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component are used as trunk-growth constraints. Then, the 
points surrounding the trunk are searched to account for 
regrowth. Finally, the nearest distributed branch and leaf 
points are used to complete the individual tree segmentation. 
The results show that the TG method can effectively seg-
ment individual trees with an average F-score of 0.96. The 
proposed method applies to many types of trees with vari-
ous growth shapes, and can effectively identify shrubs and 
herbs in complex scenes of natural forests. The promising 
outcomes of the TG method demonstrate the key advantages 
of combining plant morphology theory and LiDAR technol-
ogy for advancing and optimizing forestry systems.

Keywords Terrestrial laser scanning · Point-cloud · 
Northwest Yunnan · Natural forests · Single-tree 
segmentation · Trunk-growth

Introduction

Effective monitoring and management of forest resources 
plays a vital role in maintaining sustainable forest devel-
opment, monitoring and control of forest pests, protecting 
biodiversity, and assessing fire hazards (Oveland et al. 2017; 
Xiao et al. 2019; Ma et al. 2020; Windrim and Bryson 2020). 
Numerous studies have demonstrated that remote-sensing 
technologies can be used to effectively and reliably monitor 
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and estimate forest resources (Strîmbu and Strîmbu 2015). 
As a popular remote-sensing technology, light detection and 
ranging (LiDAR) can be used to obtain information (such 
as target position, and height), characterize the spatial veg-
etation structure, and describe and monitor forest structure 
and functions (Liu et al. 2016, 2018, 2020; Lou et al. 2019; 
Yang et al. 2020).

The airborne laser scanning (ALS) method can be used 
to obtain a substantial amount of forest point-cloud data. 
However, the top-down scanning mode of this method only 
allows it to easily capture the crown part of a tree while 
largely overlooking its trunk and branch parts. This short-
coming limits ALS applicability, especially at the scale of 
individual trees (Zhong et al. 2017; Asadilla et al. 2020). 
Alternately, the terrestrial laser scanning (TLS) method 
adopts a bottom-up scanning mode which captures the 
trunk, branches, and leaf points with high density and integ-
rity within a forest. This desirable TLS capability makes 
up for the afore-mentioned ALS shortcoming, and offers 
great advantages in the study of forest understory structures 
(Liang et al. 2012; Cabo et al. 2018; Ma et al. 2019; Wang 
et al. 2019). Reasonable and accurate segmentation of a sin-
gle tree from TLS point-cloud data can be effectively uti-
lized to obtain key information for any tree (Lu et al. 2020), 
such as its height (Unger et al. 2014), crown width (Hari-
kumar et al. 2017), diameter-at-breast height (DBH) (Hen-
ning and Radtke 2006), and biomass (Lu et al. 2020). Such 
information is of great significance for quick and accurate 
understanding of forest resource information, and for elimi-
nating the costs of traditional field surveys.

The TLS-based single-tree segmentation method is more 
challenging than the ALS-based one. Maas et al. (2008) first 
estimated the position and DBH of a single tree by detecting 
circles centered at the single-tree position, visualizing an 
imaginary cylinder within a certain range and segmenting 
the individual tree. Cabo et al. (2018) projected the cloud-
point coordinates onto a two-dimensional plane and con-
structed a Voronoi diagram (Erwig 2000; Rushdi et al. 2017) 
for single-tree segmentation based on the detected position. 
The above methods achieve good single-tree segmentation 
results in forests with sparse-dispersed trees. However, in 
natural forests affected by factors of sunlight and water, the 
stands are dense and individual trees are often of irregular 
shapes. Due to the lack of topological relationships among 
the TLS-based point-cloud data samples, canopies of indi-
vidual trees with intersecting tree branches or overlapping 
canopies cannot be easily identified by cylinder or linear cut-
ting methods. Xing et al. (2017) investigated the problem of 
extracting irregular-shaped trees of Mongolian oak (Quercus 
mongolica Fosch. ex Ledeb.) and achieved single-tree seg-
mentation through point-cloud voxelization and hierarchical 
clustering. While this method works fairly well for artifi-
cial forests, i.e., plantations, individual tree segmentation 

rate from 95 to 100%, its application in complex natural 
forests remains to be studied. Tao et al. (2015) proposed 
the comparative shortest-path (CSP) method. This method 
first uses the algorithm of density-based spatial clustering 
of applications with noise (DBSCAN) to identify individ-
ual trees. Then, a graph-theoretical method is followed to 
assign points to the shortest-path trunk. Finally, canopies 
are localized and single trees are thus segmented. However, 
shrubs and herbs are typically clustered in natural forests, 
and the DBSCAN-based identification of individual trees 
also causes serious over-segmentation.

To summarize, the existing single-tree segmentation 
methods are difficult to apply in natural forests with complex 
stand patterns. In this study, we seek to enhance the state of 
the art in single-tree segmentation through a trunk-growth 
(TG) algorithm and apply this to data collected in a natural 
forest in Shangri-La City, Northwest Yunnan, China. In this 
algorithm, key seed points are selected and used to extract 
the trunk of an individual tree. The branch points are then 
grown based on the trunk points. Finally, the nearest-neigh-
bour distance allocates the branch and leaf points and com-
pletes the segmentation process. In this study, the F-score 
is used as an evaluation index to compare the TG method 
with various single-tree segmentation methods to study its 
segmentation accuracy and reliability.

Materials and methods

Study area

The study area is located in Shangri-La City (26° 52′–28° 52′ 
N, 99° 20′–100° 19′ E) of the Diqing Tibetan Autonomous 
Prefecture in Northwest Yunnan Province. The landform is 
essentially alpine with an average elevation of 3460 m a.s.l. 
The region is mountainous with a low temperature, monsoon 
climate. Forest cover is as high as 76% and the vegetation 
is rich with multiple species, (including Pinus yunnanensis 
Franch., Pinus densata Mast., Picea asperata Mast., and 
Quercus aquifolioides Rehd. et Wils.) (Fig. 1). 

Data acquisition and pre‑processing

Sample plot usually refers to a plot which fully reflects the 
average stand characteristics of the forest. Such a plot is 
typically a circle with a radius of 4–15 m (Liang et al. 2016). 
Two natural forest sample plots were selected in a natural 
forest in Shangri-La City in August 2016 and October 2019. 
A tape measure and laser rangefinder determined the extent 
of the plot, record the tree species and number of trees. 
Center coordinates, elevation, and slope were obtained with 
a handheld GPS instrument (Table 1). A Leica P40 TLS 
LiDAR was used to scan the plots and return the data in 
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a multi-station mode (Table 2). The point-cloud data was 
spliced using Cyclone commercial software.

The two sample plots are sites with undulating topog-
raphy where point-cloud data cannot be used directly and 

thus pre-processing steps are required. First, improved pro-
gressive triangulation filtering (Zhao et al. 2016) identifies 
ground points and carries out height normalization. The 
point-data is cropped to the size of the plot (plot 1 contains 
3,638,235 points, plot 2 4,329,903 points, and stored in txt 
format) (Fig. 2).

Principle and steps of the trunk‑growth algorithm

Principle

The trunk, branches, and leaves are closely related and 
largely inseparable; the trunk produces the branches and 
connects them with the leaves (Jin 2010). Based on plant 
morphology principles, the trunk of an individual tree is 
first extracted. Then the branches are grown out from the 
trunk. Finally, the nearest-neighbour method is used to dis-
tribute the branches and leaf points in order to complete the 
single-tree segmentation. Specifically, our proposed method 

Fig. 1  Maps of the study area: 
a China and the Northwest 
Yunnan Province; b location 
of the study area in Yunnan; c 
digital elevation model (DEM) 
of Shangri-La City

Table 1  Description of the 
environment of the two sample 
plots

Plot Size (r) (m) Center Elevation (m) Main species General situation

1 10 N27° 38′, E99° 45′ 3269.07 Pinus densata Herbs and shrubs are dense
2 15 N27° 48′, E99° 59′ 3580.00 Picea asperata Herbs and shrubs are dense

Table 2  Specifications of the Leica P40 LiDAR

Indicator Description

Range accuracy 1.2 mm + 10 ppm
3D position accuracy 3 mm @ 50 m and 6 mm @ 100 m
Wavelength 1550 nm (invisible); 658 nm (visible)
Scan rate Up to 1,000,000 points per second
Field of view 360 (horizontal); 290 (vertical)
Range and reflectivity Max range: 120 m (8%), 180 m (8%), 

270 m (34%)
Range noise Min range:0.4 m

0.4 mm RMS @ 10 m
0.5 mm RMS @ 50 m
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includes four steps of trunk extraction, fragment merging, 
trunk growth, and localization of branch and leaf points. 
Each of these four steps is discussed in detail below.

Trunk extraction

Extracting individual tree trunks is a prerequisite for single-
tree identification and segmentation in natural forests. Liang 
et al. (2012) calculated the normal vector at each cloud point 
and took the Z-axis component Zn (0‒1) of the normal vector 
as the characteristic value of that point on the vertical plane. 
The smaller that value is, the closer the point to the vertical 
plane. This observation provides guidance for the extraction 
of the trunk of an individual tree. Calculating the normal 
vector at a certain point can be formulated as the problem 
of fitting a plane to that point and its k-neighbouring points. 
Assuming that Pi is one point in the collected point-cloud 
data, the covariance matrix based on Pi and its k-neighbour-
ing points is given by (Guo et al. 2018; Zhang et al. 2019):

In (1), j = {1, 2, 3} represents the set of eigenvalues and 
corresponding eigenvectors, that is, λj is the jth eigenvalue 
(λ1 ≤ λ2 ≤ λ3) with a corresponding eigenvector ej. The eigen-
vector (e1) associated with the smallest eigenvalue is the 
point normal vector. As n = [0, 0, 1], Zn can be obtained as 
the magnitude of the cross product of e1 and n (Liang et al. 
2012):

Taking the Zn value and the normal vector as trunk extrac-
tion constraints, the region-growth algorithm is enforced 
to extract the trunk of each tree. The pseudo-code of this 
enhanced trunk extraction algorithm is as follows:
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Fig. 2  Point-cloud data for the 
two forest plots: a Pinus den-
sata point-cloud data for plot 
1 after normalization; b Picea 
asperata point-cloud data for 
plot 2 after normalization
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The algorithm traverses the point-cloud data, sets the 
points with Zn values below 0.05 as seed points, and then 
searches and traverses the adjacent points. When the normal 
vector angle between the seed point and a neighbour point 
is below a certain threshold, the neighbour point is assigned 
to the same trunk region. If the Zn value difference between 
the seed and neighbour points is small, the neighbour point 
is set as a seed point for further growth. While existing area 
growth methods require manual intervention, our algorithm 
can find seed points for trunk extraction in a highly auto-
mated manner.

Trunk growth

The branches connect and bridge the trunk with the leaves. 
The branches are assumed to be connected with the trunk, 
and the point-cloud data satisfy this assumption. By finding 
the adjacent points around the trunk, the trunk can be grown 
again. The pseudo-code of the trunk-growth algorithm is as 
follows:

Fragment merging

In first step, automating the search for seed points may result 
in the growth of some non-trunk points. These points pro-
duce many categories that are not trunk and should not be 
merged in categories. The points can only meet the growth 
conditions in a small area, resulting in a low number of cat-
egory points. Therefore, in step (1), all category points are 
counted, and the categories with fewer points are removed. 
This completes the trunk extraction step.

This trunk growth algorithm is similar to the trunk extrac-
tion algorithm in step (1). The former modifies the selection 
conditions of seed points in order to enforce branch growth. 
The nearest-neighbour point of the trunk is taken as the seed 
point and calculates the normal-vector angle between the 
seed and k-nearest points. When certain conditions are sat-
isfied, the adjacent point is assigned the same category as 
the seed one. When the distance between the adjacent and 
the seed points does not exceed a certain threshold value, 
the two points are considered to belong to the same branch 
trunk. The threshold represents the maximum length that a 
branch can grow and is usually determined by the growth 
of the tree.
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Distribution of branches and leaves

The above steps result in the extraction of the trunk and a 
part of the branches of an individual tree. In this current 
step, the remaining branches and leaves are added. In fact, 
the structure of natural forests is often associated with verti-
cal stratification. The strata are classified according to the 
different heights to which their plants grow: a herb layer, a 
shrub layer, and a tree layer (Shugart et al. 2010; Zhao et al. 
2013). The United Nations Food and Agriculture Organi-
zation (FAO) defines understory vegetation as perennial 
woody plants with heights > 0.5 and < 5.0 m at maturity 
(FAO 2003). Therefore, a height between 0.5 and 5.0 m was 
selected as the vertical stratification boundary to distinguish 
the tree and understory vegetation layers. A value of ‒1 was 
assigned to the category below this boundary, the distance 
from the branch point to the surrounding known points was 
calculated, and the nearest category for assignment was 
selected until all points were classified. The single-tree seg-
mentation steps are therefore completed.

Segmentation performance evaluation

When an individual tree is successfully segmented, the result 
is counted as a true positive (TP). Otherwise, when a tree is 
incorrectly segmented as another nearby tree, the result is 
counted as a false negative (FN). When no individual tree 
exists but data points are segmented as belonging to one, 
the result is counted as a false positive (FP). Based on these 

values, we define the recall (R), the precision (P), and the 
F-score, respectively, as follows:

These metrics are computed and used for evaluating the 
single-tree segmentation outcomes. In addition, the perfor-
mance of our method was compared against that of the com-
parative shortest-path (CSP) method (Tao et al. 2015). First 
of all, CSP uses DBSCAN clustering for trunk identification, 
calculates the DBH, and connects all point clouds to form a 
cloud map. Then, the transportation path from each point to 
the adjacent trunk diameter is calculated. Finally, tree crown 
points are assigned to the shortest transportation path, which 
is calculated as follows:

where Dp→Trunk is the transportation distance from the point 
p to the trunk DBH. Further details of the comparative 
shortest-path (CSP) algorithm are not discussed herein, but 

(3)R =

TP

TP + FN

(4)P =

TP

TP + FP

(5)F = 2 ×
R × P

R + P

(6)DN
P→Trunk

=

Dp→Trunk

DBH
2

3

Fig. 3  Comparison of single-
tree segmentation results of the 
TG, CSP, and PCS algorithms
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the interested reader might consult Liu and Ramakrishnan 
(2001) or Zhang et al. (2020).

Results

Li et al. (2012a) proposed an ALS-based point-cloud seg-
mentation (PCS) method that combines regional growth 
with thresholding. In this method, the tree height is set as 
that of the highest point in the point-cloud data, and a tree 
is obtained through regional growth. Then, the distances 
between a known individual tree and other points are com-
puted for step-by-step single-tree segmentation. This algo-
rithm is suitable for single-tree segmentation based on ALS 
data or, to some extent, TLS data. In our study, we compared 
the performance outcomes obtained by our TG algorithm 
against those of the classical PCS and CSP algorithms. The 
comparative results are shown in Figs. 3 and 4 (the seg-
mented trees are displayed in different colours), and the final 
accuracy results are shown in Table 3. Additionally, we used 
software LiDAR 360 to implement CSP and PCS algorithm 

in laptop (Windows 10, CPU-i5-4210H@2.9 GHz, Memory 
16 g) and Matlab 2019b to run TG. The runtime of TG algo-
rithm was 7 min and 32 s in plot 1, and 7 min and 56 s in 
plot 2.

The TG method performed well on both plots (Table 3). 
For plot 1, the R value reached 1.00, and each tree was well- 
segmented, with an F-score of 0.96. For plot 2, the R value 
was 0.95 and the F-score 0.95, but one of the trees grew 
so poorly that it was wrongly assigned to the shrub layer 
during fragment merging. The F-score of the TG method 
is the highest among the three methods. Although the CSP 
method can segment individual trees fairly well, it is prone 
to errors due to the influence of shrubs and herbaceous 
plants. These errors result in a lower P value, which ulti-
mately decreases the F-score. The PCS method showed seri-
ous under-segmentation problems for both plots. Also, the 
PCS method lacks constraints and cannot easily separate two 
individual trees with intersecting canopies. This, in turn, 
leads to a low R value and poor single-tree segmentation 
performance. Nevertheless, the TG and CSP methods have 

Fig. 4  Comparison of the 
shrub-and-herb map segmenta-
tion results (after separation 
from the tree layer) of the TG, 
CSP, and PCS algorithms

Table 3  Performance 
measures for three single-tree 
segmentation methods applied 
to two plots

Method Plot Number of 
trees

Number of seg-
mented trees

TP FP FN R P F

TG 1 13 14 13 1 0 1.00 0.93 0.96
CSP 1 13 60 13 46 1 1.00 0.22 0.36
PCS 1 13 36 11 25 2 0.85 0.31 0.45
TG 2 21 21 20 1 1 0.95 0.95 0.95
CSP 2 21 70 21 49 0 1.00 0.30 0.46
PCS 2 21 51 14 37 7 0.67 0.27 0.38
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prior constraints for identifying individual trees, and hence 
they can be used to segment individuals more accurately.

Discussion

Comparison of the TG and CSP segmentation results 
with different tree shapes

The TG and CSP methods (which exhibited higher R values 
than the PCS method) were compared on tasks of canopy 
segmentation and segmentation of individual trees with 
irregular trunk shapes.

(1) Canopy segmentation: Both the TG and CSP meth-
ods resulted in canopy over-segmentation (Fig. 5a, e). 
Naturally formed individual trees in natural forests usu-
ally have no restrictions on their growth locations. The 
distance between two individual trees is also typically 
uneven, causing crowns to intersect during growth. The 
points of the two trees blend. At present, high-quality 
canopy segmentation cannot be obtained using either 

the TG or the CSP methods. Solutions for this problem 
should be investigated in future work.
(2) Irregular trunk and canopy segmentation: Individuals 
of the same species in a stand compete for nutrients due 
to sunlight, moisture, and other factors. In fact, the more 
nutrients a single tree obtains, the more divergent the 
growth of its branches and leaves becomes. With limited 
space, trees with few nutrients suffer more, and exhibit 
slow growth and poor development. Likewise, the con-
ventional growth direction of a t species may be changed 
to a certain extent. For example, the trunk may take an S 
shape (Fig. 5b, e). Both the TG and CSP methods handle 
better the identification and segmentation of such irreg-
ular-shaped trees. In particular, the TG method assigns 
crown points according to the nearest tree trunks, and 
results in good performance under appropriate parameter 
settings. The CSP method identifies the crown points by 
seeking the shortest path within a graph representation.
(3) Segmentation of trees with inclined trunks (Fig. 5c, g): 
For an individual tree, the TG method identifies the trunk, 
and then continues to grow the trunk and branch points. 
This approach enables the identification of individuals 
with large tilt angles, while canopy segmentation may 

Fig. 5  Comparison of the segmentation results for different tree 
shapes; a–d TG-based segmentation results; e–h CSP-based seg-
mentation results; a, e canopy segmentation for standing trees; b, f 

canopy segmentation for irregular individual trees; c, g canopy seg-
mentation for inclined individual trees; d, h separation of shrubs and 
herbs from trees
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be unsatisfactory. The CSP method performs poorly on 
inclined trunks due to its tendency to split a tree into two 
segments. This limitation can be ascribed to the fact that 
the CSP algorithm prioritizes the identification of a single 
tree at DBH. When a tree has a large tilt angle or forms a 

fallen tree with a trunk height below 1.3 m, the tree will 
be wrongly identified or missed altogether. For handling 
such a tree, the TG algorithm has an obvious advantage.
(4) Identification of shrubs and herbs: Shrubs and her-
baceous plants are competitors of trees in natural forests. 

Fig. 6  Effects of the normal 
vector angle (threshold 1) 
and the Zn value difference 
(threshold 2) on the recall (R), 
precision (P), and F-score (F) 
of the TG-based single-tree 
segmentation outcomes; a the 
normal vector angle is 10°; b 
the normal vector angle is 20°; c 
the normal vector angle is 30°; 
d the normal vector angle is 40°

Fig. 7  Visual segmentation results with different threshold combinations (threshold 1/threshold 2)
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Studies have demonstrated that shrubs and herbs usually 
interfere with the estimation of single-tree parameters 
(tree position, DBH, etc.) (Li et al. 2012b). As shown in 
Fig. 5d, h, the CSP-based single-tree segmentation cannot 
accurately separate the trunks, herbaceous vegetation, and 
shrubs. This is because the algorithm considers all points 
in a sample plot to be tree points, ignoring the complex-
ity of natural forests. Indeed, separating non-trunk points 
near the trunk using the shortest-path method is chal-
lenging, and both types of points are often mixed into 
one class. The TG algorithm sets a fixed height that can 
effectively separate the understory environment (includ-
ing shrubs and herbs) from the trees.

Parameter sensitivity for the TG method

In the proposed TG method, the trunk extraction process 
obviously has a great impact on the final crown segmenta-
tion. Trunk extraction is highly influenced in turn by the 
selection of two growth parameters: the normal vector 
angle (threshold 1) and the Zn value difference (threshold 
2) between the seed and neighbour points. In our work, we 
vary these parameters in the intervals [10°, 40°] and [0.05, 
0.20], respectively, and investigate the parameter effects on 
the recall, precision, and F-score of the single-tree segmen-
tation outcomes (Fig. 6).

When threshold 1 is 10° and threshold 2 is low, the results 
of trunk extraction and subsequent growth are poor, with an 
R score of only 0.46. In fact, many individual trees that do 
not meet the conditions are wrongly included in the shrub 
and herb layers. By increasing threshold 2, the segmenta-
tion accuracy also increases, reaching the peak at 0.15 after 
which the accuracy does not increase. When threshold 1 is 
20°, and threshold 2 is between 0.05 and 015, the P value is 
the highest. When threshold 2 is 0.20, the P value decreases, 
while R reaches the highest value of 1.00. In addition, all 
individual trees are segmented at that threshold, but over-
segmentation inevitably occurs and some of the shrubs and 
herbs are wrongly counted as tree parts. When threshold 
1 is 30°, R reaches the highest value of 1.00 at a thresh-
old 2 value of 0.15, and all individual trees are segmented. 
As threshold 2 increases, more and more non-tree parts 
are wrongly segmented, and P gradually decreases. When 
threshold 1 is 40° and threshold 2 is 0.15, all individual 
trees are segmented, but over-segmentation occurs as well. 
When threshold 2 reaches 0.20, multiple trees are merged 
together, and the F-score and R show trends of deterioration. 
When R reaches 1, the F-score curve gets closer to the P 
curve. When threshold 1 is unchanged, the TG-based single-
tree segmentation accuracy increases with the increase of 
threshold 2, then decreases, showing a transition from under-
segmentation to over-segmentation (Fig. 7).

This demonstrated sensitivity of the TG algorithm to the 
two thresholds is the key to performance tuning in single-
tree segmentation.

Recommended TG parameter settings

In this paper, the proposed method is based on the patterns 
of plant morphology. The characteristic Zn value is used as 
an essential constraint for trunk extraction, branch growth, 
and separation of understory vegetation. Good results 
were obtained in the two study plots. The calculation of 
Zn requires k neighbour points. In earlier studies, the value 
of k was usually taken as between 8 and 32 (Zhang et al. 
2018). Fewer neighbourhood points are expected to lead to 
incomplete segmentation. However, more points increase 
the computational cost, so in the TG method, we take the 
median value of 20 as the number of domain points. For 
plot 1, the threshold 1 value is 30°, the threshold 2 value is 
0.14, and a height of 3 m is the threshold between trees and 
understory vegetation. For plot 2, the threshold 1 value is 
40°, threshold 2 is 0.10, and the height threshold between 
trees and understory vegetation is 5 m. Therefore, we recom-
mend the following parameter ranges: a threshold 1 range of 
30°–40°, a threshold 2 range of 0.1–0.2, and an understory 
height threshold of 3.0–5.0 m.

When the trunk of a forest tree is blocked and has no 
associated point-cloud data, the branch points cannot be 
grown; the canopy points are better assigned to the closest 
category and the Zn value becomes more sensitive in upright 
trees. Also, trees with bending at the roots cannot be easily 
segmented by the TG method.

Botany is the science of studying plant morphology, ecol-
ogy, distribution, etc. It provides a solid foundation for the 
study of LiDAR-based forestry methods. Tao et al. (2015) 
proposed the CSP algorithm based on plant ecology. Burt 
et al. (2018) carried out tree segmentation using the volume 
of the crown, the height, and the allometric growth rela-
tionship of crown width. Our paper summarizes the short-
comings of previous studies and proposes the TG algorithm 
according to the idea of “the trunk grows the branches, and 
the branches connect the leaves”. To a certain extent, the 
TG algorithm can be better applied to the sample plots in 
the natural stand in Shangri-La City. For future work, an in-
depth study would be made to combine plant morphology 
theory with point-cloud data analysis.

Conclusions

Effective and accurate approaches for single-tree segmenta-
tion help with quickly understanding single-tree informa-
tion and achieving efficient management of forest resources. 
Such approaches are highly needed for monitoring forest 



2413Point‑cloud segmentation of individual trees in complex natural forest scenes based on a…

1 3

biodiversity, water, and soil conservation capabilities. Based 
on the plant morphology theory, we sought to propose a 
novel method named the trunk-growth (TG) method. In this 
work, the segmentation accuracy and applicability of our 
algorithm were tested on point-cloud data collected for forest 
sample plots in a natural forest in Shangri-La City, northwest 
Yunnan, China. The performance of the TG method was 
evaluated using the F-score, comparing it with the CSP and 
PCS methods. The F-scores of CSP and PCS were in the 
range of 0.36‒0.46, while the average TG F-score was 0.96, 
and the segmentation accuracy of TG was more successful. 
The trunk-growth method is able to handle inclined trees 
and more effectively reduce the interference of understory 
vegetation than the other methods.

Nevertheless, the TG algorithm expands segments out-
ward by extracting the single-tree trunk as the core because 
such a trunk is usually limited by neighbouring trunks. When 
the trunk is blocked in the canopy, some of the required data 
becomes missing, posing difficulties on TG-based canopy 
segmentation. The TG parameters need to be adjusted con-
tinuously to achieve the best results. Besides, the Zn value 
was used as the basis for extracting the trunk and can also 
be replaced by curvature or other feature values when the 
trunk is difficult to extract. Further performance improve-
ments in canopy segmentation are expected to be the focus 
of future research.
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