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potential ozone damage on plants in Europe. In a climate 
change context, a biologically-sound stomatal flux-based 
standard (PODY) as new European legislative standard is 
needed.
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Introduction

Tropospheric ozone  (O3) is a secondary short-lived climate 
pollutant (Shindell et al. 2012), formed by the photochemical 
oxidation of  NOx in the presence of carbon monoxide (CO), 
methane  (CH4) and volatile organic compounds (VOCs) (Cha-
meides et al. 1988). It is also the third most important green-
house gas in terms of radiative forcing (Mickley et al. 2001). 
Despite the implementation of legislative standards to control 
the emission of  O3 precursors worldwide (Cooper et al. 2014; 
Monks et al. 2015; Simon et al. 2015; Sicard et al. 2016a),  O3 
concentrations remain potentially harmful to vegetation over 
some regions around the world (Sicard et al. 2016a, 2017; 
Cailleret et al. 2018; Mills et al. 2018). In Europe, surface 
 O3 pollution appears as a major air quality issue (Sicard et al. 
2013, 2018, 2020a,b; EEA 2018), particularly in Southern 
Europe where road traffic and industrial emissions, combined 
with higher solar radiation, enhance  O3 formation (Millán et al. 
2000), and causes threat to vegetation (e.g. Sanz et al. 2000; 
Paoletti 2006; Wittig et al. 2009; Anav et al. 2011; Mills et al. 
2011; Sicard et al. 2016b). Currently, the European standard 
used to protect vegetation against negative impacts of  O3 is the 
Accumulated Ozone over a Threshold of 40 ppb (AOT40), i.e. 
the cumulative exposure to hourly  O3 concentrations above 
40 ppb over the daylight hours of the growing season (Direc-
tive 2008/50/EC). In Europe, a target value of 9,000 ppb h, 
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averaged over 5 years, is recommended by the Directive 
2008/50/CE for the vegetation protection whilst a critical level 
of 5,000 ppb h is recommended by UNECE (2017) for forest 
protection. Although AOT40 metric is widely used, the  O3 
uptake through stomata is a better metric to assess plant dam-
age because it estimates the quantity of  O3 entering in the leaf 
tissues (Musselman et al. 2006; De Marco et al. 2015; Sicard 
et al. 2016c). The Phytotoxic Ozone Dose above a threshold 
Y of uptake (PODY) is the accumulated stomatal  O3 flux over 
the growing season and can be modelled using the Deposition 
of Ozone and Stomatal Exchange (DO3SE) model (UNECE 
2017). The threshold Y represents a detoxification threshold 
below which any  O3 molecule absorbed by the plant is detoxi-
fied (CLRTAP 2017). High ambient  O3 levels may not dam-
age plants when stomata are closed (Ronan et al. 2020). Con-
versely, high PODY and resulting damages can occur at low  O3 
levels when stomata are open under favourable environmental 
conditions such as optimal air temperature and soil moisture 
(Ronan et al. 2020). For these reasons, the stomatal flux-based 
approach is recommended as more realistic compared to the 
exposure-based approach (Paoletti and Manning 2007; Sicard 
et al. 2016c; Agathokleous et al. 2018).

The evaluation of temporal trends in air pollutant levels in 
European Union (EU) countries is an essential tool to assess 
the improvement of air quality due to emissions control strate-
gies (Guerreiro et al. 2014). To date, many studies have inves-
tigated  O3 trends for a small number of monitoring stations, 
in particular at rural sites representative of background  O3 
conditions (De Leeuw 2000). In 2016, a report was published 
by the co-operative programme for monitoring and evalua-
tion of the long-range transport of air pollutants in Europe 
(EMEP) focusing on background sites showing the evolution 
of ground-level  O3 over the time period 1990–2012 (Colette 
et al. 2017). The report highlighted a relatively flat trend for 
annual  O3 mean concentrations at EMEP background stations 
whilst a reduction of 37% for AOT40 was found between 2002 
and 2012. Sicard et al. (2016a) found a decline (− 27%) for  O3 
vegetation impact metrics at 332 background stations in France 
between 1999 and 2012. Similarly, Araminienė et al. (2019) 
found a decreasing trend over the time period 2001–2014 for 
 O3 annual mean (− 1.3%) and AOT40 (− 16%) in Lithuania 
whereas they found an increase for POD0 (+ 2.9%). Anav 
et al. (2019) found a decreasing trend of AOT40 (− 22%) and 
 O3 concentrations (− 1.6%) and a slight increase of POD0 
(+ 5.9%) in Europe over the time period 2000 − 2014. In this 
study, we performed a spatio-temporal analysis of short-term 
annual trends in  O3 exposure-based and flux-based metrics for 
the protection of forests for all European countries over the 
time period 2000–2014.

Materials and methods

Environmental data: the WRF‑CHIMERE modelling 
system

Hourly air temperature data and  O3 concentrations were 
obtained, respectively, from the Weather Research and 
Forecasting (WRF), a mesoscale meteorological model 
(Skamarock and Klemp 2008) and CHIMERE, an Eulerian 
offline chemistry-transport model developed to analyse the 
gas-phase chemistry, aerosol formation, transport and dep-
osition at regional scale. Data were provided at 1-h tem-
poral resolution and 12 km × 12 km of spatial resolution 
over the time period 2000–2014. The  O3 concentrations 
at 20–25 m of height from the ground (top of the canopy) 
provided by the CHIMERE model were used to calculate 
AOT40 and PODY. Further information about the valida-
tion of data obtained by the WRF-CHIMERE modelling 
system can be found in Menut et al. (2013), Martin et al. 
(2014) and Anav et al. (2016).

Calculation of  O3 metrics

AOT40 calculation

The  O3 exposure index AOT40 (in ppb hours, abbreviated 
to ppb h) was calculated as sum of the hourly exceedances 
above 40 ppb, for daylight hours (8 am–8 pm) during the 
growing season, i.e. 1st April-30th September for the pro-
tection of forest trees (UNECE 2010), according to the 
methodology for  O3 risk assessment in Europe.

where  [O3] is hourly  O3 concentration (ppb), n denotes the 
number of hours to be included in the calculation period 
and dt is time step (1-h). The function “maximum” ensures 
that only values exceeding 40 ppb are taken into account. 
In Europe, the critical values for the protection of forests is 
5000 ppb h as recommended by UNECE (2010).

However, Klingberg et al. (2014) showed that AOT40 
does not consider the influence of climate change on the 
growing season duration. By consequence, we used in this 
study the AOT40 formula proposed by Anav et al. (2016) 
that is more plausible from a physiological point of view 
as the revised AOT40 was calculated from 1st January to 
31st December for hours with stomatal conductance (gsto) 
higher than 0:

(1)AOT40 =
n

∫
i=1

max (([O3] − 40), 0).dt

(2)AOT40 =
31Dec

∫
t=1Jan

max (([O3] − 40), 0).dt;gsto > 0
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where  [O3] is the hourly  O3 concentration (ppb), dt is the 
time step (1-h) and gsto is the stomatal conductance com-
puted according to Eq. (3). However, AOT40 does not pro-
vide any information on the  O3 uptake by leaves (Anav et al. 
2016).

Phytotoxic ozone dose calculation

The PODY was calculated using the  DO3SE model, based 
on the multiplicative Jarvis’ algorithm (Jarvis 1976) for 
estimation of gsto (mmol  O3 m−2 s−1). The gsto is calculated 
as a species-specific function where the maximum value of 
stomatal conductance (gmax) is reduced by limiting func-
tions, scaled from 0 to 1 as described in Eq. 3.

where gmax is the maximum stomatal conductance of a plant 
species to  O3 (mmol  O3  m−2 s−1 per leaf area). The functions 
fphen, flight, ftemp, fVPD and fSWC stand for the  gmax variation 
with leaf age, photosynthetically flux density at the leaf sur-
face (PPFD, μmol photons  m−2 s−1), surface air temperature, 
(T, °C), vapor pressure deficit (VPD, kPa) estimated through 
the surface air humidity, and volumetric soil water content 
(SWC,  m3 m−3), respectively. The function fmin is the mini-
mum gsto expressed as a fraction of gmax. We assumed that 
fphen was 1 throughout the growing season. The following 
formulas were applied:

where lighta is an adimensional constant; PPFD is hourly 
photosynthetic photon flux density estimated through the 
solar radiation;  Topt,  Tmin, and  Tmax, represent the optimum, 
minimum, and maximum temperature for stomatal conduct-
ance, respectively; VPDmin and VPDmax are minimum and 
maximum vapor pressure deficit for stomatal conductance, 
respectively; WP is SWC at wilting point and FC is SWC at 
field capacity. These two parameters are constant and depend 
on the soil type obtained from a module included into the 
WRF-CHIMERE model.

(3)
gsto = gmax × fphen × flight × max

{
fmin,

(
ftemp × fVPD × fSWC )

}

(4)flight = 1 − exp(−lighta ∗ PPFD)

(5)ftemp =

�
T − Tmin

Topt − Tmin

�⎧
⎪⎨⎪⎩

Tmax − T

Tmax − Topt

�
Tmax−Topt

Topt−Tmin

�⎫⎪⎬⎪⎭

(6)

fVPD = min

[
1,max

{
fmin,

(
(1 − fmin) ∗ (VPDmin − VPD)

(VPDmin − VPDmax)

)
+ fmin

}]

(7)
fSWC = min

[
1,

(
fmin,

( (
1 − fmin

)
∗

(
SWC − WP

FC − WP

)
+ fmin

))]

The dominant vegetation data, required to estimate  gsto, 
were retrieved from the spatial tree distribution, based on 
the European Forest Institute database (Brus et al. 2011). 
Species-specific values of DO3SE parameters were derived 
from UNECE (2017) for each dominant plant species.

Once the stomatal conductance was computed, the sto-
matal  O3 flux was calculated over the growing season and 
expressed as PODY (nmol  O3  m−2 s−1 per leaf area). PODY 
(mmol m−2) was calculated from hourly data as:

where PODY is the accumulated stomatal  O3 flux above 
a threshold Y over the growing, gsto represents the hourly 
stomatal conductance values,  [O3] is the hourly  O3 concen-
trations (ppb) and dt is the time step (1-h). PODY was cal-
culated with Y = 0 nmol  O3 m−2 s−1 per leaf area, by consid-
ering that any  O3 molecule is harmful for plants (Musselman 
et al. 2006), and Y = 1 nmol  O3 m−2 s−1 per leaf area, as 
recommended by CLRTAP (2017).

Estimation of annual trends

A 10-year time-series of  O3 data is considered long enough 
to assess short-term changes as reported in Sicard et al. 
(2016a). The non-parametric tests are robust and suitable 
for non-normally distributed data with missing and extreme 
values (Sicard et al. 2009). The non-parametric Mann–Ken-
dall test was used to assess whether there is a monotonic 
upward or downward trend of  O3 over time (Sicard et al. 
2013; Guerreiro et al. 2014). To quantify linear trends, the 
non-parametric Sen’s slope estimator was used (Sicard et al. 
2013, 2016a; Araminienė et al. 2019). Annual trends were 
calculated for  O3 metrics over the time period 2000–2014 for 
each European country as well as for four European regions 
as classified in UNECE (2010). Table 1 shows the regional 
classification of countries. The results are considered statisti-
cally significant at p < 0.05. 

Results

European distribution of air temperature and ozone 
metrics

Over the time period 2000–2014, the minimum annual air 
temperatures (7.0 ± 0.3 °C) occurred in Northern Europe 
while the maximum values (12.7 ± 0.5 °C) were found in 
Mediterranean Europe (Fig. 1). Atlantic and Continental 
central Europe showed mean annual temperature ranging 
from 8.2 to 10.2 °C (Fig. 1). Taking into account mean 
 O3 concentrations, Mediterranean Europe showed values 

(8)PODY =
n

∫
i=1

[(
gsto ×

[
O3

]
− Y

)
, 0
]
.dt
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ranging from 42.9 ppb in 2011 to 45.0 ppb in 2003 whilst 
the other parts of Europe showed annual average values well 
below 40 ppb for all considered years (Fig. 2). Similarly, 
the highest AOT40 values (38,359 ppb h) were observed 
in Mediterranean Europe whilst the lowest AOT40 values 
(5094 ppb h) were found in Northern Europe (Fig. 3). In 
Continental central Europe, AOT40 ranged from 13,636 to 

23,515 ppb h while in Atlantic central Europe AOT40 varied 
from 8207 to 13,751 ppb h (Fig. 3). Taking into account 
POD0 values, the minimum value (14.0 mmol  O3 m−2) was 
found in 2006 in Northern Europe while the maximum val-
ues, 29.7 and 32.1 mmol  O3 m−2 were observed in Atlantic 
and Mediterranean Europe, respectively (Fig. 4). Similar 
results were found for POD1 (Fig. 5).

Trends in ground‑level ozone metrics at European level

The annual trend magnitudes for  O3 concentrations, AOT40, 
POD0 and POD1 over the time period 2000–2014 are 
shown in Tables 2, 3, 4 and 5. The  O3 mean concentrations 
decreased significantly (p < 0.05) by 0.4 ppb per decade 
in Continental Central Europe and by 1.1 ppb per decade 
in Mediterranean Europe (Table 2). In Atlantic Central 
Europe and Northern Europe, the trends for  O3 mean con-
centration were not statistically significant (Table 2). The 
exposure index AOT40 significantly declined in Atlantic, 
Continental and Mediterranean Europe with a magnitude 
of 2124, 5532 and 7161 ppb h per decade, respectively 
(Table 3). POD0 and POD1 increased significantly over the 
time period 2000–2014 all over Europe, except in North-
ern Europe showing a positive but not significant (p > 0.5) 

Table 1  Regional classification 
of countries adopted in this 
study based on Manual on 
methodologies and criteria for 
modelling and mapping critical 
loads and levels of air pollution 
effects, risks and trends 
(UNECE 2017)

Region Countries

Atlantic central Europe Belgium, Ireland, Luxembourg, Netherlands, Unite Kingdom
Continental central Europe Austria, Belarus, Czech Republic, Finland, Faroe Is., France, Germany, 

Hungary, Slovakia, Liechtenstein, Moldova, Poland, Romania, Russia, 
Switzerland, Ukraine

Mediterranean Europe Albania, Bosnia & Herzegovina, Bulgaria, Greece, Croatia, Italy, Mac-
edonia, Malta, Montenegro, Portugal, Slovenia, Spain, Serbia

Northern Europe Denmark, Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Sweden
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trend (Tables 4, 5). POD0 and POD1 increased by 4.3 and 
3.3 mmol  O3  m−2 per decade in Atlantic Central Europe 
respectively, and by 2.4 and 3.0 mmol  O3  m−2 per decade in 

Continental Central Europe while higher trend magnitudes 
were found in Mediterranean Europe: POD0 and POD1 sig-
nificantly increased by 5.7 and 6.1 mmol  O3  m−2 per dec-
ade, respectively. It is important to underline that POD0 and 
POD1 values are increasing since 2010.   

Trends in ground‑level ozone metrics at country‑level

Over the time period 2000–2014, the exposure AOT40 
index significantly declined in most of European coun-
tries (Fig. 6a). The lowest value was found in Switzerland 
(− 1376 ppb h year−1) and the highest values were observed 
in the Isle of Man (self-governing British Island) and Malta 
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1 nmol m−2 s−1 (POD1 in mmol.  O3  m−2 ± Standard Error) in Europe 
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Table 2  Regional average ± standard deviation (SD) and annual 
trend, obtained by the Mann Kendall test for ozone concentrations 
over the time period 2000–2014 (not significant, ns)

Region Ozone concentrations (2000–2014)

Mean SD Trend (ppb/year) p value

Atlantic central Europe 32.53 0.35 0.00 ns
Continental central Europe 37.21 0.30 − 0.04  < 0.05
Mediterranean Europe 43.90 0.61 − 0.11  < 0.05
Northern Europe 34.58 0.21 0.01 Ns

Table 3  Regional average ± standard deviation (SD) and annual 
trend, obtained by the Mann Kendall test for AOT40 over the time 
period 2000–2014 (not significant, ns)

Region AOT40 (2000–2014)

Mean SD Trend (ppb h/year) p value

Atlantic central 
Europe

10,371.4 1581.5 − 212.5  < 0.05

Continental central 
Europe

19,134.3 2812.6 − 553.2  < 0.05

Mediterranean 
Europe

31,415.7 3790.2 − 716.2  < 0.05

Northern Europe 6302.3 755.2 − 34.7 Ns

Table 4  Regional average ± standard deviation (SD) and annual 
trend, obtained by the Mann Kendall test for POD0 over the time 
period 2000–2014 (not significant, ns)

Region POD0 (2000–2014)

Mean SD Trend (mmol 
 m−2/year)

p value

Atlantic central Europe 21.6 3.9 0.43  < 0.05
Continental central Europe 17.5 1.8 0.24  < 0.05
Mediterranean Europe 21.0 4.4 0.57  < 0.05
Northern Europe 16.7 3.7 0.29 Ns

Table 5  Regional average ± standard deviation (SD) and annual 
trend, obtained by the Mann Kendall test for POD1 over the time 
period 2000–2014 (not significant, ns)

Region POD1 (2000–2014)

Mean SD Trend (mmol 
 m−2/year)

p value

Atlantic central Europe 10.4 4.1 0.33  < 0.05
Continental central Europe 7.6 2.2 0.30  < 0.05
Mediterranean Europe 10.4 4.4 0.61  < 0.05
Northern Europe 7.7 3.6 0.15 Ns
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(+ 200 ppb h year−1 and + 249 ppb h year−1 respectively). 
Similar results were found for trends in  O3 concentrations 
(Fig. 6b). In particular, only six countries showed positive 
trends (Denmark, United Kingdom, the Netherlands, Ger-
many, Sweden and Svalbard). On the contrary, trends of 
POD0 and POD1 were positive in all countries (Fig. 7a and 
b) with minimum values of + 0.03 and + 0.04 mmol m−2 per 
year and maximum values of + 1.06 and + 0.93 mmol m−2 
per year for POD0 and POD1, respectively.

Discussion and conclusions

Our results showed a general decrease of  O3 concentrations 
and exposure-based index, namely AOT40, all over Europe 
and a general increase of flux-based metrics (POD0 and 
POD1) over the time-period 2000–2014. These results are 
in line with other studies conducted in different European 
countries. Anav et al. (2019) found that  O3 concentrations 

and AOT40 declined all over Europe from 2000 to 2014, 
while PODY did not. Karlsson et al. (2017) found a sig-
nificantly decreasing trends of AOT40 in Fennoscandia 
and United Kingdom over the time period 1990–2015 
highlighting that AOT40 is projected to no longer exceed 
the critical level established for forest protection for most 
of Northern Europe by 2050, while POD1 does not fall 
below its critical level. Similarly, the analysis conducted 
by Mills et al. (2018) at global level by using the interna-
tional Tropospheric Ozone Assessment Report (TOAR) 
database showed a statistically significant decreasing 
trends of 45% of AOT40 (for perennial vegetation) and 
highlighted the reduction of AOT40 at many European 
sites. At country level, Araminienė et al. (2019) found 
negative trends of  O3 concentrations (− 0.28 ppb decade−1) 
and AOT40 (− 2,540 ppb h decade−1) but a positive trend 
for POD0 (+ 0.39 mmol  O3  m−2  decade−1) in Lithuania. 
Our results demonstrate the large-scale success of Euro-
pean control strategies, such as the Air Quality Framework 

Fig. 6  Annual trends for AOT40 (in ppb h per year) a and ozone concentrations (in ppb) b in European countries. Blue color is for negative 
trends, pink for positive ones. Countries with not significant trends (p > 0.05) are striped

Fig. 7  Annual trends for POD0 a and POD1 b (in mmol  O3  m–2 per year) in European countries. Blue color is for negative trends, red for posi-
tive ones. Countries with not significant trends (p > 0.05) are striped
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Directive (96/62/EC), Large Combustion Plant Directive 
(2001/80/EC), National Emission Ceilings Directives 
(2001/81/EC) and the Gothenburg Protocol (1999) under 
the United Nations Convention on Long-Range Trans-
boundary Air Pollution (LRTAP), targeted at decreasing 
peak  O3 levels and reducing the risk of  O3 impacts on 
vegetation and human health. The emission reductions 
have primarily been achieved as a result of the progress 
in vehicle technologies, the stringent inspection systems 
legislation related to the “Euro” standards, the use of flue 
gas abatement techniques, the progress in the storage and 
distribution of solvents (Vestreng et al. 2008; EEA 2018; 
Sicard et al. 2020b). However, our results showed a gen-
eral increase of PODY all over Europe between 2000 and 
2014 highlighting the relative insensitivity of PODY to 
 O3 precursors control strategies. Climate change is identi-
fied as the responsible of this insensitivity as postulated 
in previous studies (Liu et al. 2016a, b; Fu et al. 2017; 
Anav et al. 2019). They reported earlier green-up dates and 
delayed dormancy dates then a longer growing season due 
to changing climate. Moreover, climate change increases 
the stomatal conductance thanks to the positive effects 
of higher air temperature and solar radiation on stomata 
opening (Hoshika et al. 2015). Even if the  O3 mean con-
centrations decreased, higher PODY levels were observed 
over time leading to higher  O3 risk to European forests 
(Proietti et al. 2016; Anav et al. 2019). Anav et al. (2019) 
hypothesized that the positive feedback between climate 
change and PODY will increase in the near future and the 
efforts in controlling emissions of  O3 precursors could be 
significantly offset by climate change, thus increasing the 
 O3 risk for forests. A primary goal is to define a metric 
for  O3-risk assessment, which can identify ecosystems at 
 O3 risk to protect them using standards and policies. In 
Europe, AOT40 has been widely used, under the assump-
tion that plant injury and exposure to  O3 concentrations are 
correlated (EPA 2007; UNECE 2011; Fares et al. 2013). 
To date, several studies report a general growing con-
sensus for moving toward a biologically-sound stomatal 
flux-based standard (PODY) as new European legislative 
standard (Mills et al. 2011; Fares et al. 2013; Sicard et al. 
2016b,c; Anav et al. 2016, 2019) although critical levels 
for vegetation protection still need to be validated (Sicard 
et al. 2016c). Epidemiological observation of  O3-induced 
injury and environmental variables including  O3 can be 
used to derive consistent stomatal flux-based critical levels 
for different type of vegetation under natural field condi-
tions (De Marco and Sicard 2019; Paoletti et al. 2019). 
The question about deriving new critical levels is still a 
challenge for the scientific community (De Marco and 
Sicard 2019), even because some advantage of AOT40 
are still present. Indeed the simplicity and fast applicabil-
ity of AOT40 could be an advantage for the use of the 

concentration-based metric (Anav et al. 2016). But on the 
other side AOT40 is not taking into consideration more 
biological processes linked to the stomatal aperture and 
can have spatially and temporally different patterns (De 
Marco et al. 2015). These consideration highlights the role 
of climate into determination of the impacts of ozone on 
forests. Consequently, strategies integrating both climate 
and air quality policies are urgently needed for forest pro-
tection against the negative impacts of  O3 (Ainsworth et al. 
2012).
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