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variable (species), to predict DBH and Ht at the stand level 
simultaneously. This report represents one of the first appli-
cations of high-throughput phenotyping for plant size traits 
in Eucalyptus species. In general, ANNs containing three 
hidden layers gave better statistical performance (higher esti-
mated r, lower estimated root mean squared error–RMSE) 
due to their greater capacity for self-learning. Among these 
ANNs, the best contained eight neurons in the first layer, 
seven in the second, and five in the third (8 − 7 − 5). The 
results reported here reveal the potential of using the gener-
ated models to perform accurate forest inventories based on 
spectral bands and VIs obtained with a UAV multispectral 
sensor and ANNs, reducing labor and time.

Keywords  Computational intelligence · Diameter 
at breast height · Forest inventory · Remote sensing · 
Vegetation indices

Introduction

With the recent growth in the forestry sector in Brazil, the 
planted forest area in 2018 reached 7.83 million ha, repre-
senting 1.3% of the GDP and 6.9% of the industrial GDP 
(IBÁ 2019). Species of Eucalyptus are favored for wood 
production in commercial forests in Brazil as one of the 
main strategies to reduce the deforestation of native forests 
and supply wood for energy and timber (Ferraz et al. 2019).

One of the factors determining the success in obtaining 
high yielding forests is the choice of species since each spe-
cies has specific characteristics and adaptation to edaphocli-
matic conditions. According to Brisola and Demarco (2011), 
E. grandis grows well but has little resistance to drought, 
while E. urophylla produces wood with a slightly higher 
density but slower growth. Breeding programs have helped 
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provide genotypes with high resistance to pests, good adapt-
ability to various climatic conditions, and desirable char-
acteristics for the timber industry, such as E. urograndis, 
a hybrid of E. grandis and E. urophylla (Fernández et al. 
2018). E. saligna is known to have higher wood density than 
E. grandis (Batista et al. 2010). According to Azevedo et al. 
(2015), E. camaldulensis has high adaptability in less fertile 
soils and resistance to drought. Corymbia citriodora a gum 
tree endemic to Australia, stands out for the high mechanical 
resistance of its wood (Morais et al. 2010).

For assessing tree performance in forest inventories in 
delimited field plots, diameter to breast height (DBH) and 
total height (Ht) of the trees are the most commonly selected 
dendrometric variables to measure directly. These variables 
are then used to generate estimates of production variables 
(volume, biomass), which are then extrapolated to the total 
plantation area. However, such inventories are expensive; 
plots that are representative of the entire population must 
be taken out of production, and the highly precise measure-
ments that are required for decision-making require skilled 
labor and are complicated due to the complexity of forest 
formations (Shao et al. 2020).

For consecutive evaluations of quantitative and qualita-
tive variables of interest in forest breeding, high-throughput 
phenotyping can be time-consuming and provide a low level 
of spatial and temporal information. Thus, to improve the 
efficiency of phenotyping, new tools with high precision and 
data quality must be adopted (Sankaran et al. 2019). For 
this purpose, remote sensing techniques make it possible 
to measure plant traits with high precision in a shorter field 
time (Jay et al. 2017). Thus, remote sensing can accurately 
and quickly provide DBH and Ht data for phenotyping and 
thus reduce the costs of forest inventories.

Currently, there are multispectral sensors aboard space 
platforms, and more recently, on aerial platforms such as 
unmanned aerial vehicles (UAVs) that can assist with phe-
notyping. Spectral bands are measured in the region from 
visible to near-infrared spectral bands of the electromagnetic 
spectrum, allowing a wide range of vegetation indices (VIs), 
which are mathematical ratios, to be calculated (Rezzouk 
et al. 2019). One of the main VIs used for high-throughput 
phenotyping is the normalized difference vegetation index 
(NDVI) (Hentz et al. 2018). Like all indices created to sim-
plify what are otherwise complex amalgamations of data, 
the NDVI has great appeal in commercial agriculture and 
land-use studies because of its ability to quickly delineate 
vegetation and vegetative stress (Huang et al. 2020).

In forest modeling to estimate the volume of wood, 
artificial intelligence has been shown to be quite efficient, 
especially using artificial neural networks (ANNs). This 
technique has high generalization power and is better for 
generating nonlinear models unknown to the modeler, 
among other characteristics, in relation to the regression 

models (Vieira et al. 2018). Recently, ANNs have been used 
to estimate the volume of wood using inputs such as DBH, 
Ht, among others (Soares et al. 2012; Bhering et al. 2015; 
Miguel et al. 2016; Azevedo et al. 2020). However, to the 
best of our knowledge, there are no reports of the use of 
a UAV multispectral sensor to obtain variables as input in 
ANNs to predict DBH and Ht of Eucalyptus trees.

We hypothesized that the DBH and Ht at the stand level 
in Eucalyptus can be predicted using spectral bands and veg-
etation indices. Therefore, we tested different configurations 
(number of hidden layers and number of neurons in each 
layer) of ANNs for predicting DBH and Ht at stand level in 
different Eucalyptus species using input variables obtained 
by UAV-multispectral sensor.

Materials and methods

Experimental site and setup

The experiment was installed in January 2014 in the experi-
mental area of the Federal University of Mato Grosso do Sul, 
Chapadão do Sul campus. The altitude is 820 m a.s.l. The 
soil is classified as medium-textured Red Oxisol. According 
to the Köppen classification, the climate is tropical humid 
(Aw) with a rainy season from October to April and a dry 
season between May and September. Average rainfall varies 
from 750 to 1800 mm a−1, and average annual temperature 
varies from 20 °C to 25 °C (Peel et al. 2007).

All fertilization requirements were determined from a 
soil chemical analysis. The following results were obtained: 
pH (CaCl2): 4.9; organic matter: 31.5 g dm–3; phosphorus: 
13.6 mg dm–3; hydrogen + aluminium (H + Al): 5.4; potas-
sium: 0.29 cmolc dm–3; calcium: 2.8 cmolc dm–3; magne-
sium: 0.5  cmolc  dm–3; cation exchange capacity (CEC): 
9.0 cmolc dm–3; base saturation: 39.9%. The proportions of 
clay, sand, and silt were 46%, 46%, and 8%, respectively. 
Crowning, weeding, ant control, and application of herbi-
cides (glyphosate) were performed when necessary.

The experimental design was randomized blocks with 
four repetitions, with 20 plants in each experimental plot. 
The treatments were composed of five Eucalyptus species 
(E. camaldulensis, E. uroplylla, E. saligna, E. grandis and 
E. urograndis) and Corymbria citriodora.

Evaluated variables

The diameter at breast height (DBH) and total plant height 
(Ht) at stand level were obtained by measuring the same 
five trees in each experimental unit throughout the 1-year 
study. A tape measure was used to measure the circum-
ference at breast height, which was later converted to 
DBH. The Ht (m) was obtained with the aid of a Haglof 
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hypsometer. The variables were measured seven times for 
each tree (11/01/2018, 12/06/2018, 01/22/2019, 03/29/2019, 
05/10/2019, 10/30/2019, and 11/28/2019). Figure 1 shows 
the climatic conditions in the experimental area during these 
assessments.

The characteristics related to high-throughput phenotyp-
ing were obtained on the same dates using the senseFly eBee 
(Cheseaux-sur-Lausanne, Switzerland) RTK fixed-wing 
unmanned aerial vehicle (UAV) with autonomous flight 
control (Fig. 2). We used a Parrot Sequoia sensor (Prilly, 
Switzerland), a multispectral camera for agriculture that 
uses a sunshine sensor and an additional RGB camera 16 
MP for scouting. Radiometric calibration was performed 
for the entire scene, based on calibrated reflective surfaces. 
The Pix4D mapper (Prilly, Switzerland) software was used 
to correcting the parameters of solar irradiation, and the 
reflective target of the camera with reflectance calibration 
plate was individualized for each device. For the entire 
scene, information was obtained on the reflectance rates for 
each spectral band measured by the multispectral sensor. 
This procedure is performed in the field immediately using 

senseFly e-Motion software (Cheseaux-sur-Lausanne, Swit-
zerland) before the flight. Because the flight has a maximum 
duration of 15 min, there was no need to repeat the calibra-
tion after the flight in the field.

The multispectral sensor had a horizontal field of view 
(HFOV) of 61.9°, vertical field of view (VFOV) of 48.5°, and 
diagonal field of view (DFOV) of 73.7°. Multispectral reflec-
tance images were obtained for green (550 nm ± 40 nm), 
red (660 nm ± 40 nm), red-edge (735 nm ± 10 nm) and 
near-infrared (Nir, 790 nm ± 40 nm) spectral bands. The 
obtained values were then used to calculate the following 
VIs according to Table 1: normalized difference vegetation 
index (NDVI), soil-adjusted vegetation index (SAVI), green 
normalized difference vegetation index (GNDVI), normal-
ized difference red-edge (NDRE), simplified canopy chlo-
rophyll content index (SCCCI), enhanced vegetation index 
(EVI) and modified soil-adjusted vegetation index (MSAVI). 
These VIs are the main ones that can be calculated with the 

Fig. 1   Rainfall and temperature at the experimental site in Brazil 
during the experiment in 2018 and 2019

Fig. 2   The eBee RTK 
fixed-wing unmanned aerial 
vehicle (UAV) coupled with the 
senseFly Sequoia multispectral 
sensor

Table 1   Equations and sources of the vegetation indexes (VI) used 
for high performance phenotyping

NIR Near infrared, NDVI Normalized difference vegetation index, 
SAVI Soil-adjusted vegetation index, GNDVI green normalized dif-
ference vegetation index, NDRE Normalized difference red-edge, 
SCCCI Simplified canopy chlorophyll content index, EVI enhanced 
vegetation index, MSAVI modified soil-adjusted vegetation index

VI Equation References

NDVI NIR−Red

NIR+Red
Rouse et al. (1974)

SAVI (1 + 0.5)
NIR−Red

NIR+Red+0.5
Huete (1988)

GNVDI NIR−Green

NIR+Green
Gitelson et al. (1996)

NDRE NIR−Red edge

NIR+Red edge
Gitelson and Merzlyak (1994)

SCCCI NDRE

NDVI
Raper and Varco (2015)

EVI NIR−Red

(NIR+6Red−7.5Green)+1
Huete et al. (2002)

MSAVI 2NIR+1−

√

(2NIR+1)2−(8NIR−Red)

2

Qi et al. (1994)
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spectral bands obtained. In addition, they have already been 
used for high yield phenotyping in agricultural species, due 
to their correlation with plant biomass (Osco et al. 2020; 
Ramos et al. 2020).

The overflights were performed with 80% lateral and 85% 
longitudinal overlap of the images, and the same area was 
imaged twice using perpendicular flight lines. The increase 
in the overlap between the images was necessary to obtain a 
greater number of scenes containing the same control points, 
allowing greater accuracy in the mosaic of the images by the 
Pix4Dmapper software. This need is based on plant height, 
because the stem oscillates as a function of the wind, and 
regardless of the speed, interferes in the mosaicking process. 
The overflight was performed at 100 m altitude, allowing 
a spatial image resolution of 0.10 m. The overflights were 
carried out near the zenith due to the minimization of the 
shadows of the trees at 11 a.m., given that the multispectral 
sensor is a passive type (i.e., dependent on solar luminosity).

Statistical analyses

To verify the existence of plant size differences among the 
Eucalyptus species, a joint analysis of variance (ANOVA) 
was performed according to the statistical model in Eq. 1.

where Yijk is the observation in the k-th block evaluated in 
the i-th species and j-th measurement, µ is the overall mean, 
Bk is the block effect considered as fixed, Ei is the species 
effect considered as fixed, Mj is the measurement effect con-
sidered as random, EMij is the random effect of the interac-
tion between species i and measurement j, and eijk is the 
random error associated with Yijk observation.

(1)Yijk = � + Bk + Ei +Mj + EMij + eijk

Pearson’s correlation coefficients (r) were estimated to 
verify the association between grown traits with spectral 
bands and VIs according to Eq. 2:

where COVXY is the covariance between the traits X and Y, 
𝜎̂2

x
 is the phenotypic variance of trait X, and 𝜎̂2

y
 is the pheno-

typic variance of trait Y. We used the correlation network to 
graphically express the results. In this procedure, green lines 
link variables that are positively correlated and red lines to 
join negatively correlated variables. The line thickness is 
proportional to the magnitude of the correlation.

Subsequently, for developing and training the ANNs, 
the Intelligent Problem Solver tool of stattista STATIS-
TICA 7.0 (Hamburg, Germany) was used. This tool per-
forms data mining, i.e., normalizes data in the 0–1 range, 
tests different network architectures (multilayer mercep-
tron [MLP] or radial basis function [RBF]), and selects 
the best performing networks. In MLP networks, the input 
layer was composed of spectral bands and vegetation indi-
ces, besides the categorical variable species; the output 
layer was composed of two layers corresponding to DBH 
and Ht at stand level. For intermediate layer(s), we used 
the activation function f(x) = logistic (Eq. 3) applied to 
each neuron, which uses the scalar product of the input 
vector (x) and the weight vector (w) associated with this 
node. For these networks, topologies containing two and 
three layers with one to 15 neurons each and a high degree 
of connectivity between the neurons were tested, which is 
defined by synaptic weights (Fig. 3).

(2)rXY =
COVXY

√

𝜎̂2

x
× 𝜎̂2

y

Fig. 3   General topology of 
the evaluated artificial neural 
networks. NIR: near infrared; 
NDVI: normalized differ-
ence vegetation index; SAVI: 
soil-adjusted vegetation index; 
GNDVI: green normalized 
difference vegetation index; 
NDRE: normalized difference 
red-edge; SCCCI: simplified 
canopy chlorophyll content 
index; EVI: enhanced vegeta-
tion index; MSAVI: modified 
soil-adjusted vegetation index; 
DBH: diameter at breast height; 
Ht: plant height



595High‑throughput phenotyping of two plant‑size traits of Eucalyptus species using neural…

1 3

where x is a binary value that represents the activation of the 
neuron (1) versus non-activation (0).

The training used was feedforward by the supervised 
method. Therefore, 3600 ANN topologies were tested, com-
posed of the following combinations: MLP with two hidden 
layers (15 × 15 possibilities) and MLP with three hidden lay-
ers (15 × 15 × 15 possibilities). Only the 10 ANNs with the 
highest linear correlation between observed versus predicted 
volumes in the training step were saved. For training, 80% 
of the data was used, and the remaining 20% were used to 
validate the 10 best neural networks.

For selecting the best ANNs in each step (training and 
validation), Pearson’s correlation coefficient ( rXY ; Eq. 4) and 
root mean square error (RMSE; Eq. 5) were used.

where COVXY is the covariance between the observed (X) 
and predicted (Y) values; 𝜎̂2

x
 is the variance of observed val-

ues; 𝜎̂2

y
 is the variance of predicted values.

where Ŷi is the mean of the observed values; n is the total 
number of observations.

Results and discussion

The joint ANOVA identified that a statistically significant 
difference between the species for all the traits evaluated 
(Table  2). The effect of measurements was significant 
(p ≤ 0.05) for most traits, except for red and red-edge spec-
tral bands and NDVI, SCCCI and EVI. There was no spe-
cies × measurements interaction for DBH or Ht at the stand 
level, showing that the species E. grandis was the tallest 
at each date. It is important to note that the estimates of 
the coefficient of variation were less than 20% for all traits 
evaluated, which is considered high precision for forest 
experiments (Garcia 1989).

Among the species studied, E. grandis was largest for 
DBH and Ht at the stand level at all measurements, and E. 
camaldulensis was the smallest for both variables (Fig. 4). 
E. grandis, besides having the largest size, also had a smaller 
standard error, i.e., the plants had a distribution closer to 
the mean. E. urograndis was not as large as E. grandis, but 
larger than the other species. However, E. urograndis grows 

(3)f (x) =
1

1 + ex

(4)rXY =
COVXY

√

𝜎̂2

x
× 𝜎̂2

y

(5)RMSE (%) =
100

Y

�

∑n

i=1

�

Yi − Ŷi
�

n well in the study region, so the higher means for E. grandis 
proves that is better adapted to the conditions.

Macedo et al. (2006) studied the development of two 
E. camaldulensis clones and two E. urophylla clones in an 
integration system and observed that the E. camaldulensis 
clones had higher means. These findings differ from those 
obtained here, where E. urophylla obtained the fourth-high-
est means and E. camaldulensis the lowest means. In work 
by Embrapa (2019) on different Eucalyptus species, means 
for trait sizes for E. urograndis and E. grandis were very 
close, similar to the findings obtained here.

The study site has adequate pluviometric rates, result-
ing in a satisfactory plant size of E. grandis, which has 
low drought resistance (Embrapa 2010). E. camaldulensis, 
however, is susceptible to the insect pest psilidus (Camargo 
2011), which is present in the experimental region, and the 
trees were smaller as a consequence of psilidus attack. Con-
sidering the great variability obtained between species in 
different measurements, this data set is robust for training 
and validating ANN models.

The correlation network in Fig. 5 shows a high and 
positive correlation between the plant size traits (DBH 
and Ht). The red-edge and NIR spectral bands had a posi-
tive linear correlation with the plant size traits, so these 
spectral bands stood out for estimating DBH and Ht. The 
vegetation indices NDVI, GNVDI, EVI, NDRE, MSAVI, 
SAVI, and SCCCI were poorly correlation with the plant 

Table 2   P-values for F-test in the joint analysis of variance for the 
variables diameter at breast height (DBH), total height (Ht), spectral 
bands (green, red, red-edge, and NIR) and vegetation indices (NDVI, 
SAVI, GNDVI, NDRE, SCCCI, EVI, and MSAVI) evaluated for five 
Eucalyptus species

NDVI Normalized difference vegetation index, SAVI soil-adjusted 
vegetation index, GNDVI green normalized difference vegetation 
index, NDRE normalized difference red-edge, SCCCI simplified 
canopy chlorophyll content index, EVI enhanced vegetation index, 
MSAVI modified soil-adjusted vegetation index

Variable Blocks Species (E) Measure-
ment (M)

E × M Coefficient of 
variation (%)

DBH 0.01 0.00 0.00 0.99 11.54
Ht 0.41 0.00 0.00 0.85 8.86
Green 0.42 0.00 0.04 0.00 13.04
Red 0.41 0.00 0.10 0.00 10.38
Red-edge 0.19 0.00 0.10 0.01 19.87
NIR 0.26 0.00 0.01 0.00 18.46
NDVI 0.00 0.00 0.08 0.00 2.94
SAVI 0.01 0.00 0.02 0.00 7.50
GNVDI 0.27 0.00 0.00 0.00 2.41
NDRE 0.04 0.00 0.00 0.08 5.88
SCCCI 0.02 0.00 0.06 0.91 8.15
EVI 0.33 0.00 0.16 0.12 8.56
MSAVI 0.00 0.00 0.00 0.02 7.78
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size traits, which can be explained by the relationship 
between these variables with the canopy of the Eucalyptus 
species. The higher the leaf area index (LAI), the higher 
will be the VI estimates. However, for forest species, the 
presence of abundant leaves indicates the presence of 
trees, hence a lower commercial wood volume.

Marsden et  al. (2010) also found low correlations 
between the NDVI and the mean annual increment (MAI), 
where this correlation was progressively increasing 
throughout the plant size and establishment of the for-
est. Bikindou et al. (2012) compared multiple regressions 
related to soil properties, and the NIR index was correlated 
with dominant height for productive capacity classifica-
tion. According to these authors, the NIR provided a better 
correlation and a low mean square error for better predict-
ing index variations in the studied area. Maire et al. (2011) 
used MODIS reflectance and NIR to estimate LAI and 
found significant correlations; however, NIR overestimates 
the variable at young ages.

Forest tree species produce more stems and leaves at 
lower Ht and DBH (Almeida et al. 2015). LAI is also larger 
at younger ages when the development in Ht and DBH 
is lower. With increasing age, DBH and Ht increase, and 
leaf area decreases. The VIs follow the leaf mass, i.e., the 
greater the leaf production, the higher the vegetation index, 
thus explaining the negative and low magnitude correlation 
between vegetation indices and plant size traits at the stand 

Fig. 4   Means for diameter at breast height (DBH, cm) and total height (Ht, m) at the stand level for six Eucalyptus species measured between 
November 2018 and November 2019

Fig. 5   Pearson’s correlation network for diameter at breast height 
(DBH), total height (Ht), spectral bands (green, red, red-edge, and 
NIR), and vegetation indices normalized difference vegetation index 
(NDVI), soil-adjusted vegetation index (SAVI), green normalized 
difference vegetation index (GNDVI), normalized difference red-
edge (NDRE), simplified canopy chlorophyll content index (SCCCI), 
enhanced vegetation index (EVI) and modified soil-adjusted vegeta-
tion index (MSAVI) evaluated in Eucalyptus species. Green lines link 
variables that are positively correlated; red lines join negatively cor-
related variables. The thicker the line, the stronger the correlation
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level since high indices are correlated with smaller plant 
size.

The low association between spectral bands and VIs with 
the plant size traits demonstrates that nonlinear techniques 
must be used to predict these variables. In this sense, ANNs 
stand out because they have the ability to learn in a nonlinear 
way, and through the input data, they are able to generate 
their architecture and free parameters that can predict the 
output data with high accuracy in the training process (Costa 
et al. 2019). According to Nieto et al. (2012), ANNs have 
been widely used to solve regression problems with good 
performance in forest studies and are suitable for more com-
plex modeling situations.

The statistical performance of the 10 best ANNs is pre-
sented in Table 3. The results show a good ability to simul-
taneously predict plant size traits (DBH and Ht) at the stand 
level using the variables obtained with high-throughput 
phenotyping (spectral bands and VI’s). Overall, persons 
correlation coefficient (r) values between the estimated and 
predicted data increased at the validation step compared to 
the training step, but RMSE was reduced at the validation 
step. In general, artificial neural networks containing three 
hidden layers showed better statistical performance (higher 
estimate of r and lower estimate of RMSE) due to their 
greater capacity for self-learning. These results show that 
there was no overfitting for the 10 best ANNs. Vendruscolo 
et al. (2015) found similar results when using ANNs to esti-
mate Ht as a function of DBH, with r close to 0.90 and the 
RMSE less than 10%.

The high-throughput phenotyping associated with ANNs 
made it possible to accurately predict (high correlation, low 
error) the plant size at the stand level of Eucalyptus species. 
Thus, the ANNs trained in this study make it possible to pre-
dict DBH and Ht of eucalyptus trees simultaneously at stand 
level, that is, when feeding the ANN with spectral bands 

and vegetation indices. Thus, the costs of forest inventories 
are reduced, since only VIs and spectral bands are needed 
to predict the variables measured in the inventory process.

Conclusions

In general, artificial neural networks (ANNs) containing 
three hidden layers showed better statistical performance 
(higher estimate of r, lower estimate of RMSE) due to their 
greater capacity for self-learning. Among these ANNs, the 
best contains eight neurons in the first layer, seven in the sec-
ond, and five in the third (8 − 7 − 5). Thus, the models asso-
ciated with ANNs can provide accurate forest inventories 
using spectral bands and VIs obtained with a multispectral 
sensor on a UAV, reducing time and labor.
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copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Table 3   Statistical performance 
(r, RMSE) and topologies 
(number of hidden layers and 
number of neurons per hidden 
layer) of the 10 best artificial 
neural networks selected for 
estimating DBH and Ht of five 
Eucalyptus species at the stand 
level

DBH Diameter at breast height, Ht Total height, r Correlation coefficient, RMSE Root mean square error

Topology Training Validation

DBH Ht DBH Ht

r RMSE (%) r RMSE (%) r RMSE (%) r RMSE (%)

1 − 4 0.60 13.78 0.62 10.56 0.78 14.67 0.81 10.55
7 − 4 0.61 13.74 0.63 10.13 0.78 14.55 0.81 10.84
7 − 1 0.76 11.22 0.75 8.81 0.87 11.25 0.85 9.22
7 − 2 0.79 10.58 0.76 8.51 0.88 10.57 0.85 8.63
7 − 3 0.80 10.27 0.77 8.19 0.90 9.81 0.87 8.64
7 − 2 − 4 0.82 9.77 0.80 7.87 0.94 8.45 0.90 7.39
7 − 4 − 4 0.83 9.37 0.81 7.70 0.94 8.42 0.92 6.48
7 − 6 − 6 0.83 9.32 0.81 7.62 0.94 8.31 0.92 6.42
7 − 6 − 9 0.84 9.17 0.81 7.54 0.94 8.55 0.93 6.11
8 − 7 − 5 0.85 8.81 0.83 7.04 0.93 8.81 0.94 5.54

http://creativecommons.org/licenses/by/4.0/
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