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differing across all species and plant functional groups. Sto-
matal density ranged from 4.2 to 1276.7 stomata mm–2, sto-
matal size ranged from 66.6 to 8315.7 μm2, and stomatal 
relative area 0.1–93.3%. There was a significant negative 
relationship between density and size at the species and 
functional group levels, while the relative stomatal area was 
positively correlated with density and size. Stomatal traits 
of dominant species were relatively stable across different 
stand ages but were significantly different for herbs. The 
results suggest that stomatal traits remain relatively stable 
for dominant species in natural forests and therefore, spatial 
variation in stomatal traits across forest patches does not 
need to be incorporated in future ecological models.

Keywords  Forest restoration · Stomatal traits · Stand 
age · Plant functional groups · Variation

Introduction

Leaf stomata are composed of a pair of guard cells, the 
opening and closing of which are driven by moisture, tem-
perature, light, and carbon dioxide (CO2) in the short term 

Abstract  Stomata control carbon and water vapor 
exchange between the leaves and the atmosphere, thus 
influencing photosynthesis and transpiration. Combina-
tions of forest patches with different stand ages are com-
mon in nature, however, information of which stomatal 
traits vary among these stands and how, remains limited. 
Here, seven different aged forest stands (6, 14, 25, 36, 45, 
55, and 100 years) were selected in typical temperate, mixed 
broadleaf-conifer forests of northeast China. Stomatal den-
sity, size and relative area of 624 species, including the same 
species in stands of different ages were selected. Stomatal 
density, size and relative area were distributed log-normally, 
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(Casson and Gray 2008; Lau and Bergmann 2012). Stomata 
allow plants to exchange gas with the external environment, 
controlling photosynthesis and transpiration (Martin and 
Glover 2007; Franks and Beerling 2009), in addition to influ-
encing net primary productivity and water use efficiency of 
the ecosystem (Kim and Lieth 2003; Miyashita et al. 2005). 
Therefore, ecological models and earth system models con-
sider stomatal traits as important parameters for effectively 
simulating carbon, water, and energy cycles (Kelliher et al. 
1995). Although the importance of stomata from the view of 
plant physiological ecology has been acknowledged, infor-
mation about natural forests remains limited.

Plants respond quickly to short-term environmental 
changes by opening and closing their stomata, while mor-
phological traits of stomata such as stomatal density (SD), 
stomatal size (SS), and stomatal relative area (SRA, %), are 
the result of long-term adaptations to the external environ-
ment. Several studies have shown how morphological traits 
vary for certain dominant species and common species in 
natural forest communities (Tian et al. 2016; Wang et al. 
2016; He et al. 2018; Liu et al. 2018, 2019). However, most 
studies have demonstrated these variations in controlled 
experiments, while focusing on the short-term behavior of 

stomatal opening and closing (Luomala et al. 2005; Fraser 
et al. 2009; Engineer et al. 2015). With increasing CO2 
concentrations, SD decreases, causing maximum stoma-
tal conductance to decline and photosynthesis to increase 
(Hetherington and Woodward 2003). SD is generally nega-
tively correlated with SS (Stenstrom et al. 2002; Martin and 
Glover 2007; He et al. 2018); however, this relationship is 
not sufficiently compensatory to equalize SRA (Liu et al. 
2018). SRA represents an index of anatomical constraints 
on maximum stomatal gas exchange, where higher maxi-
mum stomatal gas exchange means higher productivity and 
competitiveness of plants (Bucher et al. 2018, 2019; Liu 
et al. 2018). Understanding how the morphological traits of 
leaf stomata vary could provide insights on the adaptation 
strategies of plants to changing external environments over 
the long term.

Natural forests are susceptible to natural and human dis-
turbances (Xu et al. 2016) such as fire (Wang et al. 2013b), 
pests (Kurz et al. 2008), weather, grazing pressures, and 
land-use changes. In other words, most forests in the world 
are recovering from past disturbances and generally con-
sist of patches containing stands of different ages (Fig. 1). 
Stand age is usually estimated as the time since the last 
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Fig. 1   Schematic of forest patches with stands of different ages. a Forest patches with stands of different ages; b questions of scientific impor-
tance; c stomata of the broad-leaved species Acer tegmentosum Maxim.; d stomata of the coniferous species Pinus koraiensis Sieb. et Zucc
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major disturbance (Goulden et al. 2011; Pan et al. 2011; 
Poorter et al. 2016). How and/or which morphological sto-
matal traits (SD, SS, and SRA) vary among these patches 
remains unclear, even though such information is essential to 
optimize existing ecological models or to develop new ones.

In this study, seven adjacent temperate forest stands 
with different restoration times (6, 14, 25, 36, 45, 55, and 
100 years) following selective cutting were selected. Three 
stomata morphological traits (SD, SS, and SRA) were 
measured in 624 plant species, including the same species 
in stands of different ages. The main objectives were to: 
(1) explore the distribution frequency of stomatal traits of 
typical north-temperate, mixed broadleaf-conifer forests as 
a whole; (2) demonstrate the relationships among different 
stomatal traits at the species level and for different plant 
functional groups (PFGs); and, (3) reveal how stomatal traits 
change with stand age. By delineating how forest age influ-
ences stomatal traits, we expected to reveal the importance 
of using stomatal traits as the main parameters in ecologi-
cal models to predict ecological functions so as to optimize 
models.

Materials and methods

Site description

The field investigation was conducted in the Jiaohe Forestry 
Experimental Bureau (43°57′ N, 127° 44′ E) in Jilin Prov-
ince, northeastern China. The site contains typical temper-
ate, mixed broadleaf-conifer forests and has a continental 
monsoon climate, with short, mild summers and long, cold 
winters. The hottest and coldest months are July (21.7 °C) 
and January (–18.6 °C), respectively, and the average annual 
temperature is 3.8 °C. The average annual precipitation is 
approximately 695.9 mm. The soil type is brown forest soil 
(Zhang et al. 2017) and the dominant tree species are Pinus 
koraiensis Sieb. et Zucc., Acer mono Maxim., Quercus 
mongolica Fisch. ex Ledeb. and Fraxinus mandschurica 

Rupr. The dominant shrub species are Corylus mandshu-
rica Maxim. and Rhamnus schneideri Lévl. et Vant. The 
dominant herbaceous species are Vitis amurensis Rupr. and 
Brachybotrys paridiformis Maxim. ex Oliv.

Sampling and measurements

Field sampling

The field survey was conducted in August 2017. Due to 
long-term selective cutting as the main mode of forest man-
agement, patchy stands of different ages have formed along 
a restoration gradient (Fig. 1). Seven adjacent temperate 
stands on similar topography with different restoration ages 
(6, 14, 25, 36, 45, 55, and 100 years) were randomly selected 
after selective cutting.

Four 30 m × 40 m experimental plots were established in 
each stand, and two 5 m × 5 m quadrats and four 1 m × 1 m 
quadrats were located within each plot to measure shrub 
and herbaceous species (He et al. 2018; Liu et al. 2018). All 
plant species were present in the plots were collected. Lati-
tude, longitude, and altitude and the composition of plant 
species were recorded for each plot. A total of 624 species 
of trees, shrubs, and herbs were collected (Table 1).

Measurement of stomatal traits

For each species within each plot, 20 or more mature 
leaves were collected from the top canopies of four 
healthy plants. The leaves were pooled, placed in 
sealed plastic bags, and immediately stored in a cooler 
box. Five to ten leaves from each sample were cut into 
1.0 cm × 0.5 cm pieces and fixed in a 75% alcohol-for-
malin-glacial acetic acid-glycerin solution (90:5:5:5). 
Stomatal traits were observed using a scanning electron 
microscope (S-3400 N, Hitachi, Japan). Three pieces were 
selected from the pooled samples, and each photographed 
twice on the lower surface (Tian et al. 2016; Liu et al. 

Table 1   Information on plots 
subjected to different restoration 
periods after selective cutting

† Data in parentheses are the percentage of different growth types out of all plant species (%)

Restoration 
duration 
(year)

Longitude (°N) Latitude (°E) Altitude (m) No. of plant species

Tree Shrub Herb Total

6 43°54′44′’ 127°39′47′’ 490.9 20 (16.5) 25 (20.7) 76 (62.8) 121
14 43°58′32" 127°41′1′’ 487.6 20 (25.3) 16 (20.2) 43 (54.4) 79
25 43°52′33′’ 127°34′0′’ 710.0 19 (22.6) 14 (16.7) 51 (60.7) 84
35 43°54′45′’ 127°40′01′’ 538.7 20 (25.3) 13 (16.4) 46 (58.2) 79
45 44°2′40" 127°45′28′’ 505.9 19 (20.2) 14 (14.9) 61 (64.9) 94
55 43°58′11′’ 127°44′18′’ 491.8 21 (28.4) 12 (16.2) 41 (55.4) 74
100 43°51′48′’ 127°49′11′’ 731.3 18 (23.4) 16 (20.8) 43 (55.8) 77
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Fig. 2   Frequency distribu-
tions of stomatal density (a, 
SD), stomatal size (b, SS), and 
stomatal relative area (c, SRA) 
in temperate forests. N, number 
of species; Max, maximum; 
Min, minimum; CV, coefficient 
of variation. Data are the total 
of seven forests
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Table 2   Variance of sto-
matal traits along the stand 
ages

Level Stomatal density (SD) Stomatal size (SS) Stomatal relative 
area (SRA)

F P F P F P

Species 2.687 0.015 3.018 0.007 4.053 0.001
Dominant species 1.577 0.179 0.467 0.828 1.113 0.372
Plant functional groups Tree 0.425 0.861 1.956 0.077 1.633 0.143

Shrubs 2.810 0.014 1.058 0.393 6.654  < 0.001
Herbs 3.694 0.001 3.567 0.002 8.276  < 0.001
Broad-leaved 1.798 0.101 3.019 0.007 3.020 0.007
Coniferous 0.786 0.609 1.614 0.332 4.817 0.076

2018, 2019). The number of pores (N) and the area of the 
image (SPhoto) were recorded to obtain stomatal density 
(SD, stomata mm–2). Five pores were randomly selected 
from each image to measure stomatal length (SL, µm) 
and hence, stomatal size (SS, μm2). SD, SS, and SRA (%) 
were calculated as:

Dominant species

Height and diameter-at-breast-height (DBH) were 
recorded for each woody species with DBH ≥ 2 cm. Bio-
mass was calculated using species-specific allometric 
regressions with DBH and height. Dominant tree spe-
cies are defined as the minimum number of species that, 
combined, account for 85% of the total biomass (Grime 
1998; Avolio et al. 2019). Dominant shrub species are 
defined as the minimum number of species that, com-
bined, account for 55% of the shrub biomass, and domi-
nant herb species are defined as the top two of the impor-
tance-value = (the relative cover + the relative height + the 
relative frequency)/3) (Zhang et al. 2015).

(1)SD = N ÷ S
Photo

(2)SS = SL × SL

(3)SRA = SS × SD × 10
−4

Data analysis

Stomatal traits were log transformed to obtain the approxi-
mate normality for the analysis of frequency distributions. The 
Pearson correlation coefficient was calculated for the various 
stomatal traits. One-way ANOVAs were performed to com-
pare differences in stomatal traits among different PFGs (trees, 
shrubs, herbs), as well as the variation in stomatal traits across 
stand ages. SD-SS relationships were tested using ordinary 
least squares (OLS) linear regressions, and differences in slope 
and intercept of SD-SS relationships among PFGs and stand 
ages were evaluated by standardized major axis (SMA) estima-
tion using R-software. All data analyses and graphical presen-
tations were performed using SPSS 13.0 (IBM Corp., Chicago, 
IL, USA) and SigmaPlot 10.5 software (Systat Software, Point 
Richmond, CA). Significance was set at P = 0.05.

Results

Changes in stomatal traits

Across all 624 sampled plant species, the SD, SS, and SRA 
were distributed log-normally. The mean values of SD, SS, 
and SRA were 178.7 stomata mm–2, 1064.2 μm2, and 12.7%, 
respectively, ranging from 4.2 to 1276.7 stomata mm–2, 66.6 
to 8315.7 μm2, and 0.1 to 93.2% (Fig. 2). The stomatal traits 
of dominant species did not significantly differ across differ-
ent aged stands (P > 0.05, Table 2).
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SD, SS, and SRA differed significantly across different 
PFGs (trees, shrubs, and herbs, P < 0.05; Fig. 3). Trees had 
higher SD, smaller SS, and larger SRA than shrubs and 
herbs. There were significant differences in stomatal traits 
between coniferous and broadleaf species (Fig. 3). Broadleaf 
trees had higher SD and smaller SS than coniferous species. 
The distributions of stomatal traits for the seven different 
aged stands are shown in Fig. S1 and S2.

Changes in stomatal traits of different aged stand

Stomatal traits were distributed log-normally in the seven 
different aged stands (Fig. 4). SD and SRA were highest 
in 25-year-old stand and lowest in 36-year and 14-year-old 
stand, respectively. However, SS was largest in 55-year-old 
stand and smallest in the 14-year-old stand (Table S1). Coef-
ficients of variation for SD, SS, and SRA were largest in the 
14-year-old stand (Fig. 4). The stomatal traits of the different 
plant functional groups (PFGs) varied consistently for every 
stand age; however, trees tended to have higher SD, smaller 
SS, and larger SRA (Table S2).

Relationships among stomatal traits

Strong negative relationships between stomatal density (SD) 
and stomatal size (SS) were found across species (Fig. 5a) 
and PFGs (Fig. 5b, Table S3), whereas SS decreased lin-
early with increasing SD (after log transformation). After 
standardized major axis (SMA) tests (Tables S5 and S6), 
there was a significant difference in the slope among PFGs 
(P < 0.05) where the slope of herbs was steeper than for trees 
and shrubs. For each stand age, SS tended to decrease lin-
early with increasing stomatal density (Fig. 5c, Table S4); 
however, the slopes differed significantly across stands of 
different ages. SD and SS were positively correlated with 
SRA at the species and PFG levels, irrespective of stand age.

Relationship between stomatal traits and stand age

Stomatal traits significantly differed among different aged 
stands at the species level (P < 0.05, Table 2) and between 
PFGs (Table S2). In the same plant functional groups, vari-
ations in stomatal traits differed between stand ages. For 
example, there was no significant difference in shrub SS 

Fig. 3   Changes in leaf stomatal 
traits across different plant func-
tional groups. In each panel, 
data represent the mean ± 1 SE. 
Data with the same lowercase 
letters represent no significant 
differences at P = 0.05. Woody 
species were divided into conif-
erous and broadleaved plants. 
SD: Stomatal density, SS: 
Stomatal size, SRA: Stomatal 
relative area
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Fig. 4   Frequency distributions of stomatal density (SD), stomatal size (SS), and relative stomatal area (SRA) for temperate forests with different stand ages



933Changes in leaf stomatal traits of different aged temperate forest stands﻿	

1 3

(stomatal size) among stands, whereas SD (stomatal density) 
significantly differed (Table 2). Variation in stomatal traits 
was irregular with increasing stand age (P > 0.05). Impor-
tantly, the stomatal traits of dominant species did not differ 
significantly across stand age (P > 0.05, Table 2).

Discussion

Variation in stomatal traits

Stomatal density, size and relative area for 624 plant species 
were used to quantify the distribution frequency of stoma-
tal traits in these temperate forests, confirming and extend-
ing existing knowledge of the distribution of stomatal traits 
established by Hetherington and Woodward (2003). Previous 
reports on the stomatal traits of 90 woody and semi-woody 
plants showed that stomatal relative area ranged from 2.2 to 
42.0%, while this study also provided information on her-
baceous plants in which SRA ranged from 0.1 to 93.2%. 
This large variation in SRA among species could strongly 
influence the maximum stomatal conductance of plants, 
reflecting changes to maximum gas exchange under differ-
ent environmental conditions.

Consistent with previous studies, stomatal traits differed 
significantly across plant functional groups (Fraser et al. 
2009). This study showed that trees had the highest stoma-
tal density and relative area, followed by shrubs and herbs, 
while the opposite pattern was found for stomatal size. These 
patterns reflect the different strategies of plant functional 
groups to adapt to their environment (Wang et al. 2016). 
For example, the larger stomatal relative size of trees allows 
them to adapt efficiently to dry environmental conditions. 
This combination of smaller stomatal size and greater sto-
matal density allows tree species to achieve maximum gas 
exchange when the environment is suitable (McDowell et al. 
2008; Drake et al. 2013; Krober et al. 2015). In contrast, 

large stomata are essential for herbs for optimal light capture 
when it is limited. Differences in stomatal traits between 
coniferous and broadleaf species reflect differences in vein 
structure (Lammertsma et al. 2011; Zhang et al. 2012). Sto-
matal size and relative area showed similar trends, being 
lower in broadleaf species and higher in coniferous plants, 
with the opposite pattern for stomatal density (Lammertsma 
et al. 2011). As coniferous species are often found in harsh, 
arid, or cold environments, lower stomatal density is ben-
eficial to help maintain high water use efficiency (Yoo et al. 
2010). The relative stomatal area of coniferous species is 
greater than for broadleaf species; consequently, the pho-
tosynthetic capacity of coniferous species per unit area is 
greater than for broadleaf species (Tian et al. 2016). There-
fore, coniferous species likely have higher growth potential 
in our study area.

Trade‑off between stomatal traits

Stomatal morphological traits can influence the balance of 
CO2 uptake for photosynthesis against water loss by adjust-
ing stomatal opening and closing. To some extent, stomatal 
relative area (SRA) is an index of how maximum stomatal 
gas exchange is constrained by anatomy (Tian et al. 2016; 
Bucher et al. 2018, 2019; Liu et al. 2018). This phenom-
enon is related to stomatal density and size which determine 
maximum anatomical stomatal conductance (Bucher et al. 
2016; Sack and Buckley 2016), influencing the photosyn-
thesis and transpiration of plants (Sack and Buckley 2016). 
Plants adapt to their environment by altering stomatal con-
ductance, consequently stomatal relative area varies across 
environments (Fanourakis et al. 2015). For instance, under 
drought conditions, decreasing stomatal relative area mini-
mizes water loss and improves water use efficiency, allow-
ing plants to endure drought for longer periods (Drake et al. 
2009; Franks and Beerling 2009; Taylor et al. 2012; Franks 
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et al. 2015). Higher stomatal relative area should benefit 
species exposed to low concentrations of CO2, high irradi-
ance and insufficient nutrients for higher productivity, than 
plants with smaller stomatal relative area (Franks and Beer-
ling 2009; Taylor et al. 2012; Wang et al. 2016). Stomatal 
density and size allows researchers to estimate the theoreti-
cal, maximum anatomical stomatal conductance, indicating 
the extent to which plants are adapted to a given environ-
ment (Franks and Beerling 2009; Franks et al. 2009). Previ-
ous studies have shown that increasing stomatal density and 
decreasing stomatal size under water deficits help plants to 
adapt to drought conditions (Martinez et al. 2007). Through 
a trade-off between stomatal density and size, the relative 
stomatal area may be kept within an appropriate range to 
maximize ecological functions (Lawson and McElwain 
2016). However, if the relative stomatal area increases due 
to increased stomatal density and constant stomatal size, or 
increased density and size, there would insufficient space 
to accommodate stomata, which in turn, would impact the 
other functions of leaves (Franks et al. 2009).

This study demonstrates a significant, negative correla-
tion between stomatal density and size, here size decreased 
linearly with increasing density (Fig. 5). This supports Frank 
et al. (2009) studies on multiple species at various geological 
scales. This negative relationship between stomatal density 
and size represents a long-term adaptation (Hunt et al. 2003; 
Mott et al. 2008; Drake et al. 2013) that might be explained 
by physical and energetic constraints (Franks et al. 2009). 
The physical constraints mainly relate to the spatial limita-
tions of embedding stomata with sufficient density and size 
into the leaf epidermis to optimize stomatal conductance. 
The energetic constraints relate to investment and return in 
terms of stomatal conductance, and thus photosynthesis and 
water use efficiency. The trade-off between stomatal traits 
might be an important strategy for adapting to the environ-
ment, independent of plant functional groups or stand age.

Stable stomatal traits of dominant species 
with stand age

The stomatal traits of the dominant species remained 
relatively stable across stands of different ages (Table 2), 
whereas the total stomatal traits (of all species) differed sig-
nificantly between stand ages (Table 2). Changes in stoma-
tal traits are mainly controlled by the external environment 
such as temperature, light intensity, CO2 levels, and water 
supply (Casson and Gray 2008; Lau and Bergmann 2012; 
He et al. 2018). Consequently, plants can adapt to a given 
environment by adjusting their stomatal traits (Zhu et al. 
2011; Wang et al. 2013a; Carlson et al. 2016). The stomatal 
traits of herbs were far more labile to change than those of 
trees and shrubs, with trees and shrubs being less affected 

by the environment relative to herbs. Due to the influence of 
the herb component, total stomatal traits of all species dif-
fered significantly between different stand ages. However, in 
each stand, species in the upper layers, occupying favorable 
niches in terms of nutrient acquisition and water absorption. 
When the environment does not change drastically, dominant 
species retain their existing stomatal traits, exhibiting no 
variation (Delgado et al. 2011).

Conclusions

This study demonstrates how stomatal traits are distributed 
in typical temperate forests with different stand ages. Sto-
matal traits varied significantly across species and plant 
functional groups (Tables 2 and S2). This variation reflects 
the different strategies of plant functional groups to adapt to 
their environment. Stomatal traits of entire species were sig-
nificantly different across different aged stands, whereas sto-
matal traits of dominant species remained relatively stable 
(Table 2). These findings indicate that variations of stomatal 
traits due to changing environments differed for all species, 
including dominant species. Considering the importance of 
dominant species in forests and the associated small varia-
tions in stomatal traits across forest patches, variations in 
stomatal traits between stands of different ages should not 
be incorporated in future ecological models.
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