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performances of our new model in its linear and nonlinear 
form were evaluated through a leave-one-tree-out cross vali-
dation process and compared against that of the only such 
existing model. The evaluations and comparisons were made 
through benchmarking statistics both globally over the entire 
data space and locally within specific subdivisions of the 
data space. These statistics indicated that the nonlinear form 
of our model was the best and its linear form ranked second. 
The prediction accuracy of our nonlinear model improved 
when the total log length represented more than 20% of the 
total tree height. The poorer performance of the existing 
model was partly attributed to the high degree of multicol-
linearity among its predictor variables, which led to highly 
variable and unstable parameter estimates. Our new model 
will facilitate and widen the utilization of harvester data far 
beyond the current limited use for monitoring and reporting 
log productions in P. radiata plantations. It will also facili-
tate the estimation of bark thickness and help make harvester 
data a potential source of taper data to reduce the intensity 
and cost of the conventional destructive taper sampling in 
the field. Although developed for P. radiata, the mathemati-
cal form of our new model will be applicable to other tree 
species for which CTL harvester data are routinely captured 
during thinning and harvesting operations.

Abstract  A new model for predicting the total tree height 
for harvested stems from cut-to-length (CTL) harvester data 
was constructed for Pinus radiata (D.Don) following a con-
ceptual analysis of relative stem profiles, comparisons of 
candidate models forms and extensive selections of predictor 
variables. Stem profiles of more than 3000 trees in a taper 
data set were each processed 6 times through simulated log 
cutting to generate the data required for this purpose. The 
CTL simulations not only mimicked but also covered the 
full range of cutting patterns of nearly 0.45 × 106 stems har-
vested during both thinning and harvesting operations. The 
single-equation model was estimated through the multiple-
equation generalized method of moments estimator to obtain 
efficient and consistent parameter estimates in the presence 
of error correlation and heteroscedasticity that were inher-
ent to the systematic structure of the data. The predictive 
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Introduction

Over the last 40 years, cut-to-length (CTL) harvesters have 
been increasingly adopted and widely utilised to improve 
log-harvesting productivity in natural and plantation for-
ests worldwide (e.g., Huyler and LeDoux 1999; Murphy 
2003; Gerasimov et al. 2012, 2013; Strandgard et al. 2013; 
Olivera et al. 2016; Williams and Ackerman 2016; Lu 
et al. 2018). The widespread utilization has been largely 
driven by great technological advances in the mechani-
cal design of harvesters and in the harvester head meas-
urement and optimization systems over the same period 
(Heinimann 2007; Nordfjell et al. 2010; Uusitalo 2010; 
Malinen et al. 2016). Now modern harvesters equipped 
with a GPS receiver and a computerized harvester head 
have become a major source of “big data” for forest man-
agement as they constantly capture, accrue and provide a 
daily flow of spatially explicit and time-stamped data on 
log production and assortment as well as detailed diameter 
measurements of harvested stems of individual trees over 
large operational areas (Sellén 2016; Uusitalo 2017; Lu 
et al. 2018; Müller et al. 2019; Rossit et al. 2019). Har-
vester data can provide the total log length but not the total 
height of individual trees because the top crown section 
beyond the last cut does not pass through the harvester 
head and therefore its length cannot be measured. The 
lack of tree height data represents a stumbling block in 
the full integration of spatially explicit harvester data with 
conventional inventory data, remote sensing imagery and 
LiDAR data for the development of harvester-based inven-
tory systems (e.g., Stendahl and Dahlin 2002; Murphy 
et al. 2006; Holopainen et al. 2010), for predicting attrib-
utes of individual trees, stands and forests (e.g., Rasinmäki 
and Melkas 2005; Holmgren et al. 2012; Söderberg 2015; 
Saukkola et al. 2019) and for estimating product recov-
ery (e.g., Peuhkurinen et al. 2008; Barth and Holmgren 
2013; Barth et al. 2015; Caccamo et al. 2018; Hauglin 
et al. 2018). Full integration will provide forest managers 
with a more detailed view of standing trees over an entire 
forest area and also allow them to predict spatially the vol-
ume and value of a certain product or a product mix that 
the forest can yield for optimising value recovery in man-
agement planning (Hauglin et al. 2018; Lu et al. 2018). 
Without full data integration, maximum value extraction 
from harvester data cannot be attained, preventing the 

transformation of big data into valuable data for forest 
management (see Müller et al. 2019).

For the most effective use of harvester data, a necessary 
first step is to estimate the total height of each harvested 
tree that was bucked, measured and recorded by the har-
vester head. This necessity has been well recognised, and 
several attempts to do so have been made in the estima-
tion of logging residue biomass and in the integration of 
harvester data with remote sensing data in forest inventory 
for predicting tree and stand attributes and estimating prod-
uct recoveries (Varjo 1995; Kiljunen 2002; Maltamo et al. 
2010; Möller et al. 2011; Söderberg 2015; Siipilehto et al. 
2016; Hauglin et al. 2018; Lu et al. 2018). So far, total tree 
height has been calculated by estimating the length of the 
unprocessed top section of individual trees using the only 
such existing model, that of Varjo (1995), or through an 
iterative search algorithm using a taper equation as demon-
strated well by Lu et al. (2018) and also briefly alluded to by 
Hauglin et al. (2018). Another ad hoc method was described 
by Kiljunen (2002), but it cannot be readily applied because 
of its requirement for diameter measurements at specific 
heights that are not routinely captured and stored in a har-
vester database.

Although proved useful in reconstructing individual 
trees from harvester data (e.g., Palander et al. 2009; Vesa 
and Palander 2010; Siipilehto et al. 2016), the only such 
existing model has a rather restricted range of applica-
tion, only to stems with the small end diameter underbark 
of the top log between 5 and 10 cm and over a minimum 
log length of 1.5 m as outlined by Varjo (1995) for the 3 
coniferous and broadleaf species in his study. The itera-
tive search algorithm demonstrated by Lu et al. (2018) 
requires a taper equation and 2 extreme quantile curves 
that define the search range of total tree height at any given 
diameter at breast height overbark (DBH) for the species 
at interest. In comparison to a single predictive equation, 
it requires a large amount of auxiliary height and diameter 
data, is somewhat cumbersome to implement in a com-
puter program and also takes longer to reach the optimal 
estimate. Even after the optimum is reached, it may still 
be less accurate than the prediction from a single equation 
as shown by Lu et al. (2018). This approach also relies on 
extensive bucking simulation through a large taper data 
set for accuracy testing. Without doing so, the accuracy 
of tree height estimation cannot be ascertained as in the 
case of Hauglin et al. (2018).

The weaknesses of these 2 methods highlight the need 
for an improved and more efficient approach to predict total 
tree height of individual stems cut-to-length by harvesters. 
The recent work of Lu et al. (2018) with Pinus radiata rep-
resented an essential first step towards satisfying this need. 
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Building upon this work, this paper presents a new model 
that overcomes the weaknesses of the 2 methods that are 
currently in use, also using plantation trees of P. radiata as 
an example.

Materials and methods

Notation

DBH	� Diameter at breast height over-
bark (cm)

DOB	� Diameter overbark (cm)
H	� Total tree height from ground 

level to tip of the tree (m)
Hs	� Average stump height of 

0.15 m
Hb	� Defined breast height of 1.3 m 

above ground level
L	� Total log length, i.e., sum of 

lengths of logs and waste sec-
tions of a stem (m)

Ltop	� Length of the unprocessed tree 
top section from the last cut-
ting point to the tip (m)

LED	� Large end diameter overbark 
of a log (cm)

SED	� Small end diameter overbark 
of a log (cm)

SEDTL	� SED of the top log (cm), the 
smallest SED of a cut stem

d = (SEDTL∕DBH)	� Relative diameter that takes 
any value between 0 and 1

h =
(
L + Hs − Hb

)
∕
(
H − Hb

)
	� Relative height above 

breast height
B = (1 − d)	� The base function
K	� Variable exponent that is 

a function of L , DBH and 
SEDTL

Rl = (L∕H)	� Total log length ratio
T = (DBH − SEDTL)∕L	� Average taper over total log 

length

A schematic diagram of the notation was drawn to aid 
understanding by readers (Fig. 1).

Data

For the purpose of this study, it would be ideal if the total 
tree height and stump height of a large enough sample of 

harvested trees were measured and recorded in addition to 
log lengths and diameters in the field during harvesting as 
Lang et al. (2010) did for a small number of sample trees. 
However, measuring a large number of sample trees across 
different stand types, site, and age classes is costly and time-
consuming, particularly when working with harvesters in 
field operations amid safety concerns. To overcome the lack 
of such ideal data, this study followed the intuitive approach 
of Lu et al. (2018) in combining taper and harvester data 
through simulated log-cutting to generate a data set that not 
only included stump height and total tree height, but also 
mimicked the cutting patterns of harvesters in operational 
thinning and harvesting.

Taper data

The taper data set contained 3251 trees sampled from 
P. radiata stands across the State of New South Wales 
(NSW) in Australia over 30 years. These taper trees were 
sampled from both thinned and unthinned stands over wide 
ranges of age, site quality, and stand conditions. The low-
est measurements of both overbark and underbark diameter 
were taken at between 0.1 and 0.3 m above ground, then 
another measurement was usually taken at 0.7 m before 
reaching the defined breast height of 1.3 m. Measurement 
intervals above breast height varied between 1.5 and 3 m 
depending on the height of the sample trees. This data 
set was previously used by Bi and Long (2001), Bi et al. 
(2012) and Zhang et al. (2015) for developing taper equa-
tions, height–diameter functions and conversion factors 
for DBH measured at different breast height. It was also 
used by Lu et al. (2018) in combination with harvester data 
in log-cutting simulations. These publications provided a 

Fig. 1   Diagram illustrating a stem profile cut into 4 logs. Log end 
diameters (red dots) were derived from the profile that was interpo-
lated from overbark taper measurements (black dots) using piecewise 
cubic Hermite interpolating polynomials (PCHIP). See the “Nota-
tion” section for symbols in the diagram
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detailed textual and graphical description of this data set, 
so it was not repeated here. For the log-cutting simulation 
in this study, 152 trees were excluded, including 66 small 
trees with DBH less than 10 cm that fell below the mini-
mum size for log-cutting and 86 trees that had underbark 
but not overbark taper measurements. The remaining 3099 
trees in the taper data set had a range of 10–79.1 cm for 
DBH and 6.4–44.5 m for total tree height. For each tree, 
a complete stem profile from ground to the tip was con-
structed numerically by interpolating through its observed 
values of DOB using piecewise cubic Hermite interpolat-
ing polynomials (PCHIP) with an even interval of 0.1 m.

Harvester data

The harvester data came from the Tumut Management 
Area of the Snowy Region, Forestry Corporation of NSW 
(FCNSW). Covering the foothills of the Snowy Mountains, 
this management area has about 90,000 ha of P. radiata 
plantations, representing approximately 46% of FCNSW’s 
total P. radiata estate, and produces over 1 × 106 cubic 
meters of sawlogs and more than 0.6 × 106 cubic meters of 
pulp wood annually. These plantations were established with 
an initial stocking of 1000–1100 trees ha−1 across all site 
classes under the stand density management regime adopted 
for P. radiata in NSW since the 1980s (Horne and Robinson 
1988). At the present regime, either one or two thinnings are 
prescribed for more productive sites. The first thinning aims 
to bring the stocking down to 450–550 trees ha−1 at around 
14 years of age, and the second thinning further reduces the 
stocking down to 200–300 trees ha−1 at around 23 years of 
age. For poorer sites, no thinning is carried out before the 
final harvest generally at the age of 30–35 years.

The harvester data contained a total of 0.502 × 106 stems/
trees that were harvested and processed by 20 CTL harvest-
ers in routine thinning and clear-felling operations at 54 
sites over a period of 3 years from 2012 to 2014. Each stem 
was cut into one or more logs that were numbered sequen-
tially from the butt log to the top log, making up a total of 
1.808 × 106 logs including approximately 0.240 × 106 waste 
sections in the data set. For each stem, stump height and 
stump diameter, i.e. LED of the butt log, were not available. 
For each log, the length, overbark volume and SED were 
recorded together with a product description that contained 
customer identification and product type. For logs without 
a specific customer and product type, production descrip-
tion was recorded as “random”. The cutting patterns were 
driven by the sawlog and pulpwood specifications of the 
local softwood industry consisting of one large 0.7 million 
tonne pulp and paper mill producing high quality kraft paper 
for both domestic and international markets and six large and 
small timber and wood products companies near the town of 
Tumut in southern NSW.

Data screening and interactive exploratory data 
analysis

With the aid of the statistical software R 3.5.1 (R Founda-
tion for Statistical Computing, Vienna, Austria) and GGobi 
2.1.10, an open source visualization program for exploring 
high-dimensional data (see Swayne et al. 2006; Cook et al. 
2007), multiple rounds of data screening and interactive 
exploratory data analysis were carried out through a sys-
tematic set of procedures to detect inconsistencies in data 
recording, erroneous or illogical records in the harvester 
data. Some obvious errors were corrected wherever possible, 
others errors or anomalies that could not be corrected were 
removed from the data set. To facilitate this process, DBH 
was calculated for each stem from the length and SED of 
its butt log using a system of conversion equations together 
with linear interpolation as in Lu et al. (2018). In addition, 
the merchantable height up to 5 cm DOB of trees in the taper 
data set was analysed in relation to their DBH to obtain an 
extreme nonlinear conditional quantile curve in the form 
of the 3-parameter Chapman–Richards function, one of the 
most commonly used functions for tree height and diameter 
models (see Huang et al. 1992; Huang 1999; Bi et al. 2000, 
2012):

where MH0.995 represents the 0.995th nonlinear condi-
tional quantile of merchantable height in meters for a given 
DBH. The 3 parameters in Eq. 1 were estimated using the 
R package for quantile regression, quantreg (Koenker 2017, 
2018). This extreme quantile curve depicted the relationship 
between the maximum attainable merchantable height and 
DBH for P. radiata in NSW (Fig. 2). Through this equation, 
a maximum attainable total log length ( Lmax ) for any given 
DBH was defined as MHq=0.995 minus 0.15 m, the average 
stump height. This relationship between Lmax and DBH was 
then used as an upper frontier in the detection of anomalous 
stems.

After the completion of data screening and filtering, there 
were 0.448 × 106 stems and 1.581 × 106 logs remaining in 
the final data set. The DBH of these stems ranged from 10 
to 82 cm with an average of 33 cm and their total log length 
L varied within the range of 2.2–40.8 m with an average of 
16.6 m (Fig. 2). The minimum L of 2.2 m represented cases 
where only one short log was cut from a stem. The SED of 
the 1.581 × 106 logs varied from 3 to 80 cm, where values 
larger than 60 cm were found only in 0.3% of the logs. The 
individual log length ranged from 2.2 to 26.4 m, but lengths 
longer than 6.4 and 12 m represented less than 0.50% and 
less than 0.01% of the logs, respectively (Fig. 3). Because 
the logs were numbered sequentially from the butt log up, 
the number of logs decreased as log number (i.e., the relative 

(1)MH0.995 = 1.3 + 44.35
(
1 − e−0.0432DBH

)1.1395
,
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position of logs) increased. Concomitantly, the SED and 
length of logs varied both within and across log numbers, 
with the distribution of log length peaking around a number 
of specified log lengths (Fig. 4). This final data set was used 
for deriving cutting patterns for the simulated bucking of the 
stem profiles of taper trees.

Cut‑to‑length (CTL) simulations and data generation

Because of its larger volume, the harvester data showed an 
extremely wide spread in the value of SEDTL at any given 
DBH, which meant that there could be multiple alternative 
cutting patterns for a single stem, resulting in many SEDTL 
values and corresponding total log lengths. To have a more 
comprehensive representation of such variation in the cut-
ting simulations, SEDTL was plotted against DBH for the 
0.448 × 106 stems, and the data cloud was visually inspected 

Fig. 2   Total log length ( L ) in relation to DBH under the curve of 
the maximum attainable merchantable height defined by Eq.  1 for 
the 0.448 × 106 stems drawn on the left as clustered heatmaps using 
the R package Pheatmap (pretty heatmaps). The numbers in the grid 

cells indicate the number of stems in thousands. The corresponding 
frequency distributions of DBH (center) and L (right) are shown with 
percentiles and descriptive statistics

Fig. 3   Boxplots of SED (left) and log length (right) across the 
sequential log numbers for the 1.58 × 106 logs (including waste sec-
tions) cut-to-length from the 0.448 × 106 stems contained in the 

screened harvester data set. The numbers in the middle vertical stripe 
indicate the number of logs across the sequence. The boxplots in the 
top horizontal stripe are for all the logs combined
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through the interactive and dynamic graphical display of 
GGobi. Then 6 nonparametric conditional quantile curves at 
τ = 0.01, 0.25, 0.50, 0.75, 0.90 and 0.99 were drawn through 
the data cloud using the QUANTREG procedure in SAS 9.4 
(SAS Institute, Cary, NC, USA) to help discern the patterns 
of conditional variation in SEDTL as DBH increased. Based 
on the patterns of the 6 nonparametric quantile curves, a 
parametric model was specified to derive the corresponding 
parametric conditional quantile curves:

where SEDTL� is the � th conditional quantile for a given 
DBH, a� , b� and c� are the corresponding quantile-dependent 
parameters. Necessary constraints were placed upon parame-
ter a� during quantile regression to prevent the fitted quantile 
curves from crossing each other in the close neighbourhood 
of the minimum DBH of 10 cm. In addition, parameter c� 
was set to 1 for the 90th and 99th quantiles as the relation-
ship between SEDTL� and DBH became linear nearing the 
boundary of the data cloud (Fig. 5). For a taper tree with a 
given DBH in the log cutting simulations, these 6 paramet-
ric quantile curves provided 6 consecutive and increasingly 

(2)SEDTL� = a� + b�DBH
c� ,

large initial SEDTL values that not only well covered the 
range of SEDTL variations contained in the harvester data, 
but also led to 6 systematic and interrelated cutting patterns 
with 6 different total log lengths ranging from the longest to 
the shortest that the tree could possibly yield.

The log cutting simulation for each of the 3099 taper trees 
looped through 6 values of SEDTL� starting from � = 0.01 
and ending at � = 0.99 . Within each loop, the simulation 
went through the following steps: (1) obtaining a value of 
SEDTL� from its DBH and the � th conditional quantile 
curve as shown in Fig. 5; (2) deriving the corresponding 
total log length L by searching through its stem profile from 
an average stump height of 0.15 m upwards to the height 
where the DOB was equal to SEDTL� ; (3) from among the 
0.448 × 106 stems contained in the harvester data set select-
ing the stem that was most similar to the taper tree by using 
a similarity index SI as described below; (4) using the cut-
ting pattern of the most similar stem to locate the sequential 
cross-cut points on the taper tree’s stem profile with some 
adjustment if necessary; (5) taking the DOB and height at 
each cutting point on the numerically interpolated stem pro-
file; (6) exporting the values of stump height, log number, 

Fig. 4   Scatter plots of log 
length and SED as an exten-
sion of Fig. 3. The sequential 
log number is shown in the top 
stripe of each panel. Blue points 
represent logs tagged with a 
product code; brown points are 
either waste sections or random 
logs that were not tagged with 
any product type. The number 
of logs in each of the 2 log 
categories is indicated in each 
panel by the string colored in 
the same scheme starting with P 
for product or W for waste
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log length, LED and SED values, and Ltop , the length of 
the tree top section from the last cutting point to the tip to 
a storage data set. The computer program previously writ-
ten by Lu et al. (2018) in C# was modified to carry out all 
steps of the CTL simulations. The final data set contained 
6 different but correlated values of SEDTL , L and Ltop for 
each taper tree with the same DBH, total tree height H and 
stump height Hs.

The similarity index (SI) in step 3 was calculated as the 
distance between the candidate stem and the subject taper 
tree in a 3-dimentional space as follows:

where variables with the subscript H and T denote the attrib-
utes of candidate stem from the harvester data and that of the 
subject taper tree, respectively. The value of SI is zero when 
the candidate stem and the subject taper tree are identical 
in the 3 dimensions. The SI values for the 3099 × 6 most 
similar stems selected in the log cutting simulations had an 
L-shaped distribution over a range from 0 to 7.9, with a 
median of 0.25, a mean of 0.40 and an upper quartile of 0.47. 
About 91% of the SI values were between 0 and 1 (Fig. 6).

(3)
SI =

√(
DBHH − DBHT

)2
+
(
LH − LT

)2
+
(
SEDTLH − SEDTLT

)2
,

Model derivation

In deriving a model specification for predicting total tree 
height H , L was considered as a fraction of H as shown in 
the “Notation” section. In doing so, any given height along 
a tree stem above breast height was converted to relative 
height h and thus h varied from 0 at 1.3 m to 1 at the tip of 
the tree. At the same time, the DOB at a relative height h 
was converted to relative diameter d , which varied from 1 
at 1.3 m to 0 at the tip of the tree. Considering the relative 
stem profile of the part of the stem above breast height and 
taking reference of the idea and approach of Bi (2000) in the 
construction of the trigonometric variable-form taper model, 
h was expressed as a power function of d and other variables:

where the base B is a monotonic function of relative diam-
eter d, varying from 0 to 1 as d changes from 1 to 0, and 
K  is a variable exponent. Nine candidate base functions 
were constructed, including both linear and trigonometric 
functions, to approximate the geometrical shape of the rela-
tive stem profile through Eq. 4. Because there was no clear 
geometrical form, biological reason or statistical theory to 
specify a particular equation form for the variable exponent, 

(4)h = BK ,

Fig. 5   Small end diameter of the top log (SEDTL) plotted against 
DBH for the 0.448 × 106 stems in clustered heatmaps using the R 
package Pheatmap. The numbers in the grid cells indicate the number 
of stems in thousands. Overlaid on top of the heatmaps are 6 condi-
tional quantile curves, each with a number on its right end to indicate 
the value of the � th quantile. The curves are defined by Eq. 2 and by 
the parameters for the 6 quantiles shown in the top left corner of the 
graph

Fig. 6   Frequency distribution of similarity index (SI) for the most 
similar trees selected from among the 0.448 × 106 trees for the 
3099 × 6 CTL simulations. The colored bar segments for the � th con-
ditional quantiles represented the cutting patterns derived from the 6 
corresponding curves in Fig. 5. Characteristic percentiles are shown 
together with summary statistics of the distribution where the number 
of trees with SI greater or equal to 2 was 100 only
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K , an empirical function for K had to be derived through 
exploratory model building. Variables including DBH, L, d, 
average stem taper T  , and their various transformations and 
combinations were taken as candidate predictors for K in a 
linear function. For each of the 9 candidate base functions, 
Eq. 4 was linearized by taking logarithmic transformation of 
both sides and then ln h was regressed against all candidate 
predictors, each multiplied by ln B, but without the intercept 
term. The best model with either 4 or 5 predictors for K was 
determined through stepwise regression in the PROC REG 
procedure of SAS 9.4 with MAXR (maximum R2 improve-
ment) as the method of variable selection.

The selected models for all 9 candidate base functions 
were then further compared with each other in terms of the 
goodness-of-fit statistics and also subjectively evaluated in 
terms of their simplicity, elegance, interpretability and appli-
cability. Following this exploratory model building process, 
the linear model for lnh was specified as follows:

where a1 to a5 are parameters. This linear model was back-
transformed from natural logarithm to derive the nonlinear 
model form for h:

Because h =
(
L + Hs − Hb

)
∕
(
H − Hb

)
 as shown in the 

“Notation” section, representing the height relative to the 
total tree height H minus breast height Hb , a model form for 
predicting H directly was obtained from Eq. 6 as follows:

Although the deterministic structures of Eqs. 5–7 are 
mathematically equivalent, as statistical models for pre-
dicting total tree height, they differ. The differences in their 
dependent variables and error structures (either multiplica-
tive or additive) could potentially have some impact on the 
prediction accuracy for H.

Parameter estimation of linear and nonlinear models

Equations 5 and 7 could be estimated through linear and 
nonlinear least squares regression with the implicit assump-
tion that the error term was an independent and identically 
distributed random variable. However, this assumption was 
unrealistic as revealed by the diagnostic analyses of residu-
als from the regressions. First, the CTL simulations pro-
cessed each taper tree 6 times using 6 values of SEDTL� 
obtained from the 6 conditional quantile curves at � = 0.01 , 
0.25, 0.50, 0.75, 0.90 and 0.99 (Eq. 2, Fig. 5) and generated 

(5)
ln h =

�
a1 + a2L + a3

√
T + a4

√
d3 + a5

√
DBH3

�
ln(1 − d),

(6)h = (1 − d)a1+a2L+a3
√
T+a4

√
d3+a5

√
DBH3

(7)H =
L + Hs − Hb

(1 − d)a1+a2L+a3
√
T+a4

√
d3+a5

√
DBH3

+ Hb

6 sets of values of all variables appearing in Eqs. 5 and 7. 
Consequently, there was an inherent correlation among the 
residuals from the same tree. Second, the 6 values of L for 
each taper tree represented different proportions of its total 
tree height H . As L decreased and SEDTL� increased with 
�, the magnitude of residual variation became increasingly 
larger, providing a clear indication of the presence of resid-
ual heteroskedasticity, particularly for the nonlinear model.

Although the least squares estimators remain unbiased in 
the presence of residual correlation and heteroskedasticity, 
they are no longer efficient and their estimates of parameter 
variances are biased (Gujarati and Porter 2010; Greene 2012). 
To take both residual correlation and heteroskedasticity into 
consideration, Eqs. 5 and 7 were not estimated as single equa-
tions, but each as a system of 6 equations. For the sake of 
parsimony, the model specification for estimating Eq. 7 only 
was given below:

where H1 to H6 represent the same H as in Eq. 7, but cor-
responding to data generated from the 6 cutting patterns that 
were based on the 6 conditional quantile curves at � = 0.01 , 
0.25, 0.50, 0.75, 0.90 and 0.99 (Fig. 5), f (X, �) stands for 
the nonlinear function in Eq. 7 with X representing a vector 
of its predictor variables and � a vector of its 5 parameters, 
�1 to �6 are the corresponding error terms. The 6 error terms 
can be expressed in the matrix algebra notation as follows:

The properties of � are

and

where E(�) and Cov(�) denote the expectation and covari-
ance of � , �ii represents the variance of �i ( i = 1,…, 6), �ij 
represents the covariance between the error term of the i th 
and the j th equation, (j = 1,… , 6),⊗ denotes the Kronecker 
product, N = 3099, denotes the number of observations and 
IN is an identity matrix of order N . The system of Eq. 8 was 
fitted to the data generated from the CTL simulations using 
the generalised method of moments (GMM) through the 

(8)

H1 = f (X, �) + �1
H2 = f (X, �) + �2

⋮

H6 = f (X, �) + �6,

(9)� =
[
�1, �2, �3, �4, �5, �6

]�

(10)E(�) = 0.

(11)

Cov(�) = E(���) =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝜎11 𝜎12 𝜎13 𝜎14 𝜎15 𝜎16
𝜎21 𝜎22 𝜎23 𝜎24 𝜎25 𝜎26
𝜎31 𝜎32 𝜎33 𝜎34 𝜎35 𝜎36
𝜎41 𝜎42 𝜎43 𝜎44 𝜎45 𝜎46
𝜎51 𝜎52 𝜎53 𝜎54 𝜎55 𝜎56
𝜎61 𝜎62 𝜎63 𝜎64 𝜎65 𝜎66

⎤
⎥⎥⎥⎥⎥⎥⎦

⊗ IN =
�

⊗IN ,
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MODEL procedure of SAS/ETS with the Marquart method 
of minimization. The multiple-equation GMM estimator 
produces efficient parameter estimates under heteroscedastic 
conditions without any specification of the nature of the het-
eroscedasticity (Hayashi 2000; Greene 2012). This approach 
turned the residual correlation in the single-equation regres-
sion (7) into the cross-equation error correlation in the sys-
tem of Eq. 8, which was then characterized by the variance 
and covariance matrix 

∑
 in Eq. 11 and taken into account in 

parameter estimation. At the same time, it also avoided the 
difficulty and complexity in deriving an accurate residual 
skedastic function conditional upon DBH, L , SEDTL across 
the 6 log cutting patterns to serve as a weighting function 
within the frame work of generalized least squares estima-
tion of a single equation. As the same parameter vector � was 
shared across the 6 system equations, this approach effec-
tively estimated a single equation model in Eq. 7.

Evaluating and comparing prediction accuracy

To evaluate and compare their predictive performances of 
Eqs. 5 and 7, a leave-one-tree-out cross-validation approach 
was adopted to obtain prediction errors from and for trees 
that were independent of the model building process. In 
doing so, the system of 6 equations specified for each single 
equation model was fitted 3099 times. Each time, 6 observa-
tions from a single tree were left out from the fitting process. 
Then the parameter estimates based on data from the remain-
ing 3098 trees were used to compute the corresponding 6 
prediction errors for the left-out tree as follows:

where Ĥi represents the predicted value of H for the i th sys-
tem equation (i.e., i th cutting pattern) and 𝜀̂i is its predic-
tion error (see Eq. 8). Upon completion, the repeated fitting 
and testing process generated 3099 × 6 prediction errors for 
each model for the evaluation and comparison of prediction 
accuracy. This leave-one-tree-out approach was based on the 
leave-one-out cross-validation method for model selection 
that was originally introduced by Stone (1974), Allen (1974) 
and Geisser (1975), but modified for the correlation struc-
ture of the data similarly to the cross-validation strategies 
reviewed by Roberts et al. (2017) for structured ecological 
data.

The linear and nonlinear models in Eqs. 5 and 7 were fur-
ther compared with the model of Varjo (1995) in its original 
linear form:

(12)𝜀̂i = H − Ĥi, i = 1,… , 6,

(13)
ln Ltop = a1 + a2L + a3 ln L + a4 lnDBH + a5SEDTL + a6 ln SEDTL

and also in its nonlinear form after back-transformation from 
log scale:

Parameters of these 2 single-equation models were 
also estimated through the system of equations approach 
as described above. Then prediction errors for each model 
were generated through the repeated model fitting and test-
ing process following the leave-one-tree-out cross validation 
approach as previously described.

The prediction accuracy of our model was evaluated and 
compared with that of Varjo’s in both their linear and nonlinear 
forms graphically and through benchmarking statistics. Scatter 
plots of the observed values of H against their predicted values 
with a line of unity slope passing through the origin were 
evaluated together with prediction error distributions. The 
benchmarking statistics included the mean error of prediction 
(MEP), the relative mean error of prediction (RMEP), the 
mean absolute error of prediction (MAEP), the mean squared 
error of prediction (MSEP), and the prediction coefficient of 
determination ( R2

p
 ). These statistics have been commonly used 

in evaluating the predictive performance of forest models as 
they assess the size, direction and dispersion of the prediction 
error as reviewed by Huang et al. (2003). In particular, the 
MSEP is the measure of prediction accuracy commonly used 
in the statistical literature since it incorporates both the vari-
ance of prediction error and the bias of prediction (Wackerly 
et al. 1996). In addition to these statistics, skewness and kur-
tosis (calculated as the excess kurtosis, which is 3 less than the 
standardized fourth central moment) were also obtained for 
prediction error distributions.

These benchmarking statistics were calculated both globally 
over the entire data space and locally over specific subspaces 
of data. A natural example of such subspace division lay in 
the data generated by the 6 cutting patterns and represented 
by the 6 system equations. For the i th system equation, the 4 
benchmarking statistics were calculated as follows:

(14)H = HS + L + La3DBHa4SEDTLa6ea1+a2L+a5SEDTL

(15)MEPi =

n∑
j

𝜀̂i∕n

(16)RMEPi = 100

[
n∑
j

(
𝜀̂i∕H

)]
∕n

(17)MAEPi =

n∑
j

||𝜀̂i||∕n
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where i = 1,… , 6 , n = 3099, i.e., the total number of taper 
trees, j indicates the j th tree, Hj is its total tree height and 
H̄ is the average height of all n trees. As the 6 cutting pat-
terns represented by the 6 system equations did not have an 
equal frequency of occurrence, an overall weighted average 
mean squared error of prediction (WMSEP) was calculated 
as follows:

where wi = 0.130, 0.245, 0.250, 0.200, 0.120, 0.055 for 
i = 1,… , 6 . These weights were the approximate propor-
tions that the 6 quantiles, � = 0.01 , 0.25, 0.50, 0.75, 0.90 and 
0.99, represented over the range from 0 to 1, which were 
determined by evenly partitioning the distance between any 
2 adjacent quantiles and allocating one-half to each quantile. 
Although analogous to the coefficient of determination R2, 
which ranges from 0 to 1, R2

p
 can range from − ∞ to 1 (Nash 

and Sutcliffe 1970). When R2
p
< 0 , the observed mean is a 

better predictor than the model as the variance of prediction 
error is larger than the variance of the observed data.

(18)MSEPi =

n∑
j

𝜀̂
2
i
∕n

(19)R2
pi
= 1 −

[
n∑
j

𝜀̂
2
i
∕

n∑
j

(
Hj − H̄

)2
]
,

(20)WMSEP =

6∑
i=1

wiMSEPi,

The 6 cutting patterns in the log cutting simulations also 
generated, as intended, a wide range of d values from 0.07 
to 0.97, covering 90% of its theoretically defined interval 
between 0 and 1. The range of d was therefore divided into 
10 even intervals with a width of 0.1, except for the first 
and last interval, for a further local evaluation and com-
parison of prediction accuracy. In addition, 3 other subdivi-
sions of data were assessed for the same purpose. First, the 
height and diameter data of 3099 trees were divided into 
6 size classes according to their DBH and H . The 0.50th 
nonlinear height–diameter quantile curve in the form of the 
Chapman–Richards equation was obtained by using the R 
package, quantreg. This median curve divided the 3099 
trees into 2 halves, i.e., relative taller and shorter trees for 
a given DBH (Fig. 7). Then the trees in each half were 
further divided into 3 DBH classes using 30 and 50 cm as 
points of division, resulting in 6 size classes in total. Sec-
ond, a ratio of total log length ratio ( Rl ) was calculated by 
dividing L with H for each tree through the 3099 × 6 cutting 
simulations. Then the entire range of Rl was divided into 
9 even intervals with a width of 0.1. Third, the data were 
divided into 9 groups according to the total number of logs 
cut from each stem which ranged from 1 to 9 or more.

Results

The variance and covariance matrix 
∑

 as exemplified in Eq. 11 
and used in the multiple-equation GMM parameter estimation was

Fig. 7   Total tree height (H) 
plotted against DBH for the 
3099 trees in the taper data 
set. For local evaluations of 
prediction accuracy, the entire 
data space was divided into 6 
subspaces marked with Roman 
numerals. The division was 
achieved by the median height 
and diameter curve, for which 
the equation was plotted on the 
graph with the 2 vertical lines 
at DBH equal to 30 and 50 cm. 
The number next to each Roman 
numeral indicates the number of 
trees within that subspace
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for our model in its linear and nonlinear form respectively, 
and

for Varjo’s model in its linear and nonlinear form. The diag-
onal and off-diagonal elements of these matrices showed 
that error heteroskedasticity and correlation across the 6 cut-
ting patterns were stronger for the nonlinear than the linear 
models. The values of all elements of 

∑
 for our nonlinear 

model in Eq. 7 were smaller than that for Varjo’s nonlinear 
model in Eq. 14, except for �66 . As expected, all elements of 
the matrices for the 2 linear models were much smaller than 
the corresponding elements of the matrices for the 2 non-
linear models due to logarithmic transformation. Although 

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0012 0.0014 0.0014 0.0014 0.0015 0.0019

0.0014 0.0033 0.0037 0.0042 0.0047 0.0051

0.0014 0.0037 0.0051 0.0064 0.0075 0.0077

0.0014 0.0042 0.0064 0.0125 0.0161 0.0157

0.0015 0.0047 0.0075 0.0161 0.0267 0.0265

0.0019 0.0051 0.0077 0.0157 0.0265 0.0367

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

0.41 0.54 0.57 0.61 0.61 0.68

0.54 1.44 1.65 1.93 2.13 2.07

0.57 1.65 2.52 3.17 3.69 3.50

0.61 1.93 3.17 6.10 7.66 6.97

0.61 2.13 3.69 7.66 12.32 11.62

0.68 2.07 3.50 6.97 11.62 15.98

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0.0748 0.0429 0.0340 0.0300 0.0295 0.0249

0.0429 0.0581 0.0519 0.0414 0.0333 0.0299

0.0340 0.0519 0.0534 0.0450 0.0376 0.0341

0.0300 0.0414 0.0450 0.0507 0.0488 0.0441

0.0295 0.0333 0.0376 0.0488 0.0567 0.0511

0.0249 0.0299 0.0341 0.0441 0.0511 0.0493

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎣

0.92 0.85 0.61 0.75 1.34 1.41

0.85 1.85 2.16 2.77 3.47 3.55

0.61 2.16 3.41 4.48 5.21 5.31

0.75 2.77 4.48 7.26 8.80 9.21

1.34 3.47 5.21 8.80 12.32 13.11

1.41 3.55 5.31 9.21 13.11 15.05

⎤⎥⎥⎥⎥⎥⎥⎦

the dependent variable of our new model in its linear form 
in Eq. 5 was ln h (log-transformed relative height), some 
degree of heteroskedasticity was still evident as shown by 
the trend along the diagonal elements of the matrix. The 
parameters of our new model estimated in its nonlinear form 
in Eq. 7 differed slightly from that estimated in its linear 
form in Eq. 5. In comparison, such comparative differences 
were much larger for Varjo’s model (Table 1). The linear 
and nonlinear estimates of 3 parameters, a2, a3 and a5 in 
Eqs. 13 and 14 even had opposite signs. For both models, 
the parameters estimated through their nonlinear forms had 
appreciably smaller standard errors. The R2 values, calcu-
lated according to Eq. 19 but using the observed and esti-
mated values of H of all trees involved in model fitting, were 
slightly higher for our model in both linear and nonlinear 
forms than for Varjo’s.

The scatter plots of observed and predicted values of H 
and the corresponding distributions of prediction error 
generated from the leave-one-tree-out cross validation pro-
cess showed little overall bias in the prediction of H for 
the 2 models in their linear as well as nonlinear forms 
(Fig. 8). The smallest MEP of 0.06 m was observed for our 
model in its nonlinear form, as compared with the MEP of 
0.08 m for Varjo’s model also in its nonlinear form. The 
MEP of our model in its linear form was also smaller than 
that of Varjo’s model in its linear form. Our model in its 
nonlinear form also had the smallest value of MSEP of 
6.47, as compared with its linear form and also with Var-
jo’s model in both forms. For both models, the nonlinear 
form had smaller values of MEP and MSEP than the linear 
form. The prediction error distributions had little skewness 
but pronounced kurtosis for the 2 models in both forms, 
but they were more leptokurtic for our model than Varjo’s 
(Fig. 8). These results were based on prediction errors for 
all 6 cutting patterns derived from using the 6 quantile 
curves that related SEDTL to DBH (Fig. 5). It was appar-
ent from Fig. 8 that prediction errors for the cutting pattern 
derived from the 6th quantile curve at � = 0.99 had a much 
wider spread than all other cutting patterns. When the 

Table 1   Parameter estimates 
and their standard errors in 
parentheses for the linear and 
nonlinear forms of our new 
model (Eqs. 5, 7) and Varjo’s 
model (Eqs. 13, 14) that are 
coded as NML, NMN, VML 
and VMN respectively in the 
first column of the table

The R2 values for the multiple-equation GMM estimation were calculated according to Eq. 19 but using the 
observed and estimated values of total tree height of all trees involved in model fitting

Model a1 a2 a3 a4 a5 a6 R
2

NML − 0.8771 0.0132 1.1457 1.1575 − 0.0011 0.91
(0.0101) (0.0003) (0.0052) (0.0076) (0.0000)

NMN − 0.8191 0.0112 1.1540 1.0784 − 0.0010 0.91
(0.0074) (0.0002) (0.0048) (0.0054) (0.0000)

VML 0.5063 0.0139 − 0.0961 − 0.6395 0.0013 1.4275 0.89
(0.0268) (0.0005) (0.0021) (0.0085) (0.0003) (0.0046)

VMN 0.0002 − 0.0041 0.0068 − 0.6713 − 0.0127 1.7363 0.90
(0.0117) (0.0001) (0.0004) (0.0004) (0.0001) (0.0027)



32	 C. Shan et al.

1 3

Fig. 8   Observed total tree height plotted against predicted values 
with a line of unity on the left for the linear and nonlinear forms of 
our new model (Eqs. 5, 7) and Varjo’s model (Eqs. 13, 14) that are 
labelled as NML, NMN, VML and VMN respectively in the shaded 
area on the far right. The corresponding distributions of prediction 

error are displayed on the right with characteristic percentiles and 
values of skewness and kurtosis. The color key is the same as in 
Fig. 6. The benchmarking statistics in the bottom right corner of the 
scatter plots were based on all 6 cutting patterns; those in the top left 
corner were for the first 5 cutting patterns only
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practically rare cases represented by this cutting pattern 
were excluded, MSEP became much smaller and R2

p
 higher 

for the 2 models in both forms (Fig. 8). Our model in its 
nonlinear form still had the smallest MEP and MSEP 
among the 2 models and their different forms.

When prediction accuracy was evaluated across the 6 
cutting patterns individually, our model in its nonlinear 
form had smaller values of MSEP than its linear form with 
the exception of the 6th cutting pattern. However, the dif-
ferences were small, representing a reduction mostly less 
than 2.6%. The weighted average of the 6 MSEP values 
showed even a smaller reduction of 1.2% (Table 2). Varjo’s 
model in its nonlinear form also had smaller values of 
MSEP than its linear form except for the first cutting pat-
tern as its MSEP became twice as larger, pointing to a 
marked deterioration in predictive performance. No matter 
in what form our model was estimated, it had smaller 
MSEP values than Varjo’s model in both forms across the 
first 4 cutting patterns, with the first cutting pattern having 
the largest reduction of more than 50%. For the last 2 cut-
ting patterns, the MSEP values of our model were either 
similar to or slightly larger than that of Varjo’s. The 
weighted average MSEP of our model represented about 
20% reduction of that of Varjo’s model in its linear form 

and about 10–11% reduction in its nonlinear form 
(Table 2). For each model, the values of MSEP1 −MSEP6 
in Table 2 corresponded almost exactly to the error vari-
ances �11 − �66 , i.e., the diagonal elements of its variance 
and covariance matrix. In addition to MSEP, the other 4 
benchmarking statistics also indicated that our model out-
performed Varjo’s in both linear and nonlinear forms. In 
the nonlinear form in particular, our model had smaller 
values of MEP, RMEP and MAEP higher values of R2

p
 

across the 6 cutting patterns except for the last (Table 3).
As the nonlinear form outperformed the linear form for 

both models, the comparative performances of the 2 models 
in further local evaluations of prediction accuracy were only 
reported for their nonlinear forms for the sake of parsimony. 
Across the 10 intervals of d , our model had smaller values 
of MEP, MAEP and MSEP and higher R2

p
 values than Varjo’s 

over the first 7 intervals where d ≤ 0.80 (Table 4). In the 
interval 0.80 < d ≤ 0.90 , the predictive performances of the 
2 models were about the same. When 0.90 < d ≤ 0.95 , our 
model did not perform as well as Varjo’s. For d greater than 
0.95, both models did not perform well as indicated by their 
large values of MEP, MAEP and MSEP as well as the small 
values of R2

p
 (Table 4). Over the 6 tree size classes delineated 

in Fig. 7, our model had smaller values of MEP, MAEP and 

Table 2   MSEP for each of the 
6 cutting patterns represented 
by the system of 6 equations 
(8) and the weighted average 
(WMSEP) calculated according 
to Eq. 20 for the linear and 
nonlinear forms of our new 
model (Eqs. 5, 7) and Varjo’s 
model (Eqs. 13, 14) that are 
coded as NML, NMN, VML 
and VMN, respectively, in the 
first column of the table

Percentage differences in the 2 benchmarking statistics were calculated for the pairwise comparison of the 
4 equations

Model MSEP1 MSEP2 MSEP3 MSEP4 MSEP5 MSEP6 WMSEP

NML 0.42 1.48 2.55 6.11 12.63 15.90 4.67
NMN 0.41 1.44 2.52 6.09 12.32 16.04 4.61
NMN versus NML 2.3% 2.6% 1.1% 0.4% 2.4% − 0.9% 1.2%
VML 0.46 1.90 3.88 7.53 15.14 17.70 5.79
VMN 0.91 1.85 3.41 7.28 12.34 15.07 5.19
VMN versus VML − 97.7% 2.4% 12.2% 3.3% 18.5% 14.8% 10.4%
NML versus VML 8.8% 22.0% 34.4% 18.8% 16.6% 10.1% 19.4%
NML versus VMN 53.9% 20.1% 25.3% 16.0% − 2.3% − 5.5% 10.1%
NMN versus VML 10.9% 24.0% 35.1% 19.1% 18.6% 9.4% 20.4%
NMN versus VMN 54.9% 22.2% 26.1% 16.3% 0.2% − 6.4% 11.2%

Table 3   Values of MEP, 
RMEP, MAEP and R2

p
 for the 

nonlinear form of our new 
model (NMN) in Eq. 7 and 
that of Varjo’s model (VMN) 
in Eq. 14 across the 6 cutting 
patterns derived from the � th 
conditional quantile curves in 
Fig. 5

τ MEP RMEP MAEP R
2
p

NMN VMN NMN (%) VMN (%) NMN VMN NMN VMN

0.01 − 0.03 0.64 − 0.13 2.30 0.48 0.76 0.99 0.99
0.25 0.05 0.24 − 0.09 0.12 0.88 1.03 0.98 0.97
0.50 0.02 − 0.19 − 0.50 − 1.78 1.17 1.40 0.96 0.95
0.75 − 0.03 − 0.36 − 1.73 − 3.49 1.91 2.14 0.91 0.89
0.90 0.06 0.12 − 2.44 − 2.66 2.79 2.81 0.82 0.82
0.99 0.25 0.04 − 0.74 − 3.83 3.13 3.16 0.77 0.78
All 0.06 0.08 − 0.94 − 1.55 1.73 1.88 0.91 0.90
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MSEP and higher R2
p
 values except for size class III where 

the comparative performances were reversed (Fig. 9). For 
both models, the values of MEP were positive over the first 
3 size classes and negative over the last 3 size classes. This 
systematic pattern of bias represented a slight underestima-
tion of total tree height for relatively slender trees and a 
slight overestimation for relatively squatter trees. However, 
the bias was relatively small, mostly within ± 1.5 m and 
within ± 5% of observed tree height on average. As with 
results in Fig. 8, values of MEP, MAEP and MSEP became 
much smaller and R2

p
 was higher when these benchmarking 

statistics were based on prediction errors for the first 5 cut-
ting patterns excluding the practically rare cases represented 
by the 6th cutting pattern (Fig. 9).

Across the 9 intervals of total log length ratio Rl , our 
model generally outperformed Varjo’s as indicated by the 
benchmarking statistics also based on prediction errors for 
the first 5 cutting patterns (Table 5). When Rl ≤ 0.2, i.e., the 
total log length was less than or equal to 20% of total tree 
height, the values of MEP, MAEP and MSEP were much 
larger than that for all other intervals for both models and 
their R2

p
 was negative. In this first interval, our model did not 

perform as well as Varjo’s. When 0.20 < Rl ≤ 0.30 and 
0.30 < Rl ≤ 0.40 , our model had a similar or slightly better 
performance. For the remaining 6 Rl intervals, our model 
clearly outperformed Varjo’s based on the values of MAEP 
and MSEP. For both models, the bias was small and practi-
cally negligible as their MEP values were well within 
± 0.8 m. Among the 9 groups of the number of logs cut from 

Table 4   Benchmarking 
statistics of prediction accuracy 
based on prediction errors for 
all 6 cutting patterns: MEP, 
MAEP, MSEP and R2

p
 across 

the 10 relative diameter classes 
for the nonlinear form of our 
new model (NMN) in Eq. 7 and 
that of Varjo’s model (VMN) in 
Eq. 14 presented in the first and 
second row in each row group, 
respectively

The ratios displayed in parentheses in the third row were that of NMN over VMN in the corresponding sta-
tistics. N is the number of observations in each relative diameter class. The median, skewness and kurtosis 
of prediction error distribution presented in a single column were for our new model (NMN) only

Relative diameter d N Median Skewness 
Kurtosis

MEP (m) MAEP (m) MSEP R
2
p

d ≤ 0.20 1817 − 0.15 − 0.10 0.48 0.39 0.99
0.88 0.81 0.85 1.06 0.97
2.78 (− 0.12) (0.57) (0.37)

0.20 < d ≤ 0.30 954 0.02 0.05 0.46 0.40 0.98
0.97 0.51 0.64 0.72 0.97
6.44 (0.10) (0.71) (0.55)

0.30 < d ≤ 0.40 2599 − 0.03 0.04 0.88 1.42 0.98
0.70 0.30 0.99 1.75 0.97
2.29 (0.14) (0.89) (0.81)

0.40 < d ≤ 0.50 3081 − 0.12 0.00 1.08 2.14 0.96
0.60 − 0.03 1.27 2.84 0.95
1.91 (− 0.09) (0.85) (0.75)

0.50 < d ≤ 0.60 741 − 0.07 0.22 1.10 2.68 0.98
1.33 − 0.66 1.48 4.00 0.96
3.55 (− 0.33) (0.74) (0.67)

0.60 < d ≤ 0.70 3125 − 0.43 − 0.03 1.89 6.02 0.91
0.76 − 0.37 2.13 7.22 0.90
0.93 (0.08) (0.89) (0.83)

0.70 < d ≤ 0.80 3197 − 0.41 0.12 2.77 12.29 0.83
0.51 0.14 2.79 12.30 0.83
0.11 (0.85) (0.99) (1.00)

0.80 < d ≤ 0.90 2194 − 0.22 − 0.02 3.13 15.80 0.79
0.26 0.17 3.17 15.18 0.80
0.26 (− 0.14) (0.99) (1.04)

0.90 < d ≤ 0.95 873 0.40 0.69 3.06 15.86 0.61
0.18 − 0.37 3.07 14.20 0.65
0.14 (− 1.85) (0.99) (1.12)

0.95 < d < 0.98 13 3.14 3.43 3.79 26.42 0.04
0.83 2.40 2.89 14.05 0.49
0.35 (1.43) (1.31) (1.88)
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Fig. 9   Observed total tree height plotted against predicted values 
with a line of unity over the 6 subspaces of data as divided in Fig. 7 
for the linear and nonlinear forms of our new model (Eqs. 5, 7) and 
Varjo’s model (Eqs.  13, 14) respectively labelled as in Fig.  8. The 

color scheme was the same as in Figs.  6 and 7. The benchmarking 
statistics in the bottom right corner of the scatter plots were based on 
all 6 cutting patterns; those in the top left corner were for the first 5 
cutting patterns only
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a stem, MEP varied between − 0.12 and 0.13 m for our 
model and between − 0.51 and 0.85 for Varjo’s model 
(Table 6). The values of MAEP and MSEP of our model 
were much smaller, and the values of R2

p
 were higher for our 

model than Varjo’s. The comparative advantage of our 
model increased as the number of logs cut from a stem 
increased.

Discussion

To our knowledge, this study represents the first rigor-
ous attempt at developing a model for predicting total 
tree height from CTL harvester data. Based on the global 

benchmarking statistics in Table 2, the nonlinear form 
of our model in Eq. 7 ranked first and its linear form in 
Eq. 5 second, while the nonlinear form of Varjo’s model 
in Eq. 14 ranked third and its linear form in Eq. 13 last. 
The superior performance of our nonlinear model was 
also reflected by the values of the diagonal elements, 
�11 − �66 , of the variance and covariance matrices in the 
results section. Our nonlinear model also proved to be 
far superior than the iterative search algorithm using a 
taper equation, an existing ad hoc approach demonstrated 
by Lu et al. (2018) and used by Hauglin et al. (2018). 
The detailed comparative results formed part of the first 
author’s postgraduate work but were not presented in the 
present paper for the sake of parsimony and because the 
iterative search algorithm was already found by Lu et al. 

Table 5   Benchmarking 
statistics of prediction accuracy 
based on prediction errors for 
the first 5 cutting patterns: MEP, 
MAEP, MSEP and R2

p
 across 

the 10 total log length ratio ( R
l
 ) 

classes for the nonlinear form 
of our new model (NMN) in 
Eq. 7 and that of Varjo’s model 
(VMN) in Eq. 14 presented in 
the first and second row in each 
row group, respectively

The ratios displayed in parentheses in the third row were that of NMN over VMN in the corresponding sta-
tistics. N is the number of observations in each relative diameter class. The median, skewness and kurtosis 
of prediction error distribution presented in a single column were for our new model (NMN) only

Total log length ratio ( R
l
) N Median 

Skewness
Kurtosis

MEP (m) MAEP (m) MSEP R
2
p

0.10 < R
l
≤ 0.20 316 5.46 5.15 5.29 36.26 − 0.36

− 0.31 4.59 4.86 31.63 − 0.19
− 0.59 (1.12) (1.09) (1.15)

0.20 < R
l
≤ 0.30 1647 0.71 0.83 2.44 9.44 0.82

0.19 0.66 2.60 10.61 0.80
− 0.16 (1.26) (0.94) (0.89)

0.30 < R
l
≤ 0.40 1306 − 1.53 − 0.91 2.84 11.97 0.84

0.69 − 0.90 2.67 10.80 0.86
0.33 (1.01) (1.06) (1.11)

0.40 < R
l
≤ 0.50 1854 0.12 0.28 1.67 4.89 0.94

− 0.04 − 0.20 2.09 6.91 0.92
1.06 (− 1.40) (0.80) (0.71)

0.50 < R
l
≤ 0.60 1600 − 0.99 − 0.76 1.79 4.90 0.93

0.62 − 0.85 1.88 5.53 0.92
0.67 (0.89) (0.95) (0.89)

0.60 < R
l
≤ 0.70 2436 0.09 0.21 1.00 1.92 0.97

0.10 0.00 1.33 3.14 0.96
2.51 (− 51.80) (0.75) (0.61)

0.70 < R
l
≤ 0.80 2833 − 0.07 − 0.12 0.87 1.37 0.98

− 0.24 0.14 1.04 1.90 0.97
1.26 (− 0.84) (0.84) (0.72)

0.80 < R
l
≤ 0.90 2119 − 0.13 − 0.25 0.69 0.90 0.98

− 0.59 0.28 0.90 1.31 0.98
1.73 (− 0.89) (0.76) (0.69)

0.90 < R
l
< 0.99 1384 − 0.37 − 0.37 0.49 0.39 0.99

− 0.43 0.58 0.68 0.66 0.98
3.01 (− 0.63) (0.73) (0.59)

0.10 < R
l
< 0.99 15,495 − 0.14 0.02 1.45 4.55 0.93

0.79 0.09 1.63 5.16 0.92
3.28 (0.18) (0.89) (0.88)
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(2018) to be inferior to Varjo’s model in its original linear 
form in Eq. 14, the worst performing among the 4 equa-
tions reported in this study.

Although the best performer globally, our nonlinear 
model in Eq. 7 did not perform as well as Varjo’s nonlinear 
model in Eq. 14 in certain local areas of the data space. 
When d > 0.90 , our model had larger MSEP and lower R2

p
 

than Varjo’s (Table 4). Where total log length represented 
less than or equal to 20% of the total tree height, Eq. 7 did 
not perform as well as the nonlinear form of Varjo’s 
model. However, the cases with total log length ratio 
Rl ≤ 0.20 only accounted for about 2% of the total number 
of simulated log cuttings (Table 5). Among the 0.448 × 106 
stems contained in the screened and filtered harvester data 
set, such cases accounted for a small proportion of 4.9% 
approximately. This approximation was based on the val-
ues of R1 calculated for individual stems using their pre-
dicted total tree height from our nonlinear model in Eq. 7. 

A posterior exploratory analysis showed that stems with 
Rl ≤ 0.20 were trees with DBH from 10.2 to 81.8 cm, with 
a mean of 41.0 cm, an upper and lower quartile of 33.8 and 
47.5 cm, and a 2.5th and 97.5th percentile of 23.1 and 
63.6  cm, respectively. Besides stems with Rl ≤ 0.20 , 
another subspace of data where Eq. 7 did not perform as 
well as the nonlinear form of Varjo’s model was the larger 
slenderer trees with DBH greater than 50 cm and H above 
the median height–diameter curve as delineated in Fig. 7. 
These trees had a height and diameter ratio (HDR, i.e., 
H∕DBH ) ranging from 0.52 to 0.83 with an average of 
0.68. Among the 0.448 million stems, such slender trees 
represented a small proportion of 3.5% and had HDR (i.e., 
calculated as predicted H over DBH) from 0.56 to 1.13, 
with an average of 0.70.

The poorer performance of our model for Rl ≤ 0.20 and 
d ≥ 0.90 reflected a structural weakness of our model. As 
defined in the “Notation” section, d takes any value between 
0 and 1. When the value of SEDTL approaches DBH, d → 1 

Table 6   Benchmarking 
statistics of prediction accuracy 
based on prediction errors for 
the first 5 cutting patterns: 
MEP, MAEP, MSEP and R2

p
 

across the 9 sequential log 
number categories for the 
nonlinear form of our new 
model (NMN) in Eq. 7 and that 
of Varjo’s model (VMN) in 
Eq. 14 presented in the first and 
second row in each row group, 
respectively

The ratios displayed in parentheses in the third row were that of NMN over VMN in the corresponding 
statistics. N is the number of observations in each category. The minimum, mean and maximum total log 
length ratio ( R

l
 ) represented by logs in each category were presented in a single column from top down

Number of logs N R
l

MEP (m) MAEP (m) MSEP R
2
p

1 1286 0.13 − 0.04 2.30 9.68 0.80
0.34 − 0.51 2.55 10.40 0.79
0.76 (0.08) (0.90) (0.93)

2 4970 0.13 − 0.06 1.77 6.39 0.90
0.48 − 0.17 1.91 6.93 0.89
0.94 (0.38) (0.93) (0.92)

3 3204 0.21 0.11 1.38 4.06 0.89
0.63 0.17 1.48 4.54 0.88
0.96 (0.63) (0.93) (0.89)

4 2509 0.22 0.13 1.24 3.12 0.90
0.70 0.24 1.43 3.83 0.87
0.95 (0.54) (0.87) (0.81)

5 1578 0.36 0.00 0.99 1.85 0.91
0.77 0.38 1.23 2.56 0.88
0.96 (0.01) (0.81) (0.72)

6 1035 0.35 0.02 0.89 1.68 0.91
0.82 0.53 1.19 2.41 0.87
0.97 (0.04) (0.75) (0.70)

7 456 0.47 − 0.12 0.74 1.06 0.94
0.86 0.51 0.99 1.55 0.92
0.97 (− 0.24) (0.75) (0.69)

8 253 0.53 − 0.05 0.66 1.09 0.93
0.87 0.67 1.04 1.71 0.89
0.96 (− 0.07) (0.64) (0.64)

9–11 204 0.65 − 0.06 0.56 0.64 0.93
0.91 0.85 1.02 1.53 0.84
0.96 (− 0.07) (0.54) (0.42)
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and the base function of (1 − d) tends to 0. A very small 
positive number with a positive exponent as formulated in 
Eq. 7 would result in a relatively large predicted value of H . 
Conversely, a positive exponent would lead to a relatively 
small predicted value of H . As a result, the variance of pre-
diction error became much larger as shown by the large val-
ues of MSEP in Tables 4 and 5. Based on the benchmarking 
statistics for the local evaluations of prediction accuracy, the 
applicable range of our nonlinear model for P. radiata stems 
processed and recorded by CTL harvesters should be where 
values of Rl > 0.20 and d < 0.95 . For stems outside of this 
applicable range, total tree height could still be estimated 
but indirectly based on model estimates for trees within the 
applicable range and also within a user-defined neighbor-
hood or local area. Using the estimated H of these trees 
and their spatial co-ordinates recorded in the harvester data, 
stem-specific and spatially varying geographically weighted 
linear or nonlinear height–diameter equations could be 
derived for more accurate total tree height estimation for 
such stems following the approach of Zhang et al. (2003) 
and Caccamo et al. (2018).

The approach of estimating the parameters of a single-
equation model through the multiple-equation GMM esti-
mator was adopted in this study specifically to obtain effi-
cient and consistent parameter estimates in the presence of 
error correlation and heteroscedasticity that were inherent 
to the systematic structure of data generated by the CTL 
simulations. This approach proved to be better than all 
single-equation methods that were evaluated during model 
derivation and parameter estimation. Although the compara-
tive results were not reported here, these single-equation 
methods for the log-transformed linear models included (1) 
least squares regression (LSQ), (2) repeated sampling and 
fitting through LSQ, each time using data from only 1 of 
the 6 cutting patterns randomly selected from each tree to 
avoid error autocorrelation, and (3) LSQ with discrete as 
well as continuous AR1 (first-order autoregressive) errors. 
For the nonlinear models, these single-equation methods 
included (1) nonlinear least squares regression (NLSQ), (2) 
weighted nonlinear least squares regression (WNLSQ) to 
overcome heteroscedasticity, (3) repeated sampling and fit-
ting through WNLSQ to reduce heteroscedasticity and at the 
same time to avoid error autocorrelation, and (4) WNLSQ 
with both discrete and continuous AR1 errors. In addition, 
the generalized estimating equations (GEE) implemented 
in the SAS macro %NLMIX as described by Vonesh (2012) 
was also attempted, but the estimation was not successful 
because of difficulties in achieving convergence. All these 
single-equation methods were compared with the multiple-
equation GMM estimator and evaluated through the leave 
one-tree-out cross-validation process and the benchmark-
ing statistics as described previously. The multiple-equation 
GMM estimator provided not only efficient and consistent 

parameter estimates in the presence of error correlation and 
heteroscedasticity in the structured data, but also the best 
predictive performance.

The repeated sampling and fitting also exposed a struc-
tural weakness of Varjo’s model due to the high degree of 
multicollinearity among its predictor variables as indicated 
by the collinearity diagnostics during parameter estimation 
of its linear as well as nonlinear form. The variance inflation 
factor was either close to the commonly used benchmark of 
10 or much greater than 10 for the predictor variables in the 
LSQ estimation of a single equation, while the condition 
index was greater than 110 and 220 in the linear and non-
linear multiple-equation GMM estimations, well above the 
commonly recognized threshold of 30 (Belsley 1991; Gal-
macci 1996; Alin 2010; Friendly and Kwan 2009). The high 
degree of multicollinearity led to highly variable and unsta-
ble parameter estimates. As a result, there tended to be either 
1 or 2 estimated parameters that were not significantly differ-
ent from zero as found during repeated sampling and fitting. 
A small change in the data could result in relatively large 
changes in parameter estimates, even to extent of switching 
signs. Therefore, it was not surprising to see (1) the linear 
and nonlinear estimates of some parameters having opposite 
signs as shown in Table 1 and (2) the comparatively large 
difference in the predictive performance between the linear 
and nonlinear forms of Varjo’s model (Table 2). Even for 
the same linear form, the model fitted by Lu et al. (2018) to 
data generated from a single cutting pattern based on a much 
smaller harvester data set had parameters of different signs 
to that estimated in this study. Although detailed compara-
tive results were not reported here for the sake of parsimony, 
its predictive performance became much poorer when tested 
over the much larger data space in this study, reflecting the 
potential impact of multicollinearity on the predictive ability 
of the model beyond its original training data space where 
the nature and degree of multicollinearity differed. Such 
effects of multicollinearity in linear and nonlinear regression 
models have long been recognised (Belsley 1984, 1991; Gal-
macci 1996; Alin 2010; Erkoç et al. 2010). In comparison, 
our new model in both linear and nonlinear forms did not 
suffer from the same problem, the condition index was 28 
and 23 in the linear and nonlinear multiple-equation GMM 
estimations, respectively, all below the benchmark value of 
30. This relatively weak multicollinearity among predic-
tor variables of our model would certainly contribute to its 
superior predictive performance.

Interest has been growing in making a greater use of har-
vester data in forest management and planning among both 
researchers and managers over the last 10 years (Möller et al. 
2011; Olivera and Visser 2016; Roth 2016). Most recently, 
harvester data analytics has been identified to be essential for 
the successful transformation of big forestry data into valu-
able data for management and envisaged to be an integral 
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and indispensable part in the generation of a virtual forest 
for subsequent digitization of the wood supply chain within 
the internet of trees and services in the future (Müller et al. 
2019). As shown by Möller et al. (2011), accurate estima-
tion of total tree height for harvested stems represents a 
necessary basic step in harvester data analytics. Our new 
model for predicting total tree height will facilitate and 
widen the utilization of harvester data far beyond the cur-
rent limited use in the management of radiata pine planta-
tions, i.e., mostly for log production monitoring and report-
ing. It will enable the full integration of harvester data with 
conventional inventory data, remote sensing imagery and 
LiDAR data for the development of harvester-based inven-
tory systems, for the prediction of attributes of individual 
trees, stands and forests, and for estimating product recov-
ery and residue biomass in radiata pine plantations. It will 
also facilitate (1) the screening and exploratory analysis of 
harvester data, (2) calibration and estimation of bark thick-
ness, (3) mapping of site index, (4) development site-specific 
height–diameter curves, and (5) post-thinning assessment of 
diameter and height distributions of retained versus removed 
stems. In addition, accurately estimated total tree height will 
make harvester data a potential source of taper data to sup-
plement and possibly reduce the intensity and cost of the 
conventional destructive taper sampling in the field. This list 
is far from exhaustive. Many other applications of our model 
are expected to emerge as harvester data analytics become 
increasingly refined and sophisticated with further develop-
ment. Although our new model was developed for radiata 
pine, its mathematical form will be applicable to other tree 
species in plantations as well as natural forests where CTL 
harvester data are routinely captured during thinning and 
harvesting operations.
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