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of downregulated epigenetic-related genes was highly cor-
related with the nicotinamide treatment, indicating a com-
mon regulation. Our results support an earlier hypothesis 
regarding a potential role of nicotinamide as a defense-signal 
mediator.
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Introduction

Environmental stresses limit productivity in agriculture and 
forestry. Plants must adapt to biotic and abiotic stresses to 
survive. Norway spruce (Picea abies L. Karst.) is a signifi-
cant element of European ecology and the forestry industry. 
Newly planted seedlings often suffer from attacks by pests 
such as pine weevils. A considerable proportion of the pes-
ticides used in forestry are intended to reduce insect attacks 
so that newly planted young seedlings survive, but many of 

Abstract Nicotinamide treatment of plants and plant cell 
cultures has been shown to promote defense and decrease 
levels of DNA methylation. In the present study, we used 
RNA-seq technology to study overall changes in gene 
expression induced in roots of 3-month-old spruce (Picea 
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to examine the molecular mechanisms underlying the 
defense promotion. Approximately 350 genes were identi-
fied as differentially expressed in roots after the seed treat-
ment. Stress response genes, including transcription factors 
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these chemical agents have broad ecotoxicity. An alternative 
approach is to activate and strengthen the plants’ own innate 
defense systems.

Systemic acquired resistance (SAR) refers to the induc-
tion of a strengthened defense response in the whole plant 
(Luna et al. 2012; Conrath et al. 2015). Both priming and 
long-distance hormonal signaling are parts of SAR. Prim-
ing is a procedure where plants are induced to become more 
stress-tolerant via early exposure to a stressor or a defense-
promoting signal molecule. Subsequent re-exposures lead to 
stress responses that are far stronger than the first response 
(Conrath et al. 2015). The plants can acquire a “memory” 
that protects them not only from the specific stress they have 
been exposed to, but also to other stresses. UV-C exposure 
of lettuce, for instance, results in a more salt-tolerant plant 
(Ouhibi et al. 2014). An advantage of the priming technique 
is that it can be applied to seeds (Jisha et al. 2013; Worrall 
et al. 2012).

Stress memory in plants lasts only for a short time period 
when it is mediated via proteins, RNAs and metabolites. 
However, stress-induced epigenetic changes, which are con-
sidered to be one result of seed priming, can be maintained 
for longer durations and may even be inherited trans-gener-
ationally (He and Li 2018). Epigenetic regulation in plants 
involves methylation of cytosine in the sequence contexts 
CG, CHG and CHH in the DNA, as well as histone modifi-
cations and other chromatin rearrangements (Bartels et al. 
2018). It has been demonstrated that the stress-induced DNA 
methylome is correlated with simultaneous differential gene 
expression (Dowen et al. 2012; Zogli and Libault 2017). 
Establishment of an epigenetic memory in spruce has pre-
viously been discussed around the influence of temperature 
during embryogenesis (Carneros et al. 2017). Other impor-
tant factors influencing the epitype include the geography 
and climate of origin, as demonstrated for transcript patterns 
and DNA methylation in plants of Populus (Raj et al. 2011) 
and Arabidopsis thaliana (Kawakatsu et al. 2016) from 
different locations. Environmental factors in the habitat of 
ancestral plants might also pre-adapt some plants to biotic 
and abiotic stresses via inherited epigenetic patterns to con-
fer an evolutionary advantage (Luna et al. 2012; Bräutigam 
et al. 2013).

Nicotinamide (NIC), a form of vitamin B3 (niacin), is a 
metabolite found in all cells. It can be released from NAD 
in the reaction where the enzyme poly(ADP-ribose) poly-
merase (PARP) is involved in repairing single-strand DNA 
breaks, which can be caused by oxidative stress (Rissel and 
Peiter 2019). NAD-dependent histone deacetylases, using 
NAD as a substrate, also release NIC (Briggs et al. 2017). 
Furthermore, NIC can inhibit PARP and NAD-dependent 
histone deacetylases, creating feedback loops (North and 
Verdin 2004; Rissel and Peiter 2019). Since increased 
histone acetylation promotes more open chromatin, 

NIC-inhibited deacetylation thereby has an explicit epige-
netic effect, increasing histone acetylation and the resulting 
opportunity for transcription to occur (Avalos et al. 2005).

NIC has been hypothesized to play a role in eukaryotic 
cells as a stress signaling molecule when it is released by 
PARP as a consequence of DNA strand breaks (Berglund 
1994). Earlier studies showed that NIC levels increased in 
stressed plant tissues (Kalbin et al. 1997) and that multiple 
defense pathways were activated by NIC (Berglund et al. 
1993a, 1993b, 2017). NIC has also been shown to decrease 
the level of DNA methylation in plant tissue cultures (Ber-
glund et al. 2017). A hypomethylating effect was also seen 
in spruce plants grown from treated seeds (Berglund et al. 
2016).

In plant cells, NIC is metabolized to nicotinic acid (NIA), 
which in turn is further metabolized to NAD or N-methyl 
nicotinic acid (trigonelline) (Noctor et al. 2006). NIC is a 
PARP inhibitor (on protein level), but NIA and trigonelline 
are not. Both NIC and NIA improved stress tolerance to the 
heavy metals Cd, Zn and Cu in Salix viminalis (Ohlsson 
et al. 2008) and protect against DNA damage and cell leak-
age caused by oxidative stress (Berglund et al. 2017).

To our knowledge, there has so far been no large-scale 
gene expression study of NIC-treated plants. We thus 
explored the underlying molecular mechanisms behind 
NIC-induced changes in genes involved in defense and DNA 
methylation to form a general picture of the potential impor-
tance of NIC seed treatment for inducing stress tolerance in 
plants. In other studies of interactions between pests/patho-
gens and plant defense or stress response systems, leaves and 
needles have been the primary focus, leaving roots relatively 
unexplored. Here we examined changes in transcript abun-
dances in roots from 3-month-old Norway spruce seedlings 
using RNA-seq technology to elucidate any changes in gene 
expression induced by NIC seed treatment.

Materials and methods

Plant material and seed treatment

Norway spruce seeds, collected in the orchard of Öhn (ori-
gin 57°00’ N, alt. 55 m), were treated in water with 2.5 mM 
NIC and 1 µM Tween 80 for 4 h and gentle shaking at 23 °C 
in the dark. Control seeds were similarly treated in water-
Tween 80. Directly after treatment, seeds were sown in 
wet peat and kept at 23 °C in the dark until germination 
started after 1 week. Plants were grown at 23 °C with an 
18 h light/6 h dark cycle under fluorescent lighting tubes 
(150 µmol  m–2  s–1). After 1 month, the seedlings were trans-
planted in fresh peat. Seedlings were harvested 3 months 
after sowing, snap frozen in liquid nitrogen, then stored at 
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−80 °C. Roots were ground into powder in liquid nitrogen 
before RNA extraction.

RNA extraction

RNA was extracted using the Qiagen RNeasy Plant Mini Kit 
and the manufacturer’s protocol. RNA integrity and quantity 
were measured using an Agilent 2100 Bioanalyzer. The limit 
for RNA integrity was RIN > 8.0.

Library construction and RNA‑seq analysis

Three biological replicates were created for each of the two 
experimental conditions. Library preparation and RNA 
sequencing were carried out at National Genomics Infra-
structure Sweden at SciLifeLab in Stockholm. Libraries 
were constructed from 200 ng total RNA each, using the 
Illumina TruSeq Stranded mRNA Library Preparation Kit 
according to the manufacturer’s instructions. Sequencing 
was performed with the Illumina HiSeq 2500 (Illumina, 
San Diego, CA, USA) using a standard protocol with read 
lengths of 2 × 100 bases. The average sequencing depth was 
26 million reads (Table S1). The mapping frequency was 
53%. The sequences are publicly available at EBI ArrayEx-
press (accession number E-MTAB-11007).

Data analyses

RNA-seq data were mapped using a pseudoalignment algo-
rithm, which produces robust, accurate, and fast results 
compared to other strategies (Bray et al. 2016), in the soft-
ware Kallisto (Bray et al. 2016). Kallisto uses transcripts 
per million (TPM), a normalized value for each transcript, 
making it easy to compare different samples. Differentially 
expressed genes (DEG) were identified using a method 
designed for downstream analysis of the mapped data. The 
algorithm takes into account the alignment statistics. It is 
implemented in the R package sleuth (Pimentel et al. 2017). 
The threshold for differential expression was set to p < 0.01. 
The reference sequence for mapping was high confidence 
coding sequences from the P. abies genome v1.0 (Nystedt 
et al. 2013). An online platform developed by the Norway 
spruce genome project, congenie.org, was used to down-
load genomic data for annotation and enrichment analysis 
(Sundell et al. 2015). For biological interpretation of the 
data, the enriched DEGs were annotated for biological pro-
cesses using tools available at congenie.org and the complete 
genome available as a reference data set. The p-values were 
adjusted for multiple-testing and represent false discovery 
rates. Data for an epigenetic regulating subset of genes were 
compared to expression data for the same genes in P. abies in 
other experiments and the corresponding genes in A. thali-
ana and Populus trichocarpa. The data were retrieved from 

congenie.org, atgenie.org and popgenie.org, respectively 
(Sundell et al. 2015).

Validation with qRT‑PCR

Quantitative reverse transcription PCR (qRT-PCR) was per-
formed for all six sequenced samples. First strand cDNA was 
synthesized using Superscript III according to the manu-
facturer’s instructions. For the qRT-PCR analyses, stress 
response genes CHIT4, ETR1 and MYB77, which were 
identified as differentially expressed in the RNA-seq analy-
sis, were selected as suitable for the experimental conditions 
used in the qRT-PCR. QRT-PCR primers were designed 
using the online Primer3 software (Untergasser et al. 2012), 
using default parameters except for a primer melting temper-
ature of 60 °C and a product length of 100–150 bp. A list of 
the primer sequences is available in Table S2. qRT-PCR was 
performed in a C1000 Thermocycler (Bio-Rad) using the 
SYBR green kit (Bio-Rad) with a reaction volume of 10 µL. 
All reactions were carried out in triplicate, and a no-template 
control was run for each primer-pair. Actin (PaACT) was 
used as the reference gene (Yakovlev et al. 2006). Quantifi-
cation was performed using the  2−ΔΔCq method (Livak and 
Schmittgen 2001).

Results

Differentially expressed genes are associated with stress 
and epigenetics

Six RNA-seq libraries were generated from roots of six 
spruce seedlings, three from NIC-treated seeds, three control 
plants water-treated seeds. In the comparison of the num-
ber of sequences in the NIC-treated samples with that of 
the control group using a stringent cut off, 357 genes were 
found to be differentially expressed; 98 were upregulated 
and 259 downregulated (Tables S3 and S4). In the com-
parison of transcript abundances of up- and downregulated 
genes using the median tpm (transcripts per million) found 
in control samples (Fig. S1), the median expression of all 
upregulated genes was 15 TPM and 8.7 TPM for all down-
regulated genes. Sequence data are publicly available at EBI 
ArrayExpress (accession number E-MTAB-11007).

The gene ontology (GO) enrichment analysis confirmed 
enrichment for stress-related genes among the upregulated 
subset and for genes connected to epigenetic regulation 
among the downregulated subset (Fig. S2 A and B). A 
subset of differentially expressed stress- and epigenetics-
related genes was then selected for further characterization, 
described next.
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Upregulated stress‑response genes

When all upregulated genes were screened for biological 
functions in stress pathways (Table 1), involvement in both 
abiotic and biotic stress responses was found.

Myb transcription factors comprise one of the larg-
est groups of transcription factors in plants. They contain 
a highly conserved DNA-binding domain and regulate 
numerous stress-related genes (Li et  al. 2015). In this 
study, two myb genes were upregulated: LHY and MYB77 
(MA_115536g0010, MA_89683g0010).

Gene expression of several genes involved in defense 
against biotic stress were induced. Chitinases play a role 
in pathogen defense by breaking down chitin in insect exo-
skeletons and fungal cell walls (Nunes and Philipps-Wie-
mann 2018). Two of the genes with increased transcript 
levels belong to the chitinase family (MA_102538g0010, 
MA_10427514g0010). Other upregulated pathogen defense 
response genes included LECRK44 (L-type lectin-domain 

containing receptor kinase IV.4, MA_76027g0010) and 
PSKR2 (phytosulfokine-alpha receptor 2, MA_65838g0010) 
(Loivamäki et al. 2010; Wang et al. 2014a). LECRK44, a 
kinase in the plasma membrane, has been reported to be 
involved in plant immunity (Wang et al. 2014b). PSKR2 is a 
receptor for phytosulfokine, a hormone involved in pathogen 
infection signaling (Zhang et al. 2018).

Hormone receptors COI1 and ETR1 were also upregu-
lated. COI1 is a mediator of wound- and jasmonate-signaling 
and is therefore potentially important for defense mecha-
nisms (Devoto et al. 2005). ETR1 (ethylene receptor 1) is 
involved in ethylene-induced abiotic and biotic stress path-
ways (O’Donnell et al. 1996; Penninckx et al. 1998).

Downregulated genes involved in epigenetic response

Twelve of the downregulated transcripts of genes are 
thought to be involved in epigenetic gene regulation, 
according to the Gene Ontology annotation (Table 2). 

Table 1  Some of the stress-
related transcripts upregulated 
after NIC seed treatment

All upregulated genes are listed in Table S3

Transcript Gene Gene description Fold-change

MA_102538g0010 Chitinase family protein 7.3
MA_10427514g0010 CHIT4 Homolog of carrot EP3-3 chitinase 5.7
MA_9367190g0010 OXS3 Oxidative stress 3 4.0
MA_208967g0010 MYB77 Myb domain protein 77 3.4
MA_125131g0010 GPX6 Glutathione peroxidase 6 3.3
MA_263909g0010 COI1 RNI-like superfamily protein 3.2
MA_115536g0010 LHY Homeodomain-like superfamily protein 2.7
MA_89683g0010 MYB77 Myb domain protein 77 2.5
MA_10048g0010 ETR1 Signal transduction histidine kinase, hybrid-

type. ethylene sensor
1.8

MA_65838g0010 PSKR2 Phytosulfokine-alpha receptor 2 1.7

Table 2  GO annotation of epigenetic-related transcripts downregulated after NIC seed treatment

a Pearson’s r for MA_104034g0010 is based on TPM counts. All downregulated genes are listed in Table S4

Transcript Gene Gene description Fold-change Pearson’s r a

MA_104034g0010 DDM1 ATP-dependent DNA helicase DDM1  − 3.9 1.00
MA_3471g0020 ICU2 DNA-directed DNA polymerases  − 5.6 0.99
MA_9554g0010 FU Serine/threonine-protein kinase TIO  − 2.8 0.98
MA_94094g0010 CDC45 Cell division cycle 45  − 3.5 0.97
MA_317249g0010 SMC4 Structural maintenance of chromosomes protein 4  − 3.1 0.96
MA_10432810g0010 SMC4 Structural maintenance of chromosomes protein 4  − 3.0 0.95
MA_42406g0010 DDM1 ATP-dependent DNA helicase DDM1  − 2.7 0.95
MA_7952g0010 POLA3 DNA primases  − 2.1 0.95
MA_11159g0010 RUK Protein kinase family protein with ARM repeat domain  − 2.1 0.93
MA_4952g0010 Leucine-rich receptor-like protein kinase family protein  − 4.3 0.91
MA_10432938g0020 ETG1 MINI-chromosome maintenance complex-binding protein  − 2.2 0.90
MA_10435560g0010 RBR1 Retinoblastoma-related protein 1  − 2.2 0.89
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The most recognized gene in this group is DDM1, which 
is an important chromosomal factor for DNA methylation 
(Alvarez et al. 2010).

The correlation analysis of the set of downregulated 
genes with roles in epigenetic regulation revealed that 
their expression profiles were highly correlated (Fig. 1, 
Table 2). For example, ICU2 (INCURVATA2) (Hyun et al. 
2013) has a Pearson correlation to DDM1 of r > 0.99. 
Moreover, the correlation of these genes was observed 
across conditions and tissues in other experiments in P. 
abies (Fig. S3, congenie.org). Furthermore, this correla-
tion was found for A. thaliana and P. trichocarpa (Fig. 
S4, atgenie.org, popgenie.org).

Validation with qRT‑PCR supports the methodology

The qRT-PCR was performed to validate the RNA-seq 
expression values for three differentially expressed genes, 
selected because of their strong relation to stress response 
(see section Upregulated stress response genes) The 
results of the comparison between the two methods are 
presented in Fig. S5. The Pearson’s r was 0.91 using the 
gene expression measurements for each sample, respec-
tively (Fig. S5 A). Fig. S5 B displays the differences in 
 log2 fold-changes for the tested genes after NIC treatment. 
This result shows that RNAseq and qRT-PCR produce 
concordant results.

Discussion

Long-term “memories” of stress signaling can be gen-
erated in plants through epigenetic changes to the DNA 
chromatin structure. In this study, we showed that treating 
Norway spruce seeds with NIC produces seedlings with 
a root gene expression profile showing several changes 
in expression levels of genes related to stress tolerance 
and epigenetics. Although analysis of epigenetic molecu-
lar hallmarks like histone modification and DNA meth-
ylation was beyond the scope of this investigation, our 
results indicate that NIC treatment of seeds may induce 
change at an epigenetic level, especially considering that 
our treatment at spruce embryo level (seed) is reflected 
in gene expression levels in months-old plants. Although 
further confirmation is needed, our results are in line with 
earlier studies that showed NIC can decrease global DNA 
methylation and influence an array of defense variables 
(Berglund et al. 1993a, 1993b, 2017). The transcriptome 
produced by NIC seed treatment may thereby predict a 
stronger defense against various kinds of stress.

The plants used in this study are not clones, since we 
wanted to use plant material that is typically used in for-
estry. Therefore, the individual plants may differ geneti-
cally to some degree. Still, our analyses reveal that NIC 
treatment resulted in similar responses in the samples 
tested, which may reveal a shared mechanism underlying 
changes in gene expression due to stress signals generated 
by NIC.

Fig. 1  Coexpression of 12 NIC-responsive downregulated genes with GO annotations for epigenetic regulation
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Expression of genes connected to epigenetics

DNA hypomethylation in plants is associated with various 
stresses such as cold, heat, bacteria, insects, salinity, and 
wounding (Alvarez et al. 2010; Santos et al. 2011; Lewan-
dowska-Gnatowska et al. 2014). Logically, therefore, some 
genes involved in epigenetic regulation may have altered 
transcript abundances when stress signaling is activated. 
One of the downregulated genes in our study was DDM1, 
a key regulator of DNA methylation (Jeddeloh et al. 1999), 
which is required for DNA methylation of transposable 
elements (TEs); its loss results in strong activation of TEs 
(Lippman et al. 2004; Deniz et al. 2019). TEs are frequently 
found near genes that are upregulated by stress in maize and 
other plants (Makarevitch et al. 2015; Espinas et al. 2016).

In addition to DNA methylation, epigenetic changes 
also comprise histone modification (Ramirez-Prado et al. 
2018). DDM1 also plays a role in histone methylation, 
which in turn could influence DNA methylation (Gendrel 
et al. 2002). Another gene affecting histone modification 
is ICU2, which plays a key role for the maintenance of 
repressive histone methylation (Hyun et al. 2013). Expres-
sion of ICU2 was downregulated here, as was the histone 
deacetylating HD2C (Histone deacetylase 2C). Downregu-
lation of ICU2 and HD2C may lead to a chromatin state 
that can be reformed toward a more open configuration 
at some locations, allowing upregulation of certain other 
genes. The function of NIC as inhibitor of NAD-dependent 
histone deacetylases (North and Verdin 2004; Bond et al. 
2009) is another way for NIC to promote histone acetyla-
tion. In addition, three transcripts encoding for histones are 
downregulated (MA_213048g0010, MA_1527811g0010, 
MA_74555g0010), although the exact function of the cor-
responding proteins are still unknown.

Besides DNA methylation and histone modifications, 
the chromatin state is also stabilized by other interactions. 
One important protein in this regard is the histone-binding 
FAS1, which has been linked to transcriptional gene silenc-
ing. FAS1 is downregulated in the NIC-treated group, and its 
expression is highly correlated to that of DDM1 (r = 0.97). 
In A. thaliana, mutation of FAS1 leads to expression of TEs 
(Ono et al. 2006). FAS1 is a subunit of chromatin assembly 
factor 1 (CAF-1), which cooperates with ASF1 and PCNA 
to contribute to chromatin assembly during replication. 
ASF1 and PCNA were also downregulated in this experi-
ment and displayed a high correlation to DDM1 (r = 0.98, 
0.93). Downregulation of the chromatin assembly-activity of 
CAF-1 can lead to reprogramming of embryonic stem cells 
(Ishiuchi et al. 2015; Kaufman 2015), and PCNA affects 
epigenetic inheritance (Shibahara and Stillman 1999; Zhang 
et al. 2000). CAF-1-PCNA-mediated chromatin assembly is 
also linked to single-strand DNA breaks (Moggs et al. 2000). 
PARP interacts with PCNA, which may be one mode of 

recruitment of PCNA to sites of DNA damage (Frouin et al. 
2003), but might also have other consequences for chromatin 
remodeling.

It can be difficult to reliably compare data obtained across 
multiple studies of gene expression profiles in different tis-
sues, species, young and old plants, monocots and eudicots, 
all exposed to different experimental stimuli. Therefore, it 
is remarkable that despite the range of experimental diver-
sity mentioned, it is clear that there is a co-variation across 
experiments and species between the set of downregulated 
genes with putative roles in epigenetic regulation that were 
identified in this study. High correlation and coexpression 
of transcripts are often indicative of a common regulating 
mechanism, sometimes involving motifs in the sequence of 
a gene or in its genomic location (Bucher 1999). In our case, 
NIC might have a similar kind of general epigenetic regula-
tory role.

Taken together, the gene expression pattern in response to 
NIC treatment leads to less-condensed chromatin, promoting 
transcription.

Expression of genes connected to stress signaling

Increased expression of certain transcription factors may 
confer a more-tolerant epitype in which stress adaptation 
is more quickly induced (López-Galiano et al. 2018). In 
the present study, after the NIC seed treatment, the stress-
response-inducing MYB transcription factors LHY and 
MYB77 were upregulated in 3-month-old plants (Table 1). 
These transcription factors are involved in many stress-sign-
aling pathways and can also be induced by the hormones 
abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), 
and ethylene (ET) in A. thaliana (Shin et al. 2007; Jaradat 
et al. 2013; Grundy et al. 2015). LHY regulates circadian 
rhythm and reactive oxygen species (ROS) homeostasis (Lai 
et al. 2012); maximal stress tolerance with optimization of 
resources is achieved by circadian control. MYB77 has a 
role in maintaining homeostasis upon stress exposure and 
in the control of auxin-mediated signaling (Shin et al. 2007; 
Jaradat et al. 2013).

Many of the upregulated genes are known to specifically 
take part in biotic stress resistance. Examples of upregulated 
pathogen attack response genes are CHIT4, PSKR2, BAH1 
and BAG5 (Hietala et al. 2004; Doukhanina et al. 2006; 
Yaeno and Iba 2008; Loivamäki et al. 2010; Yaqoob et al. 
2012) (Tables 1;  S3). Chitinases can be induced both by ET 
and JA (Rakwal et al. 2004), and two chitinase transcripts 
were upregulated in the present experiment. The expression 
of the ethylene receptor ETR1 is also upregulated after NIC 
treatment, which suggests that the response to ET should be 
faster and/or greater. ET and JA cooperatively activate stress 
tolerance under pathogen attack, cold, salinity, drought, 
and heat (Cheng et al. 2013; Kazan 2015; Vos et al. 2015). 
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Furthermore, expression of COI1 (MA_263909), required 
for the JA response, was upregulated in our study. Another 
indicator that the ET/JA pathway was promoted compared 
to the SA pathway is that the two SA- and disease-resist-
ance-inducing genes PAD4 and EDS1 (Rietz et al. 2011) 
were downregulated. PAD4 and EDS1 are repressors of the 
ET/JA pathway in A. thaliana (Straus et al. 2010). PAD4 
and EDS1 are also important mediators of oxidative stress 
signaling (Straus et al. 2010) as discussed further below. 
Other well-known genes involved in epigenetic processes 
and stress responses, such as MET1, CMT3, CMT2, ROS1 
and DME (Xu et al. 2018), were not differentially expressed 
in our study, perhaps because the seedlings analyzed were 
not exposed to stress as such. Rather, the seeds were treated 
with NIC, a putative signaling compound normally formed 
as a result of oxidative stress, 3 months before the analysis 
of the seedling roots.

Our gene expression results indicate that the ET/JA path-
way is induced, whereas the SA pathway is suppressed.

Expression of genes related to oxidative stress 
and defense

Inhibition of PARP by exogenous chemical treatment leads 
to increased plant growth and to reduced production of 
anthocyanins and other stress-responsive molecules (Schulz 
et al. 2012). Decreased expression of oxidative stress-related 
genes is also a result of PARP deficiency, as shown in A. 
thaliana (Vanderauwera et al. 2007). In those cases, when 
PARP activity is inhibited, the NAD pool will be stable 
or increase, thus promoting growth in both stressed and 
unstressed plants. On the other hand, the lack of defense 
response observed may be due to the lack of NIC release 
via PARP activity, since NIC is known to stimulate several 
defense responses (Berglund and Ohlsson 1995).

NIC also has a general role as an antioxidant, decreasing 
cellular ROS content. NIC has an attenuating effect on the 
ROS content in human cells (Choi et al. 2015; Kwak et al. 
2015) and increases glutathione levels in plant cells (Ber-
glund et al. 1993a, 1993b, 2017). PARP is also important 
for basal plant defense in A. thaliana (Briggs et al. 2017). 
In addition, the PARP inhibitor 3-aminobenzamide prevents 
the increase in phenylalanine ammonia-lyase (PAL) activ-
ity caused by oxidative-stress-generating compounds (Ber-
glund et al. 1996). The transcription factor LHY, which was 
upregulated after NIC seed treatments in our study, is also 
important for oxidative stress tolerance (Lai et al. 2012). 
Glutathione peroxidases (GPX) are involved in the antioxi-
dant system and upregulated in response to various stresses 
(Rodriguez Milla et al. 2003). GPX6 (MA_125131g0010) 
was upregulated in our experiment as was OXS3 (oxida-
tive stress 3, MA_9367190g0010), known for its ability to 
increase tolerance to oxidative stress. OXS3 may operate 

as a chromatin remodelling factor during stress responses 
(Blanvillain et al. 2009). ROS has an important influence 
on epigenetic modifications, resulting in a more open chro-
matin, and on stress responses (Kumar et al. 2020), but the 
mechanisms behind these effects are largely unknown.

An important ROS-induced process in woody plants 
is lignification (Barros et al. 2015), and genes encoding 
enzymes in the lignin biosynthesis pathway (e.g., cinnamyl 
alcohol dehydrogenase, dirigent-like protein and peroxidase) 
were downregulated, which may be linked to reduced ROS 
levels after the NIC seed treatment in our study.

Finally, there is evidence that NIC protects cells against 
DNA damage in yeast (Rössl et al. 2016), human (Surjana 
et al. 2010) and plant cells (Berglund et al. 2017), and we 
found that several DNA repair genes were downregulated 
in this experiment (e.g., BRCA1), which may imply that 
NIC reduces DNA damage. The ability of NIC to decrease 
oxidative stress may also partly explain the increased metal 
tolerance reported previously (Ohlsson et al. 2008).

The changes in gene expression in response to NIC treat-
ment suggests that NIC has an antioxidative effect.

Negative correlation between stress and epigenetic 
related gene expression

The expression of several of the stress-related genes dis-
cussed in the present study was strongly inversely corre-
lated with downregulated genes that have putative roles in 
epigenetic regulation (Table S5). MYB77, ETR1, COI1, 
CHIT4, BAH1, and PSKR2 all had a Pearson’s r < –0.85 
with DDM1 (MA_89683g0010). The two genes with the 
strongest inverse correlation (r = −0.97, −0.94) both encode 
membrane proteins involved in defense response. Thus, tran-
scription of these genes might be tightly controlled by a set 
of potential epigenetic regulators, and/or they are affected 
by as yet-unidentified mechanisms, yielding an indirect rela-
tionship that is discoverable at the transcriptional level.

These data suggest that the transcription of many of the 
upregulated genes in this experiment is affected by a change 
in the abundance of putative epigenetic regulators via mech-
anisms that are yet to be determined.

No trade‑off between growth and defense mechanisms 
induced by NIC treatment?

In experiments on the development of stress-tolerant phe-
notypes, there is often a trade-off between stress responses 
and growth processes. Stronger defense mechanisms come 
at the cost of overall growth and other function as resources 
are reallocated for the plant to survive the stress (Huot et al. 
2014). However, a positive effect of DNA hypomethyla-
tion on disease resistance in A. thaliana without negatively 
affecting growth was recently demonstrated (Furci et al. 
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2019). Similarly, we did not observe any negative effects on 
the growth and development of the plants originating from 
NIC-treated seeds. All spruce seedlings had the same size 
and growth rate based on visual observations and in agree-
ment with a previous study (Berglund et al. 2016). Thus, 
NIC may have induced a protective state that did not affect 
the growth rate in our experimental conditions, perhaps 
because there is no decrease in NAD since NIC is added 
exogenously and independent of PARP activity. Neverthe-
less, general metabolism may be slightly modified, altering 
plant characteristics. Thus, for each particular application, 
functional differences should be further explored.

The increased levels of NIC, achieved independently of 
PARP activity, may promote defense activation without low-
ering the NAD content and, consequently, without restricting 
growth.

Conclusions

NIC seed treatment induced changes in the transcription of 
approximately 350 genes in the roots of 3-month-old spruce 
seedlings compared to the water-treated control group. Many 
of the upregulated genes encoded important stress signaling 
molecules, which can quickly mediate a strong life-saving 
response in plants upon exposure to a threatening stress, 
while several of the downregulated genes are thought to be 
involved in epigenetic regulation. This study increases our 
knowledge about NIC-induced expression of genes involved 
in defense and epigenetic processes, in line with NIC as a 
stress-signal mediator.
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