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Introduction

Xylosma racemosum is widely distributed in Northeast 
China. Due to its density, high specific gravity, texture, and 
anti-corrosion and water resistance characteristics, the spe-
cies is commonly used for furniture and structural material. 
Compression strength is one of the most important mechani-
cal properties of tree species; however, traditional compres-
sion strength testing is time-consuming and costly (Rakoto-
vololonalimanana et al. 2015). Furthermore, the species has 
natural heterogeneous or diverse polymer characteristics and 
mechanical parameters because of inner defects and other 
factors. Therefore, a single sample cannot represent the 
entire batch of boards accurately.

Near-infrared (NIR) spectroscopy is a nondestructive, 
economical and reliable approach to evaluate various prop-
erties of organic materials. The wavelength range of the NIR 
spectrum is 770–2500 nm and reflects the molecular hydro-
gen groups O–H, N–H, C–H vibrational information that 
illustrates their structure. Because NIR spectral absorption 
peaks differ for thevarious molecular hydrogen groups, com-
plex materials and their physical and biological information 
can be chemically analyzed.

Various aspects of wood such as chemical components, 
mechanical properties, and degree of deterioration have 
been studied using NIR spectroscopy (Satoru and Hikaru 
2015). The chemical absorption band reflects wood cellu-
lose features that directly determine compression strength. 
Wood compression strength prediction models were success-
fully developed using NIR spectroscopy. Liang et al (2016) 
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collected spectral data of 160 X. racemosum samples and 
designed a genetic algorithm backward interval partial least 
squares prediction model. When the ratio of calibration was 
3:1, the model produced a 0.927 correlation coefficient. An 
artificial neural network (ANN) is also commonly used with 
NIR detection. Watanabe et al. (2014) compared the par-
tial least squares regression model and the ANN prediction 
model with NIR spectroscopy and showed that ANN was 
more effective and accurate for wood NIR prediction.

However, in NIR spectroscopy analysis processing, spec-
tral information is poor but may easily be covered by other 
information. On the other hand, the quantity and representa-
tiveness of the samples may be limited, thus limiting the 
ability of the prediction model to generalize and a limited 
scope of application. As a result, we proposed basing the 
transfer learning system on two species of hardwood data; 
NIR spectral data and corresponding compression strength 
values for A. mono were used to establish a compression 
strength prediction model for X. racemosum.

Transfer learning, an increasingly popular direction for 
machine learning research (Lu et al. 2015), transfers learned 
knowledge from a source domain to a target domain to estab-
lish a better model. Due to the small-scale, non-representa-
tive samples, useful features are obscured by large amounts 
of redundant information in the original data, which often 
leads to over-fitting and a narrow scope of application. With 
effective transfer learning algorithms and suitable source 
domain data, a system could produce more useful knowl-
edge and thus better performance and generalization. Good 
results have been achieved in different areas such as com-
puter vision, nature language recognition, and human behav-
ior recognition. Wang and Mahadevan (2011) proposed a 
varied alignment approach for heterogeneous domain adap-
tation that utilizes natural image datasets to classify medical 
images. Yosinski et al. (2014) studied the transferability of 
features in deep neural networks utilized in language recog-
nition and image recognition. Cook et al. (2013) reviewed 
the literature to highlight advances in transfer learning for 
human activity recognition.

In this study, we aimed to develop a transfer learning 
system to establish a X. racemosum compression strength 
prediction model. In wood microstructures, the effect of an 
S2 microfibril cell wall angle on wood compressive strength 
is significant. For example, microfibril angles of coniferous 
cell walls are much larger than those of normal wood, reach-
ing about 45°, while the compressive strength of conifer-
ous wood is only 50–60% that of normal wood (Li 2002). 
Because it is difficult for NIR spectroscopy absorbance to 
reflect the exact microfilament angle, A. mono was selected 
as a domain source because it microstructure is similar to 
that of X. racemosum. The spectral data of A. mono samples 
and corresponding compression strength values were consid-
ered a source dataset, and the spectral data of X. racemosum 

samples and corresponding compression strength values 
were the target dataset. In this transfer learning system, 
transfer component analysis (TCA) and principal component 
analysis (PCA) were regarded as an unsupervised learning 
representation to normalize the different spectral data for the 
two species. The source dataset was then used to pre-train a 
X. racemosum compression strength prediction model, and 
the target dataset was used to fine-tune this model. This pre-
diction model should result in the acquisition of consider-
able information from the X. racemosum NIR spectral data, 
which have a high degree of accuracy, efficiency and a good 
generalization ability.

Materials and methods

Materials

Six X. racemosum and six A. mono logs were collected from 
the Dailing Forestry Bureau, Heilongjiang Province. At 
1.3 m on each log, 5-cm thick discs were cut. Following the 
Chinese National Standards, “Wood Physical and Mechani-
cal Specimen Collection Methods (GB/T1936-2009)”, the 
discs were cut into standard 30 mm 20 mm 20 mm sam-
ples,76 for X. racemosum and 109 for A. mono. All samples 
were placed into a thermostat box at 22 °C with 12% mois-
ture content and 65% relative humidity.

NIR spectral measurements

A NIR Quest (512) spectrometer (Ocean Optics, Weihai 
Optical Instrument Co., Ltd, Shanghai, China) provided 
900–1700 nm spectra at 3-nm intervals to measure surfaces 
of the samples. Wavelengths from 1100 to 1700 nm provide 
information that is vital for the analysis of wood properties 
(Schimleck et al 2003; Todorović et al. 2015). A stable 512-
pixel indium gallium arsenide array detector, located on a 
compact light pedestal with two-stage thermoelectric cool-
ers and low-noise electronic components, scanned surfaces 
so that errors due to improper operation could be eliminated. 
After preheating 10 min and scanning the polytetrafluoroeth-
ylene reference tile for calibration, according to the “Stand-
ard Method for Near Infrared Qualitative Analysis of Wood 
(LY/T2053-2012)”, the detector scanned the surfaces of sam-
ples. The NIR spectrum for the samples was generated using 
SPEC view 7.1 (Insion Co., GmbH, Heilbronn, Germany) and 
exported to Excel (Microsoft, Redmond, WA, USA). Each 
sample was scanned 30 times and the data averaged. Figure 1 
shows the process of NIR spectrum collection.
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Mechanical parameters test

In accordance with Chinese National Standards, “Method of 
Testing Physical and Mechanical Properties of Wood (GB/T 
15,780–1995)”, compression strength was measured using an 
electronic universal mechanical testing machine, loading at a 
constant rate. At a particular load, the sample was destroyed, 
the load was reduced, and the compression strength was 
recorded at that point.

Preprocessing of NIR spectra

For reducing any negative effects caused by incorrect opera-
tion during the collection of the raw NIR spectra, a standard 
normal variate (SNV) pretreatment and a Savitzky–Golay 
(SG) smoothing filter were used. SNV improves light scat-
tering and Savitzky–Golay (SG) reduces high-frequency 
noise and spectrum baseline drift. SNV processing is:

where Xi is the original spectrum, µ is the mean of the orig-
inal spectrum, and is the standard deviation of the origi-
nal spectrum. The SG smoothing filter uses a polynomial 
approach to make a least square fit in moving windows. 
The total number of wavelength points per spectrum is D, 
the wavelength point sequence number is j(j = 1,2…D), the 
width of moving windows 2 m + 1 (− m,− m + 1,…m − 1, 
m), and aj = {a0,a1,…ak} is the weight coefficient that con-
forms to the k-order polynomial.

(1)Zi =
Xi − �

�
,

(2)X̂
j

�
= a0 + a1� + a2�

2 +… ak�
k,

where is the NIR wavelength absorbance point of the mov-
ing window. In the moving window, the minimized error 
between the NIR spectra fitted by polynomials and original 
NIR spectra is:

Set ��
�aj

= 0 , calculating the corresponding weight coeffi-
cient combination, when the smallest error occurs in differ-
ent size windows.

Transfer learning system for Xylosma racemosum 
compression strength prediction

In the machine learning model, the limited input data does 
not adequately represent the species, and this type of model 
usually has poor generalization quality. With a suitable 
source dataset and suitable transfer learning approaches, a 
source domain’s knowledge and features could be transferred 
to a target task and help improve the model’s performance 
and generalization ability.

In this study, a transfer learning system was designed to 
establish a X. racemosum compression strength prediction 
model coupled with an A. mono sample dataset (Fig. 2).

The transfer component analysis (TCA) is a good domain 
adaptation algorithm and suitable for handling large data-
sets and prediction models (Pan et al. 2010). A. mono NIR 
spectral data was set as source domain and X. racemosum 
NIR spectral data as target domain. The source domain NIR 
spectral data (Ds) is denoted as:

 where xS1 ∈ � is the input and yS1 ∈ � isthe corresponding 
output. Similarly, the target domain data (DT) is denoted as:

P(XS), Q(XT) are the marginal distribution of XS and XT, 
respectively, and where P(XS) ≠ Q(XT), source data cannot 
be used to help target domain research. The TCA assists in 
finding a nonlinear map that gives good representation in a 
subspace between source and target domain (and minimizes 
their marginal distribution). With this method, P(XS) P(XT). 
Because of the strong correlation between the two domains, 
it is assumed that P(YSXS)P(YTXT). (Source data could be 
used to help target task).

The TCA uses maximum mean discrepancy (MMD) 
(Borgwardt et al. 2006) to define the marginal distribution 
after mapping to minimize the distance shown in Eq. 6, 

(3)� =

m∑
−m

(
X̂
j

�
− X

j

�

)2

.

(4)DS =
{(

xS1 , yS1

)
,… ,

(
xSn1 , ySn1

)}

(5)DT =
{(

xT1 , yT1

)
,… ,

(
xTn2 , yTn2

)}
, xT1 ∈ � , yT1 ∈ �

Fig. 1  Process of NIR spectra collection
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where � is a nonlinear map, to map the source data and 
target data in a reproducing Kernel Hilbert space.

Because it is difficult to solve for � , the TCA introduces 
a kernel trick to transfer Eq. 6 as:

where (n1 + n2) × (n1 + n2) is a kernel matrix, KS,S, KT ,T , KT ,S 
respectively, are the kernel matrices defined by k on the data 
in the source domain (src), target domain (tar), and cross 
domains, and L = [Lij] ≥ 0 with:

(6)Dist
(
X

�

S
,X

�

T

)
=

‖‖‖‖‖‖
1

n1

n1∑
i=1

�(xsi) −
1

n2

n2∑
i=1

�(xTi)

‖‖‖‖‖‖

2

H

.

(7)Dist
(
X

�

S
,X

�

T

)
= tr(KL)

(8)K =

[
KS,S KS,T

KT ,S KT ,T

]
,

(9)Lij =

⎧⎪⎨⎪⎩

1

n2
1

xi, xj ∈ Xsrc

1

n2
2

xi, xj ∈ Xtar

−1

n1n2
otherwise

Kernel k(⋅, ⋅) may be solved through learning the kernel 
matrix k . The TCA uses a novel kernel learning method to 
transfer kernel K to a low-rank presentation m-dimension W 
(Pan et al. 2010) shown in Eq. 10:

The solution of W is the final solution of the TCA for 
redundant information in the NIR spectral data that will 
have a negative effect on the model’s performance and gen-
eralization ability, in this study, we also used a principal 
component analysis (PCA) to eliminate redundant informa-
tion. The PCA could find the eigenvectors corresponding to 
the largest eigenvalues of the covariance matrix of the data 
to reduce the dimensions of the data. These values could 
be from n to d, where d < n. According to the d-dimension 
information-proportion of the original data, d can be solved 
(Wold et al. 1987).

The dataset for Acer mono after feature selection was 
input into a 5-layer learning neural network for training, 
which stopped when the value of the loss function kept oscil-
lating within a certain step length.

Xylosma racemosum samples were randomly divided as 
a training set and a test set. The training set was input into 
the model for fine-tuning. The test set was used to evaluate 
the prediction model’s performance. Because the parameters 
in the model had been learned before, the learning rate was 
set as one-fifth of the original. We used 10 trainings and 
obtained the average model performance.

Model evaluation standard

By comparing the NIR wood property prediction model, 
we evaluated the transferability of wood NIR spectroscopy 
knowledge, considering not only the accuracy and data 
dependence of the model but also the generalization abil-
ity of the model. Statistical measurements (Schimleck et al. 
2003), mean square error (MSE) and determination coef-
ficient (r) are commonly used in NIR model evaluation. A 
good model has higher determination coefficients and lower 
mean square errors. Furthermore, the performance of the 
model is evaluated under different training and prediction 
sets, which reflect the generalization ability of the model.

Results and discussion

Determination of compression strength

Compression strength values of 109 A. mono samples and 76 
X. racemosum samples obtained by the mechanical testing 

(10)K̃ =

(
KK

−1∕2W̃

)(
W̃TKK

−1∕2

)
= KWWTK

Source domain
raw NIR

spectra with
pre-processing

Target domain
raw NIR

spectra with
pre-processing

TCA
confusion

PCA PCA

Pre-training
prediction
model with

initial
parameters

Fine-tune the
prediction

model

Target data
corresponding
to compression

strength

Source data
corresponding
to compression

strength

A well-trained
prediction

model

Fig. 2  Flowchart of the development of the transfer learning predic-
tion model (TCA is transfer component analysis)
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machine are shown in Table 1. The detailed distribution of 
the compression strength values are shown in Fig. 3.

Near‑infrared spectroscopy and spectra pre‑processing

The raw NIR spectra of samples were collected from 
899.77 to 1720.81 nm, and 512 NIR spectral wavelength 
points were obtained (Fig. 4). The raw NIR spectral data 
were then pre-processed using SNV and SG smoothing 
filters (Figs. 5 and 6).

Compared with the spectra in Fig. 4, in Figs. 5 and 6, 
light scattering was lessened and the trend of change was 
more uniform after SNV processing. The main absorption 
peaks were also more obvious and the spectral profiles 
more regular after SG smoothing.

Transfer learning prediction model performance 
evaluation and analysis

The A. mono dataset was used as a source domain and the 
X. racemosum dataset as the target domain. Input for both 
source domain and target domain the 512 dimensional NIR 
spectral data for TCA domain adaptation processing. Two 
50-dimensional feature matrices were produced. Inputting 
50-dimensional feature matrix for the two kinds of timber for 
PCA, set the loss rate less than 5%, then 20-dimensional fea-
tures matrix of two kinds of timber NIR data were obtained.

A five-layer neural network was established in Keras, an 
open-source neural network library. All spectral data and 
corresponding compression strength values of the 109 A. 
mono samples were inputted to pre-train the prediction 
model. The X. racemosum data and corresponding compres-
sion strength values were divided into an eight-group train-
ing set and a test set. Training sets were chosen randomly 
to account for 10%, 20%,…, 80% of the total X. racemosum 
samples, and the rest were used for the test set. This eight-
group dataset was input into the prediction model, respec-
tively, whose parameters had been previously learned by the 
source dataset. After 100 epochs, the loss function of the 
model was generally stable. The model’s predictive perfor-
mance is shown in Table 2.

The model yielded 8.36 MSE and 0.88 r for predictive 
performance even if the training sets only accounted for 
10% in total samples of X. racemosum used for the com-
pression strength. Under the ratio of 60% training set with 
40% test set, 5.23 MSE and 0.94 r predictive performance 
were obtained by the prediction model.

For testing the effect of different parts in this transfer 
learning system, three controlled trials were designed by 
cutting some wood sections. For the first trial, the TCA and 
pre-training process were cut. With the second trial, only the 
TCA section was cut, and for the third, only the pre-training 
section was cut.

The effects of the different processing methods and mod-
els, based on the model evaluation criteria, are shown in 
Figs. 7 and 8. The blue line represents a complete transfer 

Table 1  Compression strength values

SD Standard deviation

Samples Strength values (MPa)

Maximum Minimum Mean SD

Acer mono 96.68 25.64 79.04 9.76
Xylosma racemosum 96.60 44.53 75.89 9.20

Fig. 3  Detailed distributions of compression strength for Acer mono 
and Xylosma racemosum 
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learning system, the light blue line represents a system lack-
ing TCA, the black line a system lacking the pre-training 
process, and the red line a system lacking both the TCA and 
pre-training process.

As shown in Figs. 7 and 8, with TCA processing, the pre-
diction model had a better performance and generalization 
ability because common features could be found that were 
implicitly expressed in the mapped spectral matrix. After 
effective extraction, common hardwood features reflected by 
NIR spectra were refined, and much redundant information 

was eliminated. This step was very useful in the following 
supervised learning task.

Conversely, without domain adaption, when the source 
dataset was directly input into the prediction model for pre-
training, there was poor prediction because the model is 
insensitive to input target data. Because the NIR spectral 
data for the two specimens did not share some marginal dis-
tribution, only certain learned knowledge was useful. Along 
with the increase in target data, the knowledge learned from 
the source data has a negative transfer effect.

Fig. 4  Raw NIR spectra for a A. mono and b X. racemosum 

Fig. 5  Pre-processing of raw NIR spectral data for A. mono using a SNV and b SNV combined with SG
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The complete transfer learning prediction model has bet-
ter performance and transformation ability (Figs. 7 and 8). In 
addition, after pre-training, the model only required, on aver-
age, about 100iterations to accomplish the training process, 
so it was 10 times faster than the prediction model without 
the transfer learning processing.

The use of the pre-trained model and transfer learning 
may be considered a conceptual drift process, which could 
conduct automatic regularization. This process guided the 
neural network function to converge into a specific area 
containing the hardwood knowledge and to exclude noise 
caused by the limitation of input data. This automatic regu-
larization process made the gradient descent direction of the 
loss function more explicit, reduced the oscillation of the 
descent direction, accelerated the convergence speed of the 
loss function, and reduced the training time of the model. 
Therefore, this transfer learning model has strong generali-
zation ability, good performance and is efficient.

Conclusions

A transfer learning system based on NIR spectral data was 
developed. With A. mono data, the compression prediction 
model established for X. racemosumhas good performance 
and strong generalization ability.

Both A. mono and X. racemosum are hardwoods. There is 
a general knowledge of mechanical strength of hardwood in 
their NIRspectral data, which can be extracted by the domain 
adaptation method.

The spectral characteristic matrix contains the inter-
relation between wood characteristics and compression 
strength, which is implicitly expressed in the hyperpa-
rameters of the model. This a priori knowledge may be 
transferred to the target model and thus improve its per-
formance, generalization ability and efficiency.

Fig. 6  Pre-processing of raw NIR spectraldata for Xylosma racemosum using a SNV and b SNV combinedwith SG

Table 2  Performance of the prediction model for compression 
strength of Xylosma racemosum using different training sets

Proportion of training set in total 
samples for species (%)

Model performance under differ-
ent criteria

MSE r

10 8.83563086 0.884339822
20 8.651702502 0.930528952
30 8.553911639 0.9204185
40 5.709580263 0.942323827
50 8.112748443 0.914964609
60 5.230650082 0.94130542
70 8.751394892 0.920486518
80 7.335302845 0.939120271
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By means of transfer learning and multi-species spec-
tral data, the mechanical strength of a hardwood can be 
accurately predicted.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Fig. 7  Model mean square 
error performance with different 
processing and different propor-
tion of training set

Fig. 8  Correlation coefficients 
for model performance based 
on different proportions of 
the training set and different 
processing methods
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