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quantified vegetation attributes, its widespread use and 
popularity, especially in UAS applications, carry inher-
ent risks of misuse with end users who received little to 
no remote sensing education. This article summarizes the 
progress of NDVI acquisition, highlights the areas of NDVI 
application, and addresses the critical problems and consid-
erations in using NDVI. Detailed discussion mainly covers 
three aspects: atmospheric effect, saturation phenomenon, 
and sensor factors. The use of NDVI can be highly effective 
as long as its limitations and capabilities are understood. 
This consideration is particularly important to the UAS user 
community.

Keywords  NDVI · Atmospheric effect · Saturation 
phenomenon · Calibration · Multispectral · Near infrared · 
UAS · Drone remote sensing

Introduction

Multi-spectral remotely sensed imagery contains a combina-
tion of bands that creates a composite image to be used for 
interpretation and analysis. With multi-spectral imagery, the 
individual bands in the band composite can be transformed 
to get certain features and patterns to stand out better. Image 
band transformations have become a common practice to 
generate new images from two or more image bands for 
information extraction. The new images generated this way 
enhance representations to ground objects such as vegeta-
tion. There are more than one hundred vegetation indices 
that have been derived from multispectral imagery (Xue and 
Su 2017).

Kriegler et  al. (1969) proposed a simple band trans-
formation: near-infrared (NIR) radiation minus red radia-
tion divided by near-infrared radiation plus red radiation, 
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resulting in a newly simplified image called the Normal-
ized Difference Vegetation Index (NDVI). Like all indices 
created to simplify what are otherwise complex amalgama-
tions of data, the NDVI is appealing because of its ability 
to quickly delineate vegetation and vegetative stress, which 
has great appeal in commercial agriculture and land-use 
studies. The appeal was quickly recognized by those in 
the scientific community in the early 1970s, all the earth 
observation satellite remote sensing data were equipped to 
produce this index at different spatial and temporal resolu-
tions. For example, at the planetary scale, the generation of 
global NDVI data sets was given the highest priority by the 
Pathfinder AVHRR Land Science Working Group (James 
and Kalluri 1994). For reasons related to its long history, 
simplicity, and reliance on easily obtainable multi-spectral 
bands, the NDVI has become the most popular index used 
for vegetation assessment.

The number of NDVI papers from the Web of Science 
Core Collection sharply increased from 795 in the 1990s, to 
3361 in the 2000s, and to 12,618 in the 2010s. Among the 
total publications, at least one third of them were associated 
with forests. The forest-NDVI data sources and application 
areas experienced notable changes over time (Table 1). For 
example, AVHRR was replaced with Landsat and MODIS in 
dominant sensors, and physiology was replaced with phenol-
ogy in research; climate change and classification became 
more popular; leaf area index (LAI) became more popular 
in absolute number but less popular in number percentage. 
It is worth noting that ‘time-series’ was among the top three 
keywords searched for in the 2010s because of continuous 
availability of NDVI products from AVHRR and MODIS in 
the past four decades. Pettorelli et al. (2005) suggest NDVI 
time-series should be smoothed before being used because 
of noise present in the downloadable NDVI data sets.

The overall purpose of using NDVI is to improve the 
analysis of information about vegetation with remotely 
sensed data. Studies have demonstrated that NDVI is effec-
tive to differentiate savannah, dense forest, non-forest and 
agricultural fields and to determine evergreen forest versus 
seasonal forest types (Pettorelli et al. 2005), and to estimate 
various vegetation properties, including the LAI (e.g., Tian 
et al. 2017), biomass (e.g., Zhu and Liu 2015), chlorophyll 
concentration in leaves (e.g., Pastor-Guzman et al. 2015), 
plant productivity (e.g., Vicente-Serrano et al. 2016), frac-
tional vegetation cover (e.g., Dutrieux et al. 2015), and plant 
stress (e.g., Chavez et al. 2016). Such estimations are often 
derived by correlating remotely sensed NDVI values with 
ground-measured values of these variables. The reliability 
of NDVI directly determines the robustness of NDVI-related 
models (Butt 2018).

Remote sensing data from different platforms has become 
increasingly available for end users on the application side of 
remote sensing. In addition to the increasingly common free 

satellite data sources, including MODIS, Landsat, Sentinel, 
and Gaofen, commercial satellite imagery resolutions con-
tinue to increase spatially (e.g., WorldView-3,-4) and tem-
porally (e.g., Planet), thanks to the cost reductions for small 
satellite systems (Shao 2015). Many forms of commercial 
satellite imagery available today gather imagery with resolu-
tions not limited so much by technology, but by legal con-
straints that limits the spatial resolutions or ground sample 
distances (GSD) that are mainly attributed to national secu-
rity concerns. Perhaps the most astonishing development 

Table 1   Intersections and trends of top 20 keywords identified from 
forest-relevant DNVI publications within the Web of Science Core 
Collection in the 1990s, 2000s, and 2010s

Keyword The frequency of keyword

1990s 2000s 2010s

AVHRR Data 24 112 –
Biomass 12 43 –
Calibration 8 – –
Canopy 12 – –
Classification 13 88 396
Climate 17 78 307
Climate Change – 55 505
Cover 10 52 269
Data Set 12 – –
Drought – – 196
Dynamics 8 – 291
Evapotranspiration 11 – –
Fire – 35 –
Growth – 35 –
High-Resolution Radiometer 14 – –
Images 24 116 315
Landsat – 37 292
Leaf Area Index 30 129 314
Model 18 89 219
Modis – 114 612
Net Primary Production 11 51 –
Patterns – 56 184
Phenology – 60 351
Photosynthesis 20 – –
Precipitation – – 186
Radiation 10 – –
Rainfall – 36 –
Random Forest – – 230
Reflectance 29 101 187
Spectral Reflectance 10 – –
Temperature – 48 222
Time Series – – 455
Transpiration 13 – –
Trends – – 167
Variability – 61 259
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in remote sensing technology today is the widespread use 
of unmanned aerial system/ vehicle (UAS/UAV) or simply 
drone remote sensing (Tang and Shao 2015; Yao et al. 2019). 
NDVI data have become a commonplace output stemming 
from UAS industry, and their spatial resolution continues to 
reach GSD levels that were unimaginable before. As many 
as 337 NDVI papers associated with UAS/drone/UAV were 
found from the Web of Science Core Collection in the 2010s, 
increasing from only three publications in the 2000s.

The rapid advancements in UAS are making the use of 
NDVI more popular over time. However, many UAS-based 
NDVI products have shown unprofessional deficiencies, 
adding new considerations on the use of NDVI. The prob-
lems in UAS-based NDVI are the results of the inherent 
nature of NDVI and lagged education of UAS users. As 
NDVI continues to dominate the applications of vegetation 
indices derived from the existing and new remote sensing 
data sources, NDVI products will be increasingly diversi-
fied. The consistent use of NDVI among different sensors 
and platforms is the key for promoting the effectiveness 
of NDVI on vegetation assessment across space and over 
time (Grant 2017). The major problems in NDVI include its 
atmospheric effect, its ease for saturation, and sensor quality. 
Here we aim to review and explain these major problems so 
that NDVI users, particularly the end users lacking in-depth 
remote sensing knowledge, will take cautious practice with 
NDVI data.

NDVI calculation

Mathematically, NDVI is expressed as follows:

where N
DVI

 is normalized difference vegetation index. Red 
and NIR are spectral radiance (or reflectance) measurements 
recorded with sensors in red (visible) and NIR regions, 
respectively.

Radiance (watts steradian−1 m−2 μm−1) is the measure 
of energy flux recorded by a sensor. The values of radiance 
are often rescaled to digital numbers (DN) as 6-bit or 7-bit 
(MSS), 8-bit (TM, ETM +), or 12-bit (Landsat8) unsigned 
integers. Reflectance is a unitless measure of the ratio of 
radiation reflected by an object relative to the radiation 
incident upon the object. NDVI values range from − 1 to 
1 regardless using radiance, reflectance, or DN as input. 
In general, its values are negative for water bodies, close 
to zero for rocks, sands, or concrete surfaces, and positive 
for vegetation, including crops, shrubs, grasses, and forests 
(Jones and Vaughan. 2010). In other words, greater NDVI 
values mean stronger implications for vigorous vegetation 
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greenness. The use of reflectance is helpful to reduce the 
effect of scattered radiation in the atmosphere (Jones and 
Vaughan. 2010). On clear days, the amount of solar radia-
tion scatter is inversely proportional to the fourth power of 
the wavelength (~ λ−4, where, λ is wavelength) (Fig. 1). This 
theory of strong wavelength dependence on atmospheric 
scattering is known as Rayleigh scattering, and it means that 
shorter (red) wavelengths scatter stronger as compared to the 
longer (near infrared) wavelengths, affecting the calculation 
of NDVI.

The differences in NDVI values among different objects 
are due to their relative differences in spectral responses 
(Fig. 1). Thus, Eq. 1 can be changed as follows:

where N
DVI

is normalized difference vegetation index. R is 
the ratio of NIR to Red, and is commonly referred as to ratio 
vegetation index (Jones and Vaughan 2010).

Equation 2 is more explicit for explaining NDVI behav-
ior patterns due to different responses of NIR and Red to 
atmosphere (in the selection below) and stress (McVeagh 
et al. 2012).

Atmospheric effect

By referring to Eq. 2, if R = 2, N
DVI

 = 0.33; to obtain a NDVI 
value of 0.80, R needs to be equal to 9. Spaceborne and 
airborne sensors mix atmosphere-scattered and surface-
reflected radiations into data recordings. Due to Rayleigh 
scattering, radiance in the red region is much greater than 
that in NIR region. The mid-wavelength values of band 4 
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Fig. 1   An illustration of spectral response curves and their intersec-
tions with red (Landsat 8 Band 4) and near infrared bands (Landsat 8 
Band 5) as well as the wavelength-dependent scattering
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and 5 from Landsat 8 are 655 nm and 865 nm, respectively. 
Thus, scattering in the red region is three times higher than 
in the NIR region. In other words, recorded radiance in the 
red region contains a much greater proportion of scattering 
than that in NIR region. In addition, solar radiation in the 
red region is much greater than that in the NIR region on 
top of the atmosphere (TOA), elevating scattered-radiation 
proportions in red radiance recordings more than NIR radi-
ance recorded values. Therefore, NDVI values calculated 
with TOA radiance (or DN) are generally lower than those 
calculated with surface reflectance (Fig. 2). The analysis 
ready data (ARD) provide by Landsat and Sentinel-2 have 
corrected atmospheric effects and can be used directly to 
calculate NDVI (Frantz 2019). Because a UAS sensor is 
frequently so close to ground objects, the atmospheric effect 
is minimal (e.g., Guo et al. 2019).

Saturation phenomenon

One commonly recognized problem attributed to NDVI is 
its insensitivity to changes in environment and/or biomass 
when environmental conditions and biomass reach to a cer-
tain high level. For example, Nicholson and Farrar (1994) 
noted that the response of NDVI to rainfall was nearly linear 
at low values of rainfall, but showed little further increase 
with rainfall at relatively high rainfall values (50–100 mm/
month) in Botswana; Van Der Meer et al. (2001) found that 
NDVI values become saturated at larger biomass values 
(> 100 tons/ha) for broadleaved forests. On the other hand, 
the calculation of NDVI is sensitive to atmosphere, soil, and 
pixel components. The spectral response to these factors 
is not exactly the same in the two spectral bands used for 
NDVI calculation, complicating NDVI behavior patterns. As 
a result, there are close similarities in NDVI values between 
a mature deciduous forest and golf course grass (Fig. 2).

Sensor factors

Sensor types are characterized by varying sensor technolo-
gies and platforms, which differentiate remote sensing data 
sets. Continuous efforts have been made in comparing NDVI 
values acquired with different sensors. Due to differences in 
band widths, spatial resolutions, and data processing, dif-
ferent sensors can deliver notably different NDVI behav-
iors, particularly between spaceborne and airborne sensors 
(Fig. 2). Van Leeuwen et al. (2006) pointed out that MODIS 
and VIIRS NDVI data are minimally affected by atmos-
pheric water vapor, while AVHRR NDVI data were sub-
stantially reduced by water vapor, making inter-sensor com-
parison for NDVI calculation even more difficult. Franke 
et al. (2006) used a hyperspectral dataset to compare NDVI 
differences directly attributed to band spectral characteris-
tics and found substantial NDVI differences among Landsat 

5TM, QuickBird and SPOT5. Rossi et al. (2019) found that 
NDVI inconsistencies among Spectral Reflectance Sensors 
(SRS), Phenocams, and Sentinel-2 MSI depended on sen-
sor-specific spatial and spectral resolutions and acquisition 
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Fig. 2   A comparison of NDVI values for three land cover types 
and from one aerial and four free satellite data sources acquired in 
autumn between 2016 and 2019. NAIP is USDA National Agricul-
ture Imagery Program aerial photography (0.6 m pixel size), Sentinel 
is level-2 surface reflectance data (10  m), L8_SR is Landsat 8 sur-
face reflectance data (30 m), L8_DN is Landsat 8 digital number data 
(30 m), GF is Gaofen-2 data (3 m), P_SR is Planet surface reflectance 
data (3 m), and P_DN is Planet digital number data (3 m). The sam-
pling sites are located in West Lafayette, Indiana, US
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geometries, as well as on vegetation management activities 
and vegetation growth during the year. Khaliq et al. (2019) 
demonstrated that 5-cm resolution UAS NDVI was more 
accurate than 10-m Sentinel-2 NDVI for measuring vineyard 
variability. Berra et al. (2019) compared UAS and Landsat 
derived NDVI datasets for tracking forest canopy phenology 
and found UAS NDVI time series was more effective.

Although UAS sensors maintain high-resolution advan-
tages, the quality of UAS sensors varies greatly (Grant 
2017). Unlike high-end satellite systems, which have been 
thoroughly calibrated, many purported commercial UAS 
multi-spectral NDVI capable sensors may involve sub-
stantial geometric and radiometric errors that need to be 
reduced through calibration. However, UAS calibration is 
not a straightforward process (Poncet et al. 2019). Deng 
et al. (2018) suggest that extra efforts are needed to calibrate 
UAS sensors and improve UAS data postprocessing for the 
robust use of UAS NDVI datasets. Mamaghani and Salvag-
gio (2019) proposed a general technique for characterizing 
and calibrating spectral sensors for UAS. Particular efforts 
are needed to calibrate multi-lens systems, which have single 
or multiple camera bodies, to reduce co-registration errors 
(Jhan et al. 2018; Wierzbicki 2018) and radiometric errors 
(Guo et al. 2019; Wierzbicki et al. 2018). Such calibrations 
are important to UAS-based NDVI because of two reasons. 
First, NDVI calculation depends on the ratio of the NIR 
band to the Red band (Eg. 2), and systematic calibrations 
can improve the ratio value. Second, UAS imagery has high 
spatial resolutions. In this case, a small error in the view-
ing angle of a single lens can cause unacceptable geometric 
distortions between the NIR and Red bands.

Concluding remarks

The use of NDVI facilitates remote sensing applications in 
part because it correlates with the status of a broad array of 
vegetation properties, thus simplifying the complex. At the 
same time, popular development of remote sensing tech-
nology has subsequently promoted the generation of low-
cost image data helpful for broadening NDVI applications. 
Remote sensing has changed the way the land resources are 
viewed, used, and managed. The same applies toward how 
NDVI is implicated with vegetation heath, patterns, and 
status. There is no doubt that NDVI will continue to be a 
dominate vegetation index, but the effective use of NDVI 
depends on the quality of multispectral data and the inter-
pretation of NDVI values.

There are no two remote sensing images that are the same. 
So too with NDVI products. Unlike land-use classifications 
that can be assessed with reference data, a specific NDVI 

value does not have a sole interpretation. In this regard, no 
black/white reference data are available to validate NDVI 
data utilizing conventional accuracy assessment methods 
(Shao et al. 2019). For local-scale vegetation management 
purposes, NDVI is commonly used as a direct indicator 
of vegetation health and growth (Coops and Stone 2005; 
McVeagh et al. 2012); for large-scale vegetation monitor-
ing purposes, NDVI is often used as a dependent variable 
to predict other vegetation attributes that cannot be detected 
directly with remote sensing imagery. In either case, it is 
possible to validate the visual or quantitative predictions 
(Box et al. 1989; Loranty et al. 2018). This validation is 
necessary to indirectly evaluate the effectiveness of NDVI 
data used.

Although NDVI has no explicit meanings, and its intent 
as an index is to simplify the complex, its behaviors can be 
explained by sophisticated science and technology. NDVI 
is generally useful if it is obtained with reliable sensors and 
data processing methods. Although we cannot expect that 
every user of NDVI products is a remote sensing expert, 
or that every remote sensing analyst is familiar with sensor 
calibrations, the unchecked use of NDVI can and should be 
minimized. Data analysts and data providers should educate 
NDVI users as much as possible. In the field of UAS, most 
end users of UAS NDVI data have little knowledge about 
NDVI, and simply have faith in the appealing pseudo-color 
of the NDVI images processed and provided by UAS com-
panies. Sometimes the UAS user community is misinformed 
about the NDVI as a sensor in itself and not as an index. This 
represents an unnecessary and inconsiderate practice from 
the UAS industry.

There are a variety of vegetation indices and each has its 
strength and limitations (Loranty et al. 2018; Xue and Su 
2017). NDVI is the most popular index used for vegetation 
assessment but this does not mean it is universally effective. 
In case NDVI cannot meet the needs of vegetation assess-
ment or other purposes, one may consider to use other veg-
etation indices. It is worth noting that every vegetation index 
has atmospheric and sensor effects, and thus it also has high 
variability and low repeatability or comparability.
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