree, that is, to recruit the trees located in a ring with a ring 
width of 2b centred at the focal tree, three trees are recruited in this 
example. b Cumulative summary statistics recruit all trees within the 
distance of scale r from focal tree, that is, to recruit the trees located 
in a disk with a radius of r centred at the focal tree; four trees are 
recruited in this example. The noncumulative and cumulative sum-
mary statistics iterate all the individual trees in the plot as the focal 
tree
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statistics always show some stochastic noise. The question 
as to whether or not to use noncumulative or cumulative sta-
tistics depends on whether the goal is to reveal specific scale 
effects among the trees separated by distance r or to clarify 
the overall effects of all trees within distance r (Wiegand 
and Moloney 2013). In this study, aimed at revealing more 
details at different scales, all the results are based on the 
noncumulative summary statistics with a bandwidth b of 
1 m.

Accuracy assessment of segmented ALS-based marks 
and pattern analysis

To analyze the eight types of spatial patterns in a larger area 
using ALS data, we thus used the algorithm-segmented ALS 
point cloud, instead of the matched true ALS. We assessed the 
accuracy of marks extracted from segmented ALS by com-
paring the mean error of segmented ALS-based quantitative 
marks with the true ALS-based marks, and the mean errors of 
magnitude of segmented ALS-based CDVs along the x- and 
y- coordinates were calculated. Meanwhile, to test the appli-
cability of the segmented ALS for spatial pattern analysis, we 
calculated the summary statistics based on the segmented ALS 
and the true ALS and used cosine similarity (CS) and correctly 
detected rate (CDR) to assess accuracy of the indices.

Cosine similarity, a metric used to measure how similar 
the two multi-dimensional vectors are, calculates the cosine 
of the angle of the two multi-dimensional vectors (Nguyen 
and Bai 2011). CS is defined as

where m counts the number of scales r , and vs and vt , the 
vectors composed of summary statistics values at a series of 
scales, were calculated from segmented ALS and true ALS 
respectively. vs and vt equal to

The value of CS is always within the range of − 1 and 
1. The larger value of CS signifies that the segmented 
ALS-based summary statistics values are more similar 
to that based on true ALS, indicating the better results of 
segmented ALS-based analysis. Instead, the smaller value 
signifies worse analysis results. The CS, a direct index to 
evaluate the analytical results, compares the values based 
on segmented and true ALS.

We also used CDR to indirectly evaluate the applicability 
of segmented ALS on pattern analysis. There are three pos-
sibilities for the relative relationship between the summary 

(2)CS
�
vs, vt

�
=

∑m

i=1
vs(i) ⋅ vt(i)

�∑m

i=1
v2
s
(i) ⋅

�∑m

i=1
v2
t (i)

,

(3)vs = [vs(1), vs(2),… , vs(m)]

(4)vt = [vt(1), vt(2),… , vt(m)]

statistics value and its simulation envelopes produced by 
the null model, value above the simulation envelopes (posi-
tive correlation or clustered), below simulation envelopes 
(competition or segregated) and within simulation envelopes 
(no spatial correlation or random). We defined it as cor-
rectly detected if the segmented and the true ALS-based the 
summary statistics values have same relative relationship 
in comparison with simulation envelopes, otherwise, incor-
rectly detected. Thus, CDR is the ratio of correctly detected 
number of scales to the number of all scales as follows:

where, NC is the number of scales where spatial correlations 
are correctly detected, NI is the number of scales where spa-
tial correlations are incorrectly detected. CS evaluates the 
accuracy of the segmented ALS-based results in a direct way 
and CDR evaluates the accuracy in an indirect way.

Analysis 1: unmarked pattern

The ecological question of univariate unmarked pattern is to 
characterize the spatial distribution of trees, to test whether 
they are clustered, random or segregated distribution at a 
series of spatial scales. The ecological question of bivariate 
unmarked pattern is to characterize the spatial distribution 
of other species (one or more species) around the focal spe-
cies, to test whether other species are aggregately, randomly 
or separately distributed surround focal species. Commonly 
used summary statistics are univariate and bivariate Ripley 
(1976)’s L function (cumulative) and pair correlation func-
tion (noncumulative) (Illian et al. 2008). The null model for 
univariate unmarked pattern is to randomize the two-dimen-
sional tree locations in the horizontal plane. For bivariate 
unmarked pattern is to randomize the two-dimensional tree 
locations within each component pattern using a toroidal 
shift approach in the horizontal plane (Wiegand and Molo-
ney 2013).

Analysis 2: quantitatively marked pattern

The ecological question of univariate quantitatively marked 
pattern is to characterize spatial correlation of tree size. The 
commonly used summary statistic is the univariate mark 
correlation function, its estimator is calculated as follows 
(Wiegand and Moloney 2013):

where kt,uni(r) is the value of univariate mark correlation 
function at a scale of r , n is the number of trees, t

(
mi,mj

)
 

(5)CDR =
NC

NC + NI

,

(6)k̂t,uni(r) =

∑n

i=1

∑n,≠

j=1
t
�
mi,mj

�
⋅ k(��pi − pj�� − r) ⋅ wi,j

ct
∑n

i=1

∑n,≠

j=1
k(��pi − pj�� − r) ⋅ wi,j

,
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is a test function and has multiple expressions (Illian et al. 
2008), ct is the nonspatial mean of the test function, yield-
ing the asymptotic value of test function, ||pi − pj|| is the 
distance separating focal tree pi and neighbor tree pj , 
k(||pi − pj|| − r) is a kernel function determining whether or 
not two trees are located distance r apart and equals 1 if the 
value ||pi − pj|| − r is smaller than bandwidth b and equals 
0 if greater than bandwidth b , wi,j is the plot edge correction 
factor (Goreaud and Pélissier 1999). In this study, we used 
the periodic edge correction method to avoid any strange or 
spurious configurations of the trees along the plot borders; 
hence, wi,j = 1 . The estimators visit all pairs of trees sepa-
rated by distance r and calculate the mean value of the test 
function over these pairs.

The ecological question of the bivariate quantitatively 
marked pattern is to characterize the spatial correlation of 
tree size of two species. The bivariate mark correlation func-
tion is calculated as follows (Illian et al. 2008):

where kt,biv(r) is the summary statistics value at scale of r , n1 
is the number of focal species, n2 is the number of other spe-
cies, and Clm(pi, pj) is a judging function that yields a value 
of 1 if the focal tree pj is of species l and neighbour tree pi 
is of type m or other species, and 0 otherwise.

The null model of univariate quantitatively marked pat-
tern randomizes the mark (i.e., tree height or CPA) all over 
the trees, which we called random labelling, and maintains 
the tree locations unchanged. That is, the marks are ran-
domly shuffled over all trees. The null model of bivariate 
quantitatively marked pattern randomizes the mark within 
each species and maintains the tree locations unchanged.

Analysis 3: vectorially marked pattern

Under the assumption of environmental homogeneity, tree 
growth is not affected by environmental factors (e.g. illumi-
nation, nutrition and moisture), then the CDV pair is able to 
describe the facilitation or competition of two trees, which 
are separated by distance r.

We defined facilitation and competition of focal and neighbour 
trees by their CDVs as follows. An auxiliary vector from the focal 
tree to the neighbour tree was established. If the angle between 
the CDV of the focal tree and auxiliary vector is smaller than 45° 
and the angle between the CDV of neighbour tree and auxiliary 
vector is greater than 135°, then there is facilitation between the 
focal tree and the neighbour tree. If the angle between the CDV 
of focal tree and auxiliary vector is greater than 135° and the 
angle between the CDV of neighbour tree and auxiliary vector 
is smaller than 45°, then there is a competition between focal 

(7)

k̂t,biv(r) =

∑n1
i=1

∑n2,≠

j=1
t
�
mi,mj

�
⋅ Clm(pi, pj) ⋅ k(��pi − pj�� − r) ⋅ wi,j

ct ⋅
∑n1

i=1

∑n2,≠

j=1
Clm(pi, pj) ⋅ k(��pi − pj�� − r) ⋅ wi,j

,

tree and neighbour tree. Otherwise, we assume that there is no 
facilitation or competition between focal and neighbour trees. 
Note that the vectors are two dimensional in horizontal plane, 
and the vertical component was not considered.

We proposed a vectorially marked pattern, where the vecto-
rial mark (i.e., CDV) is attached to the univariate or bivariate 
pattern. Analogous to the use of the mark correlation function 
for a qualitatively marked pattern, mark connection functions 
are developed to characterize the spatial relationship among 
the trees regarding CDV. The ecological question of vectorially 
marked pattern is to determine whether the CDV pairs of the 
individual trees separated by distance r are spatially correlated. 
Analogous to the summary statistics for bivariate unmarked pat-
tern, the mark connection function for vectorially marked pattern 
is estimated with the ratio of the product densities.

The second-order product density characterizes the fre-
quency of possible configurations of two trees in the plot 
(Illian et al. 2008). For a homogeneous pattern in which the 
properties of the pattern are the same in all directions and at 
all locations, the second-order product density for unmarked 
pattern can be estimated as follows:

where A is the area of the plot, n∕A is the tree density within 
the plot, and 

(|||
|||pi − pj

|||
||| − r

)
⋅ wi,j∕2�r is the tree density 

around tree i at the distance of r , that is the tree density 
within the ring with the width of two times of bandwidth 
while the ring is centred on tree i.

The second-order product density for vectorially marked 
pattern can be estimated as follows:

where vi and vj are the crown displacement vectors of the 
focal tree and neighbour tree, respectively. V(vi, vj) , a judg-
ing function, returns a value of 1 for facilitation of the focal 
and neighbour tree, which is determined by the CDV pair, 
a value of − 1 for competitive interaction, and a value of 0 
otherwise. The quantity t(vi, vj) can be expressed as

where t
(
vi, vj

)
 is the absolute value of dot product vi and vj , 

and t(vi, vj) ⋅ V(vi, vj) in Eq. 4 quantifies the degree of facili-
tation or competition of tree pairs. To some extent, t(vi, vj) 
is a quantitative mark for the vector and is similar to the test 
function t

(
mi,mj

)
 in Eq. 1.

(8)
d̂

�(r) =
n

A

∑n

i=1

∑n,≠

j=1
k
����
���pi − pj

���
��� − r

�
⋅ wi,j

2�r

=
1

2�rA

�n

i=1

�n,≠

j=1
k
����
���pi − pj

���
��� − r

�
⋅ wi,j,

(9)
d̂V (r) =

1

2πrA

∑n

i=1

∑n,≠

j=1
t(vi, vj) ⋅ V(vi, vj) ⋅ k(||pi − pj|| − r) ⋅ wi,j,

(10)t
(
vi, vj

)
=
|||vi ⋅ vj

|||,
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The function d̂�(r) counts all tree pairs, but d̂V (r) only 
counts the tree pairs which are facilitated or competitive 
due to the judging function V(vi, vj) . Thus, the estimator of 
second-order product density for the unmarked pattern is 
accordingly modified as

where |||V(vi, vj)
||| the absolute value of the judging function, 

equals 1 or 0. Therefore, the noncumulative mark connection 
function for the univariate vectorially marked pattern can be 
estimated as

where the subscript V refers to the function judging the rela-
tive directions of CDVs. Analogous to Eq. 7, the estimator 
for the cumulative mark connection function for the univari-
ate vectorially marked pattern can be estimated as

where the superscript cum refers to cumulative, the kernel func-
tion I(||pi − pj||, r) equals 1 if the neighbour tree pj is located 
within distance r from focal tree pi and 0 otherwise. Compared 
with the noncumulative function, the cumulative function 
glosses over some details, but is less likely to be affected by 
scale because the cumulative functions involve more trees at 
the same scale, which reduces the potential stochastic noise 
(Wiegand and Moloney 2004). Note that expressions with-
out superscript cum are all noncumulative summary statistics 
[e.g.qV,uni(r),qV,biv(r) , kt,V,uni(r) and kt,V,biv(r)].

Accordingly, to characterize the spatial correlation of 
facilitation or competition of two species, we developed the 
noncumulative and cumulative bivariate mark connection 
function for vectorially marked pattern as follows:

(11)

d̂(r) =
1

2�rA

∑n

i=1

∑n,≠

j=1

|||V(vi, vj)
||| ⋅ k(||pi − pj|| − r) ⋅ wi,j,

(12)

q̂V,uni(r) =
d̂V(r)

d̂(r)

=

∑n

i=1

∑n,≠

j=1
t(vi, vj) ⋅ V(vi, vj) ⋅ k(��pi − pj�� − r) ⋅ wi,j

∑n

i=1

∑n,≠

j=1

���V(vi, vj)
��� ⋅ k(��pi − pj�� − r) ⋅ wi,j

(13)

q̂cum
V,uni

(r) =

∑n

i=1

∑n,≠

j=1
t(vi, vj) ⋅ V(vi, vj) ⋅ I(��pi − pj��, r) ⋅ wi,j

∑n

i=1

∑n,≠

j=1

���V(vi, vj)
��� ⋅ I(��pi − pj��, r) ⋅ wi,j

(14)q̂V,biv(r) =
d̂V(r)

d̂(r)
=

∑n1
i=1

∑n2,≠

j=1
t(��, ��) ⋅ V(��, ��) ⋅ k(��pi − pj�� − r) ⋅ wi,j

∑n1
i=1

∑n2,≠

j=1

���V(��, ��)
��� ⋅ k(��pi − pj�� − r) ⋅ wi,j

(15)q̂cum
V,biv

(r) =
d̂V(r)

d̂(r)
=

∑n1
i=1

∑n2,≠

j=1
t(��, ��) ⋅ V(��, ��) ⋅ I(��pi − pj��, r) ⋅ wi,j

∑n1
i=1

∑n2,≠

j=1

���V(��, ��)
��� ⋅ I(��pi − pj��, r) ⋅ wi,j

,

where n1 is the number of focal tree species, n2 is the number 
of neighbour tree species. q̂V,biv(r) recruits neighbour trees 
of species 2 at distance r away from the focal tree of species 
1, while q̂cum

V,biv
(r) recruits trees within distance r.

For the univariate vectorially marked pattern, the null 
model is to randomize CDVs of all the trees while the tree 
locations remain unchanged. But for bivariate vectorially 
marked pattern, the null model is to randomize vectorial 
marks of trees within each component pattern, because the 
two component patterns are a priori different (Wiegand and 
Moloney 2013).

Analysis 4: quantitatively and vectorially marked 
pattern

The quantitatively and vectorially marked pattern is a uni-
variate or bivariate unmarked pattern attached a quantitative 
mark (e.g., tree height or CPA) and a vectorial mark (i.e., 
CDV). The ecological question is to determine the spatial 
correlation between quantitative mark and vectorial mark. 
For example, we may expect that tree pairs with facilitation 
would be taller or with larger CPA than expected given over 
all sizes of facilitated or competitive tree pairs. Accordingly, 
this pattern requires a null model where quantitative mark 
or vectorial mark fixed, while the other mark is randomly 
shuffled over trees. Note that the null model of univariate 
pattern shuffles marks over all trees, but that of the bivariate 
pattern shuffles marks within each species and avoids an 
interspecific shuffle.

We also built summary statistics for a quantitatively and 
vectorially marked pattern, analogous to the former func-
tions. The estimator of non-normalized univariate mark cor-
relation functions yields

where tsum
(
mi,mj

)
= mi + mj

 if V(vi, vj
)
= 1 , tsum

(
mi,mj

)
= 2mmax − (mi + mj) 

if V
(
vi, vj

)
= −1 , and mmax is the maximum value of the 

quantitative mark, and equals highest tree height or largest 
CPA.

(16)

k̂
�

t,V,uni
(r) =

∑n

i=1

∑n,≠

j=1
tsum

�
mi,mj

�
⋅ V(vi, vj) ⋅ k(��pi − pj�� − r) ⋅ wi,j

∑n

i=1

∑n,≠

j=1

���V
�
vi, vj

���� ⋅ k(��pi − pj�� − r) ⋅ wi,j

,
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It is clear that if there is no spatial correlation among 
marks, the estimator of the non-normalized univariate mark 
correlation functions k̂�

t,V,uni
(r) equals the asymptotic value 

of tsum
(
mi,mj

)
 . Thus, to ensure the comparability at differ-

ence scales r, the estimator (Eq. 11) should be normalized 
by c , the asymptotic value of tsum

(
mi,mj

)
 . The expectation 

of all facilitated tree pairs yields 

 and the expectation of all competitive tree pairs yields

Thus,

where npos and nneg are the numbers of facilitated or com-
petitive tree pairs respectively, and npos+neg = npos + nneg.

Furthermore, the estimator of normalized univariate and 
bivariate mark correlation function yields

The test function tsum
(
mi,mj

)
 for univariate pattern are 

calculated for pairs of trees that fulfill two conditions: the 
focal tree and neighbour tree are either facilitated or com-
petitive, and the trees are separated by distance r.

Accordingly, the cumulative univariate and bivariate 
functions are estimated as follows:

where the neighbour trees are within distance r of focal tree. 
Analogous to the cumulative form of functions for the vec-
torially marked pattern, cumulative functions for quantita-
tively and vectorially marked pattern reduce the potential 

(17)E
(
mi + mj

)
= 2�

(18)E
(
2mmax − (mi + mj)

)
= 2mmax − 2�.

(19)

c = {npos ⋅ E
(
mi + mj

)
+ nneg ⋅ E[2mmax − (mi + mj)}∕

npos+neg = (2�
(
npos − nneg

)
+ 2mmaxnneg)∕npos+neg,

(20)

k̂t,V,uni(r) =

∑n

i=1

∑n,≠

j=1
tsum

�
mi,mj

�
⋅ V(��, ��) ⋅ k(��pi − pj�� − r) ⋅ wi,j

c ⋅
∑n

i=1

∑n,≠

j=1

���V
�
��, ��

���� ⋅ k(��pi − pj�� − r) ⋅ wi,j

(21)k̂t,V,biv(r) =

∑n1
i=1

∑n2,≠

j=1
tsum

�
mi,mj

�
⋅ V(��, ��) ⋅ Clm(pi, pj) ⋅ k(��pi − pj�� − r) ⋅ wi,j

c ⋅
∑n1

i=1

∑n2,≠

j=1

���V
�
��, ��

���� ⋅ Clm(pi, pj) ⋅ k(��pi − pj�� − r) ⋅ wi,j

.

(22)

k̂cum
t,V

(r) =

∑n

i=1

∑n,≠

j=1
tsum

�
mi,mj

�
⋅ V(��, ��) ⋅ I(��pi − pj��, r) ⋅ wi,j

c ⋅
∑n

i=1

∑n,≠

j=1

���V
�
��, ��

���� ⋅ I(��pi − pj��, r) ⋅ wi,j

(23)k̂cum
t,V,biv

(r) =

∑n1
i=1

∑n2,≠

j=1
tsum

�
mi,mj

�
⋅ V(��, ��) ⋅ Clm(pi, pj) ⋅ I(��pi − pj��, r) ⋅ wi,j

c ⋅
∑n1

i=1

∑n2,≠

j=1

���V
�
��, ��

���� ⋅ Clm(pi, pj) ⋅ I(��pi − pj��, r) ⋅ wi,j

,

stochastic noise, but gloss over some details, especially at 
the larger scales due to the higher numbers of tree pairs. 
Note that both the noncumulative estimator (Eqs. 19 and 
20) and cumulative estimator (Eqs. 21 and 22) need c , the 
asymptotic value of tsum

(
mi,mj

)
 , because both of them con-

tain the test function tsum
(
mi,mj

)
 , though noncumulative 

estimators only recruit trees at distance r, while cumulative 
estimators recruit trees within distance r.

The null models for the functions of this type of pattern 
are also random labelling. It requires a null model where 
the quantitative marks are fixed, but the vectorial marks 
are randomly shuffled over all trees (for univariate pattern) 
or within each component pattern (for bivariate pattern). 
Alternatively, another type of null model is to maintain 

the vectorial mark fixed, but to shuffle the quantitative 
marks over all trees (for univariate pattern) or within each 
component pattern (for bivariate pattern).

Results

Comparison of matched true ALS‑ 
and algorithm‑segmented ALS‑based results

Accuracy assessment of the four ALS point cloud segmen-

tation results showed that the metabolic transport distance-
based approach (Xin et al. 2021) yields a coefficient of deter-
mination (R2) for tree height and crown width of detection 
of 0.9108 and 0.6193, respectively, and the overall R2 of tree 

Table 1  Accuracy of quantitative and vectorial marks based on a 
segmented ALS point cloud, compared with a true ALS point cloud. 
Mean error is the average absolute value of difference between the 
segmented and the true ALS.  CDVx and  CDVy are the x and y compo-
nents of crown displacement vector, respectively

Mark Mean error 
(m)

Quantitative marks Tree height 2.21
Crown width 2.21

Vectorial mark CDVx 1.04
CDVy 1.14
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(a)Univariate unmarked pattern (b) Univariate quantitatively marked pattern 
(tree height or CPA marked)

(c)Univariate vectorially marked pattern (CDV 
marked)

(d) Univariate quantitatively and vectorially 
marked pattern (tree height and CDV marked, or 
CPA and CDV marked)

(e)Bivariate unmarked pattern (f) Bivariate quantitatively marked pattern (tree 
height or CPA marked)

(g) Bivariate vectorially marked pattern (CDV 
marked)

(h) Bivariate quantitatively and vectorially 
marked pattern (tree height and CDV marked, or 
CPA and CDV marked)
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height and crown width are 0.8045 and 0.4743, respectively, 
the mean error of tree height is 2.20 m, evaluated against 
the true ALS-based tree height and crown width. The other 
three approaches delineate understories with lower R2 of tree 
height and crown width, and the mean errors of tree height 
ranged from 6.24 to 6.58 m (detailed by Xin et al. 2021). 
Thus, we employed the metabolic transport distance-based 
approach for the ALS point cloud segmentation of the 1-ha 
and 9-ha plots, which showed that there are 4380 trees in 
the 9-ha plot.

The validity of using segmented ALS in spatial pattern 
analysis was evaluated by the mean error of marks, CS and 
CDR. The mean errors of quantitative and vectorial mark are 
shown in Table 1. The error of the two quantitative marks 
was 2.21 m. The mean errors of the two components of the 
vectorial mark were 1.04 m and 1.14 m, implying that the 
segmented ALS-based structure parameters could be used 
for the spatial pattern analysis.

CS and CDR were used to assess the results for the eight 
types of segmented ALS-based pattern analysis in compari-
son to the true ALS-based results. From most patterns, val-
ues for assessment index CS were greater than 0.94, the aver-
age value of CS of all eight types of patterns was also 0.94, 
indicating a high similarity of the two lines of summary 
statistics. The CDR values of eight types of patterns vary 
from 70 to 86% (mean: 79%), which means about a number 
of 39.5 scales of all 50 scales were correctly detected.

In conclusion, according to the summary statistic lines 
and indices of CS and CDR, the algorithm segmented ALS 
has an excellent performance in the eight types of spatial 
patterns. We found that tree height-marked analysis usually 
get better results compared with CPA-marked analysis due 
to the coefficient of determination R2 of tree height based 
on ALS segmentation algorithm is better than that of crown 
width. The performance test of segmented ALS, which used 
the true ALS as the criterion, is the precondition for seg-
mented ALS-based analysis and also for further larger plot 
and larger scale analysis without census data.

The eight types of spatial patterns analysis

The spatial distributions of the locations and marks of 
trees in the 1-ha plot were shown in Fig. 2, we analyzed the 

univariate patterns (Fig. 2a–d) in Sect. 3.2.1 and bivariate 
patterns in Sect. 3.2.2. The eight types of spatial patterns we 
analyzed were listed in Table 2.

Univariate patterns

We analyzed four types of univariate patterns, as shown in 
the unmarked (Fig. 3a), quantitatively marked (Fig. 3b, c), 
vectorially marked (Fig. 3d), and quantitatively and vecto-
rially marked (Fig. 3e, f) patterns. The trees showed strong 
segregation at scales of 1–3 m due to the close tree spac-
ing, and rapidly turned to an aggregation at the scale of 5 m 
(Fig. 3a). Trees were significantly spatially aggregated at 
scales of 5–11 m, and peaked at scales of 4 and 11 m.

The tree height-marked quantitative pattern (Fig. 3b) 
showed a significant departure at scales of 1–3, 6–9 and 
11 m under the test function.

where mi and mj are tree heights of the focal and the neigh-
bor tree, respectively, and � is the mean height. A significant 
departure from the simulation envelopes indicates a spatial 
correlation among the quantitative marks of the focal tree 
and neighbour tree. Values of kt,uni(r) lying above the simu-
lation envelopes for null model indicate facilitation among 
the quantitative mark of focal tree and neighbour tree; that 
is, the focal tree and neighbour tree both are small trees or 
both are large trees. At scales of 1–3 m, Fig. 3b showed 
the positive correlation between the height of focal tree and 
neighbour tree, and at scales of 6–9 and 11 m, it showed a 
competitive interaction of the height. By contrast, the CPA-
marked quantitative pattern (Fig. 3c) was less correlated 
with tree distribution, and it did not show significance at 
most of scales, except the slightly negatively departure from 
simulation envelopes at the scale of 3 and 6 m. The results 
showed that CPA is less likely to be affected by tree popula-
tions compared with tree height.

However, we are not yet able to determine whether they 
are small or large trees. Also, values below simulation enve-
lopes indicate a negative correlation, and we are still not 
able to determine the size of focal and neighbour trees until 
joining the vectorially marked pattern.

Vectorially marked pattern (Fig. 3d) showed spatial cor-
relation of facilitation among trees at the scales of 5–6 and 
9–10 m; that is, CDVs of the focal tree and neighbour trees 
are more likely to point to each other, indicating the facili-
tation among trees at these scales. Thus, combined with 
Fig. 3b, we can estimate that both the focal and neighbour 
trees are potentially tall trees at a scale of 6 and 9 m, and 
combined with Fig. 3c, the focal tree is more likely to be 
with a large crown, while neighbours have a small crown.

(24)t
(
mi,mj

)
= (mi − �)(mj − �),

Fig. 2  The eight types of spatial patterns of the 1-ha plot. Each dot 
or circle represents an individual tree. a Spatial distribution of 523 
individual trees. b Disk area of the black dot is proportional to CPA. 
c The length of the red arrow is proportional to the length of CDV. 
d Similar to b and c, but the length of red arrow is constant. e Spa-
tial distribution of sycamore (open circles, 364 individuals) and other 
species (grey dots, 159 individuals). f Similar to b and e. g Similar 
to c and e. Red and blue arrows are the CDVs of sycamore and other 
species, respectively. h Similar to d and g 

◂
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Tree height- and vector-marked quantitative and vectorial 
patterns (Fig. 3e) showed a significantly positive departure 
from envelopes at the scale of 9–12 m, which indicates t 
facilitation among focal and neighbour trees and that they 
are tall trees. These results further confirmed the pattern 
analysis results of Fig.  3b, d. CPA- and vector-marked 
quantitative and vectorial pattern (Fig. 3f) also showed sig-
nificantly positive departure at scales of 9–12 m, indicating 
the facilitation and large CPA of focal and neighbour trees. 
Figure 3c showed significant departure at the scales of 3 and 
6 m, while Fig. 3f did not show any significant departure at 
scales smaller than 9 m, indicating that the small CPA is not 
correlated with the tree interactions.

On the whole, the univariate pattern showed that at small 
scales (1–3 m), trees tend to be spatially segregated and 
have small crowns and short heights due to the competition 
among trees for nutrients. At larger scales (around 5–10 m), 
trees tend to facilitate with each other, resulting in a spatially 
clustered distribution and taller trees, but the CPA did not 
show much spatial correlation with tree interactions. Thus, 
the vectorially marked pattern and quantitatively and vecto-
rially marked pattern indicate a specific spatial relationship 
of size and interaction of trees.

Bivariate patterns

The bivariate pattern analysis tests for an interspecific spatial 
correlation, and the summary statistics different from those 

of the univariate pattern. Bivariate pattern analysis goes 
through the specific species separately, while the univariate 
pattern goes through all trees without distinguishing them 
by species. Results of bivariate pattern analysis are shown 
in Fig. 3g–l, where the “two” species are dominant species 
(sycamore) and the other species. The unmarked pattern 
Fig. 3g did not show a significant departure from envelopes 
at small scales (1–15 m), indicating that sycamore and the 
other trees are randomly distributed with each other at these 
scales, and there was no significant spatial correlation of 
tree locations.

The tree height-marked quantitative bivariate pattern 
(Fig. 3h) showed significant departure at a scale of 3–10 m, 
indicating a positive correlation between the two species for 
tree height; that is, both focal sycamore and neighbor trees 
(other species) are tall trees or both are short trees. CPA-
marked pattern (Fig. 3i) showed there is slightly significant 
departure at a scale of 11 m. However, the sizes of sycamore 
and other species are still not clear; more types of patterns 
are needed.

The undetermined spatial relationship of tree size of 
sycamore and other species could be clarified by a bivari-
ate vectorial pattern (Fig. 3j). As shown in Fig. 3j, there is 
significant departure at a scale of 9 m, indicating facilitation 
between sycamore and the other species. When these results 
are combined with results of the quantitatively marked pat-
tern, we can judge that both the sycamore and other species 
are with large trees. Moreover, we can further clarify using 

Table 2  The eight types of spatial pattern analysis of forest trees 
based on qualitative, quantitative and vectorial marks, where the type 
iii, iv, vii and viii were newly developed. The new patterns analyzed 
the facilitation and competition and its impact on tree size. Each type 

has a specific ecological question, corresponding null model and 
summary statistics and analyzes the different types of spatial correla-
tions among trees in the plot

Species Mark Spatial pattern type Specific ecological question

Single species, 
or ignore spe-
cies (Univari-
ate)

Nonmark (unmark) i. Univariate unmarked pattern (Wiegand 
and Moloney 2013)

Are trees spatially clustered, random or 
segregated?

Tree height or CPA (quantitative mark) ii. Univariate quantitatively marked pat-
tern (Wiegand and Moloney 2013)

Are trees significantly large or small at 
certain scales?

CDV (vectorial mark) iii. Univariate vectorially marked pattern Are trees spatially facilitated or competi-
tive at certain scales?

Tree height and CDV, or CPA and CDV 
(quantitative and vectorial mark)

iv. Univariate quantitatively and vectori-
ally marked pattern

Are facilitated trees large or competitive 
trees are small at certain scales?

Two species, 
or one and 
other species 
(Bivariate)

Nonmark (unmark) v. Bivariate unmarked pattern (Wiegand 
and Moloney 2013)

Are individuals of sycamore and other 
species spatially clustered, random or 
segregated?

Tree height or CPA (quantitative mark) vi. Bivariate quantitatively marked pat-
tern (Wiegand and Moloney 2013)

Are individuals of sycamore or other 
species significantly large or small at 
certain scales?

CDV (vectorial mark) vii. Bivariate vectorially marked pattern Are individuals of sycamore and other 
species spatially facilitated or competi-
tive at certain scales?

Tree height and CDV, or CPA and CDV 
(quantitative and vectorial mark)

viii. Bivariate quantitatively and vectori-
ally marked pattern

Are facilitated individuals of sycamore 
and other species large or are competi-
tive individuals small at certain scales?
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(a) i, uni ( )

1-3, 5-7, 9-11, 24, 26, 35-37, 39, 48-50
(Ripley’s L function)

(b) ii-H, t,uni ( )

1-3, 6, 8-9, 11, 22-23, 31, 37-38
(Eq. 5)

(c) ii-CPA, t,uni ( )

3, 6, 10, 27, 30, 39
(Eq. 5)

(d) iii, V,uni ( )

5, 6, 9, 10, 40, 46
(Eq. 11)

(e) iv-H, t,V,uni ( )

9-12, 17-18, 20-24, 26-29, 31-34, 38-39, 43-
46, 49-50 (Eq. 19)

(f) iv-CPA, t,V,uni ( )

9-12, 19-21, 24, 39, 44
(Eq. 19)

(g) v, biv ( )

16-17, 24, 35, 36, 44
(Ripley’s L function)

(h) vi-H, t,biv ( )

3-10, 18, 37
(Eq. 6)

(i) vi-CPA, t,biv ( )

11, 25, 26
(Eq. 6)

(j) vii, V,biv ( )

9, 38, 39-40, 49-49
(Eq. 13)

(k)viii-H, t,V,biv ( )

8, 12, 19-22, 24-29, 32-35, 39, 43-46, 49-50 
(Eq. 20)

(l) viii-CPA, t,V,biv ( )

2, 10-12, 19, 24-30, 33-34, 39, 43-49
(Eq. 20)

Fig. 3  Summary statistics (red lines) for the eight types of patterns 
in the 1-ha plot based on algorithm-segmented ALS, and the simula-
tion envelopes (grey lines) produced by null models. The x-axes are 
the spatial scales with a step of 1 m, indicating the spatial extent; the 
y-axes show the values of dimensionless summary statistics. In each 
diagram, values above their envelopes indicate spatial aggregation (a 
and g), large tree size (b, c, h and i), facilitation (d and j), or s above 
their envelopes indicate a spatial segregation (a and g), small tree size 

(b, c, h and i), competition (d and j), or competition and small tree 
size (e, f, k and l). The scales with significant departures are listed 
below each diagram. The quantitative marks H and CPA are tree 
height and crown projection area, respectively. The test function used 
for pattern ii and vi is t

(
mi,mj

)
= (mi − �)(mj − �) , where mi and 

mj are the quantitative mark values of the focal and neighbour tree, 
respectively, and � is the mean mark. Different patterns employ dif-
ferent null models
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the quantitatively and vectorially marked pattern that both 
Fig. 3k, l showed a significant departure at a scale of 12 m, 
indicating a positive correlation of tree size with interspe-
cific interactions among sycamore and other species. Thus, 
both bivariate vectorially marked pattern and bivariate quan-
titatively and vectorially marked pattern clarified the con-
nection between tree size and interspecific interaction.

Univariate pattern analysis ignores the species informa-
tion, and only focuses on one species or all species, while the 
bivariate pattern analysis focuses on two species or on one 
focal species and one other species. There is less significant 
departure of the bivariate pattern than that of the univariate 
pattern according to the results, indicating that the interspe-
cific interaction is weaker than the intraspecific interaction 
in the 1-ha plot. Moreover, trees tend to be competitive and 
compete with each other at small scales, and are facilitated 
at large scales. Note that a significant departure occurred 
more randomly at scales greater than 20 m, showing weaker 

spatial correlation at these scales and less ecological signifi-
cance at larger distances among trees; thus, we only focused 
on scales less than 20 m in this study.

Extending the analysis to the 9‑ha plot based 
on the ALS point cloud

The ALS has the ability to acquire a point cloud in a large 
area, so we also analyzed the spatial pattern of the 9-ha plot 
based on the ALS point cloud, as shown in Fig. 4.

The univariate pattern analysis of the 9-ha plot pro-
vided a wider perspective for exploring the spatial corre-
lation of trees (Fig. 4). Similar to the analytical methods 
for ecological significance of the 1-ha plot, the unmarked 
pattern (Fig. 4a) showed that trees are aggregated at the 
scale of 6–8 m, and the tree height-marked quantitative pat-
tern showed (Fig. 4b) that the heights of focal and neigh-
bour trees are positively correlated, while the height- and 

(a) i, uni ( )

1-2, 6-8
(Ripley’s L function)

(b) ii-H, t,uni ( )

6-7
(Eq. 5)

(c) ii-CPA, t,uni ( )

no significant departure
(Eq. 5)

(d) iii, V,uni ( )

2-4, 15-16

(Eq. 11)

(e) iv-H, t,V,uni ( )

1-7, 10-11, 16, 18-21, 30-35, 38-39, 50

(Eq. 19)

(f) iv-CPA, t,V,uni ( )

1-5, 9-11, 30-31, 39-40, 50

(Eq. 19)

Fig. 4  Summary statistics (red lines) for the four types of univariate 
patterns in the 9-ha plot. The simulation envelopes (grey lines) were 
produced by null models. The x-axes are the spatial scales with a step 
of 1 m; y-axes show the values of dimensionless summary statistics. 
In each diagram, values above their envelopes indicate spatial aggre-
gation a, large tree size (b and c), facilitation (d), or facilitation and 
large tree size (e and f). Values above their envelopes indicate spatial 
segregation a, small tree size (b and c), competition (d), or competi-
tion and small tree size (e and f). The scales with significant depar-

tures are listed below each diagram. The quantitative marks H and 
CPA are the tree height and crown projection area, respectively. The 
test function used for pattern ii and vi is t

(
mi,mj

)
= (mi − �)(mj − �) , 

where mi and mj are the quantitative mark values of the focal and 
neighbour tree, respectively, and � is the mean mark. The scales with 
significant departures are listed below each diagram. Different pat-
terns employ different null models. The bivariate pattern analysis was 
not conducted due to the lack of species information
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vector- marked pattern (Fig. 4e) showed that the trees tend 
to be shorter and interacting competitively; thus, there is 
competitive inhibition among trees at the scale of 6–7 m. 
However, near 2 m, trees tend to be separately distributed 
(Fig. 4a) and competitive (Fig. 4d). Based on the quanti-
tatively and vectorially marked pattern analysis (Fig. 4e, 
f), trees tend to be short and with small crowns at scales 
near 2 m due to competitive inhibition. Compared with the 
1-ha plot (Fig. 3), the 9-ha plot (Fig. 4) tended to have less 
significant departures from the simulation envelopes. The 
reason lies in the number of trees; the 9-ha plot contains 
4380 trees, while the 1-ha plot contains 523 trees, so there 
is less potential stochastic noise in the 9-ha plot, and the 
values of summary statistics of the 9-ha plot show relatively 
less departure than in the 1-ha plot. Note that the cumulative 
summary statistics also have less stochastic noise compared 
with the noncumulative summary statistics, though the non-
cumulative may gloss over some details.

Discussion

Previous spatial analytical methods have described the scat-
tering of individual trees and the spatial distribution of tree 
size, whereas our newly proposed spatial analysis methods 
use new quantitative and vectorial marks to determine the 
driving factors that led to the spatial patterns. That is, tra-
ditional methods only analyze unmarked and quantitatively 
marked patterns such as a significant segregated distribution 
of certain species adults and a significant clustered distri-
bution of subadults and juveniles at extreme small scales 
(Nguyen et al. 2014; Gu et al. 2019), a wide clustered distri-
bution of some typical species at small scales (Nguyen et al. 
2016), or a significantly smaller tree size of a minor species 
around the dominant species (Wiegand and Moloney 2013). 
In this study, we proposed new types of patterns based on the 
new marks CPA and CDV, which have not been used in other 
ecological studies, to further clarify the spatial correlations 
of tree facilitation or competition, of tree size and facilitation 
or competition. We found significant facilitation among the 
trees in the plot, which led to a larger tree size, and had a 
greater impact on tree height than crown size.

Trees could be spatially facilitated or competitive at any 
scale. The univariate and bivariate pattern of the 1-ha plot 
(Fig. 3) and the univariate pattern of the 9-ha plot (Fig. 4) 
showed that trees are more likely to spatially interact at 
smaller scales, and the significance of the effect (i.e., the 
departure from null models) is weaker at large scales. This 
result is consistent with other reports that tree spatial cor-
relation diminishes with distance (Miao et al. 2014; Erfani-
fard et al. 2016; Moreno-Fernández et al. 2020). In fact, all 
the proposed univariate and bivariate patterns, including the 
quantitatively and vectorially marked related patterns, could 

be further expanded to trivariate patterns, which incorporate 
spatial correlations for three species and also need corre-
sponding summary statistics and mull models (Velázquez 
et al. 2016).

Tree height, diameter at breast height and crown width 
have been commonly used marks in ecological studies, while 
crown width can be considered as a simplified form of CPA. 
In this study, we used CPA as a quantitative mark, measur-
ing the vertical size of individuals. We also proposed the 
vectorial mark, CDV, a new type of mark that is a meas-
ure of the crown centre displacement from the stem of an 
individual tree. More three-dimensional marks could also 
be potentially extracted from ALS point cloud. They could 
be quantitative, describing the size of trees from different 
dimensions, or vectorial, representing the crown asymmetry 
more accurately, or other new types of marks. In addition, 
terrestrial laser scanning point clouds could also be used to 
provide more detailed three-dimensional structural marks, 
although the cost will be greater.

We examined the performance of the pattern analysis 
models only for 1-ha and 9-ha plots, but the two plots are 
both mixed forest. More types of forests, such as a conifer-
ous forest or tropical forest, need to be tested to evaluate 
the broad applicability of the proposed models (Carrer et al. 
2018). Nevertheless, it is still a challenge to derive species 
information from the ALS point cloud, which is required by 
bivariate or further trivariate pattern analysis. Fortunately, 
we could obtain species information from census data or 
simultaneous remote sensing data (e.g., spectral or hyper-
spectral images).

Conclusions

Quantitative and vectorial marks were derived from ALS 
point clouds, and the spatial patterns of two forest stands 
in Oxfordshire, UK was analyzed. To reveal details on the 
three-dimensional structure and facilitation and competi-
tion of trees, we used newly proposed marks including CPA, 
which measures the horizontal size of trees, and CDV, which 
measures the crown displacement of trees. New types of pat-
terns suitable for these new marks were developed, including 
the vectorially marked pattern and the quantitatively and 
vectorially marked pattern. Correspondingly, we developed 
new summary statistics and null models and assessed the 
utility of the newly proposed marks. The newly proposed 
patterns were useful in clarifying the spatial correlation 
of intraspecific and interspecific facilitated or competitive 
interactions and the spatial correlation of tree size and facili-
tated or competitive interactions at a series of scales. They 
also helped to connect the spatial relationship of quantitative 
and vectorial marks. ALS-based marks were introduced for 
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spatial pattern analysis, and their applicability shown. We 
perfected the spatial pattern system and further clarified the 
spatial correlations of individual trees in forests. This study 
thus provides a new perspective to reveal the relationship 
between facilitation and competition and tree size at a series 
of scales in forests, and gain insight into the ecological driv-
ing factors of tree distribution and in relation to tree size 
and location.
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