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were also used to detect possible causes for vegetation res-
toration on the Loess Plateau over the past 20 years. The 
results show that widespread increases in rates of normal-
ized difference vegetation indexes (NDVI), leaf area indexes 
(LAI), gross primary production (GPP), and aboveground 
biomass carbon (ABC) during 2000–2016 were significantly 
higher than before 2000. GPP was significantly correlated 
with rainfall and surface runoff on a monthly scale, and 
there were significant positive correlations between GPP 
and atmospheric circulation. Our results demonstrate that 
both vegetation structural and functional indicators rapidly 
increase, and ecological engineering greatly accelerated veg-
etation restoration after 2000. Local climatic conditions and 
atmospheric circulation patterns enhance vegetation growth 
and impact of ecological engineering.

Keywords  Vegetation restoration · Ecological 
engineering · Water-related climatic factors · Atmospheric 
circulation and sunspot · Loess Plateau

Introduction

Restoration of vegetation effectively reduces soil erosion 
and improves ecological and environmental quality on a 
site (Fu et al. 2017). Climate change and human activities 
have a profound impact on the planet’s vegetation and sus-
tainability of ecosystems (Jiang et al. 2016), especially in 
arid and semi-arid areas which account for about 41% of the 
Earth’s land surface and support 38% of the human popu-
lation (Kaptue et al. 2015; Li et al. 2016). These regions 
are more ecologically fragile and more sensitive to climate 
change and human activities (Allan et al. 2013), and pro-
tecting their environment health is challenging. In China, 
many vegetation restoration projects are considered as 
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‘super-engineering’ activities and are among the largest 
conservation and afforestation projects in history (Moore 
et al. 2016; Xu et al. 2017).

The Loess Plateau in China’s arid and semi-arid regions, 
is a fragile and ultra-sensitive area because of its scarcity of 
water, high rates of soil erosion, and intense anthropogenic 
activities (Feng et al. 2013; Yu et al. 2018). Since 2000, 
a large-scale restoration project has been implemented on 
the Loess Plateau (Sun et al. 2015) which has resulted in 
a large increase in vegetation cover. The “Grain to Green 
Program” is a mega project to enhance the quality of the 
natural environment in the area. With the support of this 
greening policy, vegetation cover increased by about 28% 
during 1999–2013 (Chen et al. 2015).This led to a series 
of positive improvements in environmental conditions such 
as controlling soil erosion, preventing desertification (Ning 
et al. 2015), intercepting rainfall (Sun et al. 2015), cooling 
surface temperatures (Peng et al. 2014), and improving car-
bon sequestration (Gao et al. 2017).

Although vegetation restoration was greatly enhanced 
by this ecological project, it also benefited from changes to 
local and global climates. Numerous studies using satellite 
data have highlighted the relationship between climate and 
changes in vegetation cover and found that the growth of 
vegetation on the Loess Plateau is closely related to pre-
cipitation and temperature (Zhai et al. 2015; Li et al. 2019). 
In particular, in arid and semi-arid regions, the abundance 
of light and heat energy can satisfy the needs of vegetation 
(Zheng et al. 2019); however, water is the most important 
limiting factor to vegetation restoration. Adequate water sup-
plies may be more important than the implementation of the 
intensity in boosting the efficiency of vegetation restoration 
in ecologically vulnerable regions (Deng et al. 2016). Some 
studies have indicated that an increase in rainfall strength-
ens the photosynthetic capacity of plants and further pro-
motes the renewal of vegetation (Sun et al. 2015). Therefore, 
effective management of water resources is essential for the 
successful implementation of ecological engineering on the 
Loess Plateau (Liang et al. 2015). Although recent research 
has confirmed the importance of ecological engineering, the 
significance of climatic factors in vegetation restoration still 
needs to be explored.

In addition, atmospheric circulation patterns such as the 
Arctic Oscillation (AO), the El Niño-Southern Oscillation 
(ENSO), and the Pacific Decadal Oscillation (PDO), and 
sunspots, are highly related to regional and local climates. 
They have been shown to affect global water vapor transport 
and redistribution (Huang et al. 2017), and temperature fluc-
tuations (Horton et al. 2015), which thus affect local climate 
and vegetation growth (Cho et al. 2014; Li et al. 2015; Han 
et al. 2019a). Dillon and Rundel (1990) studied the response 
of vegetation in the African desert in the 1982–1983 ENSO 
and found that vegetation dynamics was closely related 

to the event. Spatial patterns of the normalized difference 
vegetation index (NDVI) are closely linked to El Niño over 
Eurasia, and atypical temperature drops due to El Niño will 
significantly inhibit the growth of spring plants (Li et al. 
2017). Cho et al. (2014) found that 17% of the variation 
of vegetation in spring is also caused by the change of the 
Arctic Oscillation in high latitude areas. Although the effect 
of teleconnection factors on vegetation growth has been con-
firmed, it is important to explore whether multiple telecon-
nection factors have an impact on vegetation restoration on 
the Loess Plateau.

In this study, multiple satellite-based remote sensing 
data, including optical and microwave data, were selected to 
explore the dynamic of vegetation structural indexes, NDVI 
and leaf area index (LAI) and functional indexes such as 
gross primary productivity (GPP) and aboveground biomass 
carbon (ABC). In addition, the relationships between vegeta-
tion indexes and environmental factors, namely rainfall, soil 
moisture, surface runoff, and multiple atmospheric circula-
tion indexes, were also explored. The primary objectives of 
this study were: (1) to explore how vegetation structure and 
function were restored on the Loess Plateau since 2000; and, 
(2) to detect possible multi-scale climatic factors for vegeta-
tion restoration on the Loess Plateau.

Materials and methods

Study area

The Loess Plateau is the largest loess deposit in the world 
and is located in the geometric center of China. It extends 
across 33°43′–41°16′ N and 100°54′–114°33′ E and cov-
ers an area of 62.14 × 104 km2 (Fig. 1). It has an average 
altitude of 1411 m a.s.l. with a warm temperate zone from 
south to north. Precipitation of the study area decreases from 
southeast to northwest with typical continental rainfall char-
acteristics. Annual rainfall in most areas is approximately 
400 mm, the rainy season is concentrated but annual vari-
ability is high. A dry climate with high evaporation and a 
short frost-free period, coupled with frequent natural events 
such as strong winds and frost, result in stressful environ-
mental conditions for vegetative growth. In addition, due to 
aggressive human activities, including excessive land use 
over a long time, vegetative cover is low and soil erosion 
severe. The vegetation is mainly crops, grasslands and for-
est (Fig. 1b).

Climate data

In order to explore the variability of water conditions on the 
Loess Plateau, the dynamics of precipitation, soil moisture, 
and surface runoff since 2000 were analyzed. The CHIRPS 
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v2.0 dataset was selected to provide gridded precipitation 
information (Funk et al. 2015). This provides raster data 
since 1981 with spatial resolutions of 0.25° which can be 
obtained from http://​chg.​geog.​ucsb.​edu/​data/​chirps/.

Rainfall data since the 1980s from the meteorological 
stations of the China Meteorological Administration were 
also used in this study. The grid rainfall product based on 
meteorological observation can be obtained from the website 
http://​www.​nmic.​cn/​site/​showS​ubject/​id/​46.​html. The rain-
fall data of the stations around the Loess Plateau was used to 
spatially interpolate via the thin plate spline (TPS) method 
on ANUSPLIN software (Hutchinson 1995), and to further 
generate monthly rainfall grid data with a horizontal resolu-
tion of 0.5° during 1982–2016. In addition, in order to be 
consistent with the resolution of CHIRPS rainfall, the final 
rainfall data were re-sampled into 0.25° resolution through 
the nearest neighbor method.

The Global Land Evaporation Amsterdam Model 
(GLEAM) for evapotranspiration and soil moisture esti-
mated from satellite data was used. The latest GLEAM V3 
provides a modified formula for evaporative stress and pro-
vides an advanced soil moisture data assimilation method 
(Martens et al. 2017). The global dataset on land evapotran-
spiration and soil moisture is available on the website www.​
gleam.​eu which includes research on large-scale hydrologi-
cal, climatic and terrestrial atmospheric feedback. In addi-
tion, GLEAM_surf and GLEAM_root provide data for soil 
moisture on the surface and roots, respectively, and total 
soil moisture can be obtained by adding GLEAM_surf and 
GLEAM_root together.

Runoff from the GLDAS-Noah, which provides a 0.25° 
global grid (http://​disc.​sci.​gsfc.​nasa.​gov/​hydro​logy/​data-​
holdi​ngs), was used in this paper. The Global Land and 
Data Assimilation System (GLDAS) product set is based 

on satellite and station data and combines advanced land 
and surface models and data assimilation techniques, surface 
states and fluxes.

In order to compare different types of water-related cli-
matic factors with vegetation status, the Z-Score method was 
used to convert annual CHIRPS v2.0 rainfall, weather station 
rainfall, soil moisture, and runoff data during 2000–2016 
of different magnitudes into the same size. This analysis 
used the Z-Score value to ensure comparability of all climate 
variables.

Atmospheric circulation data

In order to identify the relationship between atmospheric 
circulation patterns and vegetation restoration on the Loess 
Plateau, monthly Arctic Oscillation, El Niño-Southern 
Oscillation, and Pacific Decadal Oscillation data between 
January 2000 and December 2016 were used. Arctic Oscil-
lation data was acquired from the NOAA National Climatic 
Data Center (http://​www.​ncdc.​noaa.​gov/​telec​onnec​tions/​ao.​
php). El Niño-Southern Oscillation data was obtained from 
the NOAA Earth System Research Laboratory (http://​www.​
esrl.​noaa.​gov/​psd/​data/​corre​lation/​nina34.​data) which pro-
vides Nino 3.4 Index. For the Pacific Decadal Oscillation, its 
monthly data were procured from the NOAA Earth System 
Research Laboratory (http://​www.​esrl.​noaa.​gov/​psd/​data/​
corre​lation/​amon.​us.​long.​data).

Vegetation indexes, GPP, and ABC dataset

Gridded vegetation indexes (NDVI and LAI) and carbon 
sequestration indicators (GPP and ABC) were selected to 
represent the process of vegetation renewal. Annual and 
monthly NDVI data from the SPOT VEGETATION was 

Fig. 1   Location and vegetation type on the Loess Plateau; a Provinces; b vegetation types; [The vector profile of the provinces is provided by 
the National Bureau of Surveying and Mapping Geographic Information, and the vegetation type is from MCD12Q1.]

http://chg.geog.ucsb.edu/data/chirps/
http://www.nmic.cn/site/showSubject/id/46.html
http://www.gleam.eu
http://www.gleam.eu
http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings
http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings
http://www.ncdc.noaa.gov/teleconnections/ao.php
http://www.ncdc.noaa.gov/teleconnections/ao.php
http://www.esrl.noaa.gov/psd/data/correlation/nina34.data
http://www.esrl.noaa.gov/psd/data/correlation/nina34.data
http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data
http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data


792	 P. He et al.

1 3

obtained at 1 km resolution, and 16 NDVI images of the 
year and 192 NDVI images of the month, respectively, 
from Resource and Environment Science and Data Center 
(http://​www.​resdc.​cn/​doi/​doi.​aspx?​doiid=​49). The latest 
updated Global Inventory Modelling and Mapping Studies 
(GIMMS)-3 g version 4 LAI data at 1/12 × 1/12° resolution 
(Zhu et al. 2013) was used, and a total of 420 images used 
for further analysis during 1982–2016. The NDVI and LAI 
are both comprehensive indicators reflecting vegetation uti-
lization of light energy and canopy structure.

Monthly and annual gross primary productivity (GPP) 
data 2000–2016 was derived from the satellite-based light-
use efficiency model (Vegetation Photosynthesis Model, 
VPM), which was produced using a combination of VPM 
algorithms and products such as Moderate Resolution Imag-
ing Spectroradiometer (MODIS) reflectance product and 
National Centers for Environmental Prediction (NCEP) Rea-
nalysis II climate data, providing 500 m resolution, 8-day 
synthetic products (Zhang et al. 2017). The latest VPM 
GPP data, using an advanced vegetation index gap-filling 
smoothing algorithm to process the C3/C4 photosynthesis 
pathway separately, solves some key problems that affect 
the inaccuracy of GPP data and is a widely used and reliable 
parametric model to simulate gross primary production of 
ecosystems. The GPP data has been satisfactorily validated 
using the multiple observational gross primary productivity 
data (Zhang et al. 2016; Ma et al. 2018), and provided an 
alternative GPP (gross primary productivity) estimate for 
carbon cycle research. Similarly, the Z-Score method was 
used to convert the 2000–2016 GPP into the same magnitude 
with water-related factors, which ensures comparability of 
the gross primary productivity with all climate variables.

The vegetation optical depth (VOD) was used to estimate 
aboveground biomass carbon. This data is based on the land 
parameter retrieval model and input passive microwave 
observations from multiple sensors, including the special 
sensor microwave imager, FengYun-3B, and the WindSat 
(Liu et al. 2015). In addition, a cumulative distribution func-
tion matching method was used to merge the vegetation opti-
cal depth signals from different sensors (Liu et al. 2015) to 
retain the long-term trends and inter-annual variations of 
vegetation optical depth as accurately as possible. Recent 
studies indicate that the VOD is a key parameter that reflects 
vegetation growth and is sensitive to the moisture content of 
woody vegetation (Tian et al. 2017). It is usually retrieved 
by the microwave radiative transfer model and is less 
affected by the weather. At present, the vegetation optical 
depth has been widely used as vegetation index to estimate 
aboveground biomass carbon (Liu et al. 2015; Brandt et al. 
2018). The change in aboveground biomass carbon is gener-
ally driven by woody plants and is appropriate to be used 
to detect the dynamic of woody biomass in the ecological 
engineering area (Tong et al. 2018). Therefore, the gridded 

vegetation optical depth at 0.25° resolution (1992–2012) was 
used to convert it to aboveground biomass carbon following 
the approach by Tong et al. (2018) and Niu et al. (2019).

Detection of vegetation restoration trends 
and breakpoints

Linear regression was used to analyse the trend of indicators 
for vegetation structure (NDVI and LAI) and function (GPP 
and ABC), as well as water status (rainfall, soil moisture, and 
runoff). The slope values of the linear regression between 
each indicator and year were regarded as their trends. The 
calculation of the slope was determined by:

Slope is the rate of change of each variable; i is the year, n 
the length of the study period, and Vi the Variable (V) value 
for the i year. In the analysis, a t-test was used to verify the 
significance of the correlation coefficient, for which a posi-
tive and negative slope indicates a positive or negative trend. 
Specifically, P < 0.1 represents a correlation and P < 0.05 a 
significant correlation.

To detect whether an abrupt change occurred in vegeta-
tion cover after the implementation of the restoration pro-
ject, the Breaks For Additive Seasonal and Trend (BFAST) 
method was applied to compare the number of pixels and 
where the breakpoint was detected for time series LAI and 
ABC before the project (prior to 2000) and after the pro-
ject (after 2000). The BFAST method was originally used 
to identify vegetation disturbance using remote sensing data 
(Verbesselt et al. 2010). It can decompose the integrated 
time series into three parts: trend, seasonality, and resid-
ual. This method can be directly used in the original image 
time series without an additional standardization operation, 
and the algorithm has been widely used to detect the major 
breakpoints of vegetation time series (de Jong et al. 2013; 
He et al. 2021). In this study, the accumulative curve and 
the spatial distribution of the breakpoints before and after 
the implementation of the project are also identified. The 
“harmonic” seasonal model was selected as the best fit for 
phenological changes of natural vegetation (Verbesselt et al. 
2010). Based on the assumption that 30 months is a moving 
data window, the bandwidth parameter was set to 0.15 and 
the significance level in BFAST analysis set to 0.05.

Cross‑wavelet transformation

Cross-wavelet analysis was performed to explore the impact 
of atmospheric circulation on vegetation restoration. The 
combination of wavelet transforms and cross spectrum anal-
ysis constitutes cross- wavelet analysis, a method to analyze 
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the correlation of two signals in the time–frequency domain 
(Hudgins and Huang 1996). The cross-wavelets describe the 
distribution of coupled information in this domain (Huang 
et al. 2017), and the cross-wavelet condensation spectrum 
can explore the cross-wavelets analysis in a low energy 
region more effectively, aiming at exploring their correlation 
in time–frequency domain from multi-time scale (Torrence 
and Compo 1998).

The cross-wavelet transformation in this study reflects the 
regions of the two sequences with the same energy spectrum 
after the wavelets transform to reveal the significance of the 
interaction in different frequency domains. The energy of the 
cross-wavelet power spectrum is strong, and the higher the 
spectrum value, the more significant the oscillation of the 
period through the reliability test. The cross-wavelet trans-
formation of time series is expressed as:

where Cx (α,τ) represents the wavelet transform coefficient 
of x(t), and Cy* (α,τ) the complex conjugation of wavelet 
transform coefficients of y(t).

(2)Wxy(a, �) = Cx(a, �)C
∗

y
(a, �)

Results

Variation of vegetation status before and after 
the implementation of the project

Significant linear increases were found for NDVI (R2 = 0.79, 
P < 0.01) and LAI (R2 = 0.79, P < 0.01) after 2000 (Fig. 2a 
and b), and their rates of increase were 0.008 a–1 and 0.01 
m2 m–2 a–1, respectively. Similarly, the GPP and ABC also 
showed significant increases with the rates at 17.8 g C m–2 
a–1 and 0.2 Mg C ha–1 a–1, respectively, in the same period 
(Fig. 2c and d). Vegetation structural and functional vari-
ables exhibited similar spatial patterns. High increasing 
values were generally distributed in the east and southern 
parts of the Loess Plateau, while lower values were found 
in the west and northwest. Moreover, the increases of NDVI 
(98%), LAI (84%), GPP (94%), and ABC (99%) after 2000 
were identified for most areas on the Loess Plateau (Fig. 3). 
In particular, the percentage of the significantly increased 
trends for NDVI, LAI, GPP, and ABC were 63%, 79%, 71%, 
and 82%, respectively.

The changes of LAI (0.002 m2  m–2 a–1) and ABC 
(–0.06  Mg C ha–1 a–1) before 2000 were significantly 
(P < 0.05) lower than those after 2000 of 0.01 m2 m–2 a–1 and 
0.18 Mg C ha–1 a–1, respectively, (Fig. 4). Moreover, based 
on the BFAST analysis, the number of pixels with break-
points for LAI increased from 1987 to 2009, with 82% of the 
total number of breakpoints occurring after 2000 (Fig. 5a). 
Similarly, the number of pixels with breakpoints for ABC 

Fig. 2   Annual dynamics of the means of a NDVI, b LAI, c GPP, and 
d ABC for the Loess Plateau; the violet background is the implemen-
tation period of the ecological engineering project in that area; linear 

regressions were performed for these indicators at different periods 
before and after 2000
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increased from 1997 to 2008, with 62% of the total occurring 
after 2000 (Fig. 5b).

Variation of water‑related climatic variables and their 
relationship to GPP

There were general increases of CHIRPS rainfall (98%), sta-
tion observational rainfall (88%), soil moisture (82%), and 
surface runoff (82%) during 2000–2016 for most areas of the 
Loess Plateau (Fig. 6), with high values mainly in the central 
and eastern parts and low values in the south. The percent-
age of the significant increases for CHIRPS rainfall, station 

Fig. 3   Spatial distribution of the trends reflected by the slope of the linear regression of a NDVI; b LAI; c GPP, and d ABC for the Loess Pla-
teau after 2000

Fig. 4   Comparison of rates of change of a LAI and b ABC before 
and after the implementation of ecological engineering on the Loess 
Plateau; BFP: before implementation; AFP: after implementation

Fig. 5   Number of pixels with breakpoints for a LAI (1982–2016); b 
ABC (1992–2012) in BFAST analysis; blue bar refers to the number 
of breakpoints per year, and the black dots to the accumulative num-

ber; violet background is the implementation period of the ecological 
engineering
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observational rainfall, soil moisture, and surface runoff were 
21%, 11%, 34%, and 6%, respectively.

Annual GPP and water-related climate variables (rainfall, 
soil moisture, and surface runoff) all increased in the period 

2000–2016 (Fig. 7a). Moreover, there were also significant 
correlations between GPP and CHIRPS rainfall (R2 = 0.79, 
P = 0.005), station observational rainfall (R2 = 0.76, 
P = 0.005), and surface runoff (R2 = 0.40, P = 0.003) on a 

Fig. 6   Spatial distribution of linear trends reflected by the slopes of linear regressions of a CHIRPS RF; b station RF; c soil moisture, and d 
runoff during 2000–2016 in the Loess Plateau area

Fig. 7   Relationship between GPP and water-related climate variables 
showing annual linear trends; and monthly correlation coefficient R, 
R2 and its P value between GPP and a CHIRPS rainfall (RF), b sta-
tion rainfall, c soil moisture (SM), d runoff (RO); GPP and climate 

variables standardized owing to differences in magnitude; regional 
mean anomalies in GPP, RF, SM and RO ( GPP is g C m–2, RF, ET, 
SM and RO are in mm)
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monthly scale over the same period. However, there was 
no significant correlation between GPP and soil moisture.

Influence of teleconnection factors on gross primary 
product (GPP)

There were significant positive correlations between GPP 
and AO, ENSO, and PDO during 2001–2016 on the Loess 
Plateau over a 10–14 month period (Fig. 8). Two significant 
signals in the correlation between GPP and AO were found 
2009 to 2011 and in 2014. Compared with PDO, ENSO had 
a negative correlated cycle for 5 to 7 months between 2005 
and 2015, and PDO had significant cycles in 2009 to 2011 
and in 2013. However, GPP was negatively correlated with 
PDO and ENSO cycles for 5 to 7 months during 2005–2015. 
In addition, there was a significant signal for the correlation 
between GPP and sunspots in 2000–2006 and 2011–2014 for 
10–12 months. Therefore, there is a high correlation between 
vegetation dynamics and atmospheric circulation index on 
the Loess Plateau, which indicates that vegetation is largely 
controlled by the background of climate change. In particu-
lar, the correlation between GPP and AO, ENSO, and PDO 

increased after 2009, which was significantly higher than 
over 2000–2008.

Discussion

Vegetation restoration through ecological engineering

In this study, relatively rapid and widespread restoration of 
vegetation for more than 80% of the ecological engineering 
projects was found from satellite-based evidence. The veg-
etation structural indicators, NDVI (normalized difference 
vegetation index) and LAI (leaf area index), are closely cor-
related with vegetation cover, and their significant increase 
after 2000 indicates that the ecological engineering on the 
Loess Plateau was a major factor. Increase rates of NDVI 
(0.008 a–1) and LAI (0.01 a–1) are similar and to results of 
previous studies (Sun et al. 2015; Zhu et al. 2016; Zheng 
et al. 2019), and demonstrates that our results are reasonable 
and reliable for detecting variations of vegetation structure 
on the Loess Plateau. In addition, the GPP (gross primary 
production) and ABC (aboveground biomass carbon) during 

Fig. 8   Cross-wavelet transforms between monthly gross primary pro-
duction and a AO; b ENSO; c PDO, and d sunspots for the period 
2000–2016; coarse black line is a confidence interval of 95% signifi-

cance; arrows indicate the phase difference, to the right the change 
phase consistent, and to the left the opposite phase; the larger the 
wavelet coefficient, the more red meaning higher the correlation
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2000–2016 also showed increases and their rates were 17.8 g 
C m–2 a–1 and 0.2 Mg C ha–1 a–1, respectively. This indicates 
that a large amount of carbon dioxide was absorbed through 
photosynthesis and stored during the vegetation restoration 
process. Moreover, in the detection of breakpoints of vegeta-
tion structural and functional indicators, the shifting time 
for LAI and ABC coincided with the implementation of the 
ecological engineering projects, and the differences in the 
rate of change of LAI and ABC before and after 2000 were 
both significant. These facts further confirm that the results 
of the implementation of the ecological engineering projects 
were significant.

At present, ecological engineering projects such as the 
“Grain-to-Green Program”, has resulted in significant 
achievements in reforestation on the Loess Plateau (Zhou 
et  al. 2012; Wang et  al. 2018), which has had positive 
effects on protecting the ecological environment and on 
carbon sequestration (Zhang and Shangguan 2016; Zhao 
et al. 2017). The implementation of this greening policy has 
had the greatest intensity and the most significant recovery, 
and a far-reaching impact (Ren et al. 2018). This program 
aimed at converting low-yield croplands or barren lands 
into forest, shrub, and grasslands, and was the largest eco-
logical engineering program in history (Cao et al. 2007; 
Chen et al. 2019). Since 2000, the Chinese government has 
implemented new policies to reduce the intensity of tim-
ber harvesting and grazing, to restore the natural landscape 
of wastelands and degraded lands as quickly as possible 
(Niu et al. 2019), and to plant more drought-tolerant spe-
cies in arid areas to combat desertification and improve the 
environment.

Water conditions and atmospheric circulation jointly 
enhance the performance of ecological engineering

Geographical conditions such as climatic, topography, and 
soil texture factors, are highly significant to vegetation 
growth (Meng et al. 2020; Sun et al. 2020); however, climate 
may be the most important factor. The relationship between 
climate and vegetation is a constant regardless of natural 
and human disturbances (Meng et al. 2020). In this study, 
rainfall, soil moisture, and surface runoff for most areas 
on the Loess Plateau show a positive increases after 2000 
(Fig. 6). This means that our study area is gradually becom-
ing wetter and gross primary productivity consequently 
increasing (Fig. 7). Considering that water resources are a 
limiting factor for vegetation growth in arid and semi-arid 
regions (Zhang and Wu 2020), the increase in moisture is an 
important factor in enhancing vegetation growth (Zhou et al. 
2014; Zhang et al. 2018) on the Loess Plateau. Short-term or 
long-term increases in rainfall were generally consistent with 
gradual temporal changes in runoff and surface soil moisture 
over the Loess Plateau (Li et al. 2009), and the increase 

in rainfall has a positive feedback, leading to damper soils 
and greater surface runoff (Peng and Wang 2012; Feng et al. 
2016). The improvement in water conditions is extremely 
beneficial to the growth of plants and it may well explain the 
dramatic change in vegetation on the Loess Plateau.

Besides local climate conditions, our results also show 
that multiple atmospheric circulation patterns had a signifi-
cantly positive impact on GPP during 2000–2016 in the area. 
This is in line with previous studies which indicated that 
large- scale atmospheric circulation anomalies and sunspots 
are closely related to vegetation at regional and global scales 
(Horton et al. 2015; Huang et al. 2017). Arctic Oscillation is 
the main pattern of atmospheric circulation in the middle and 
high latitudes (Han et al. 2019b), and causes the anomalies 
in degree of cloud cover, temperature and rainfall through 
the influence on the mass, momentum and heat exchange of 
the atmosphere, which then influences the growth of plants. 
In addition, the impact of the El Niño-Southern Oscilla-
tion (ENSO) and the Pacific Decadal Oscillation (PDO) on 
vegetation may be caused by atmospheric teleconnection. 
As the Pacific Asia teleconnection can spread the impact of 
ENSO and PDO to Asia, Asian monsoons will be affected 
by the temperature and pressure of the Pacific Ocean. This 
will affect monsoon moisture and steam transport, causing 
climate anomalies (Xiao et al. 2015), and further affect the 
change in vegetation. In addition, sunspots were also iden-
tified as having a positive impact on the vegetation on the 
Loess Plateau during 2000–2016. Sunspot activity affects 
the solar radiation received by the earth, thus changing 
atmospheric pressure and temperature gradients, and affect-
ing weather patterns (Soon et al. 2015), so that the ability of 
plants to obtain water changes, resulting in GPP increases.

Some studies have confirmed the complex relationship 
between atmospheric teleconnection and vegetation varia-
tions through changing regional temperatures, evapotranspi-
ration, and soil moisture (Anyamba and Eastman 1996; Gong 
and Shi 2003; Zhao et al. 2019). Changing local climate may 
lead to biological consequences, including prolonging the 
growing season, promoting vegetation activities and increas-
ing vegetation growth and carbon uptake. Therefore, large-
scale climate fluctuations affect vegetation growth by chang-
ing regional temperatures. The direct impact of atmospheric 
teleconnections on climate and their indirect impact on veg-
etation cover control the growth of plants. The cross-wavelet 
analysis in this study confirms that atmospheric circulation 
patterns (AO, ENSO, and PDO) and sunspots have a distinct 
impact on the vegetation of the Loess Plateau. Atmospheric 
circulation increases water vapor transport to the Loess Pla-
teau, which increases the probability of water vapor falling 
to the surface, further increasing the frequency and intensity 
of rainfall and promoting vegetation restoration. In addition, 
changes in vegetation may also be affected by other fac-
tors such as global warming and gradually increasing CO2 
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concentrations (Poulter et al. 2014; Madani et al. 2018). The 
specific mechanisms needs further exploration.

Conclusions

In this study, the characteristic spatiotemporal distribution 
of vegetation structure and function, as well as climatic data, 
were analyzed over the entire Loess Plateau based on differ-
ent satellite datasets. Both structural and functional indica-
tors showed rapid increases, and the ecological engineering 
project greatly accelerated the renewal of vegetation on the 
Loess Plateau area after 2000. The area shows a gradual 
increase in moisture, which improves vegetation growth and 
enhances the performance of the ecological engineering pro-
ject. In addition, patterns of atmospheric circulation also 
have a significant positive impact on the growth of plants on 
the Loess Plateau, and the impact has been further enhanced 
since 2009.
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