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Abstract The Himalayas are characterized by a broad

gradient of bioclimatic zones along their elevation. How-

ever, less is known how forest growth responds to climatic

change along elevation. In this study, four standard tree-

ring width chronologies of Himalayan fir (Abies spect-

abilis) were developed, spanning 142–649 years along an

elevation gradient of 3076–3900 m a.s.l. Principal com-

ponent analysis classified the four chronologies into two

groups; the ones at lower elevations (M1 and M2) and

higher elevations (M3 and M4) show two distinct growth

trends. Radial growth is limited by summer (June–August)

precipitation at M3, and by precipitation during spring

(March–May) and summer at M4. It is limited by spring

temperatures and winter precipitation (December–Febru-

ary) at M1. Tree-ring width chronologies also significantly

correlate with winter and spring Palmer Drought Severity

Index (PDSI) at M1, and with summer PDSI at M3 and M4.

Thus, Himalayan fir growth at high elevations is mainly

limited by moisture stress rather than by low temperatures.

Furthermore, the occurrence of missing rings coincides

with dry periods, providing additional evidence for mois-

ture limitation of Himalayan fir growth.

Keywords Climate signals � Tree-ring width � Abies
spectabilis � Radial growth � Precipitation �Manang valley �
Himalayas

Introduction

In recent decades, climate change has significantly affected

the composition, structure, and dynamics of forest

ecosystems (IPCC 2014; Allen et al. 2015). These effects

are more pronounced on tree physiology and population

dynamics in mountainous regions (Körner 2012). However,

forest growth at high altitudes is often subjected to envi-

ronmental gradients associated with elevation (LaMarche

1974; Hughes and Funkhouser 2003). As showed by dif-

ferent dendroclimatological studies, tree growth is limited

by moisture at lower elevations (Fritts et al. 1965; Leel

et al. 2007), and by temperatures at higher elevations

(Savva et al. 2006; Fan et al. 2008). However, some studies

have shown uniform growth response along elevation

gradients (Liu et al. 2006; Liang et al. 2010; Wang et al.

2015). Therefore, a better understanding of tree growth

response to climate along elevation gradients is highly

important to assess the impacts of climate change on forest

ecosystems.

The Himalayas are characterized by a broad gradient of

bioclimatic zones and diverse forests along elevation gra-

dients. It is one of the world’s most vulnerable regions to
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global warming, with a warming rate higher than the global

average (Shrestha et al. 2012). Warming-induced drought

stress has caused a higher occurrence of missing annual

rings of high-elevation forests in the central Himalayas

(Liang et al. 2014), and declining recruitment at the

world’s highest juniper shrublines in recent decades on the

Tibetan Plateau (Lu et al. 2019). Thus, ongoing warming is

expected to further alter drought-sensitive forest ecosys-

tems along elevations. To date, few studies have been

conducted along the elevation gradients in the Himalayas

(Kharal et al. 2017; Sohar et al. 2017).

In the central Himalayas, several studies have investi-

gated tree growth response to climate in recent decades

(Cook et al. 2003; Dawadi et al. 2013; Liang et al.

2014, 2019; Thapa et al. 2014; Panthi et al. 2017; Shrestha

et al. 2017; Sigdel et al. 2018a). Based on published results,

tree growth showed diverse responses to climatic change in

the central Himalayas. Some studies have indicated that

growth was primarily controlled by variations in tempera-

ture (Cook et al. 2003; Gaire et al. 2014; Thapa et al. 2014;

Kharal et al. 2017), while other studies have shown that

tree growth was significantly controlled by precipitation at

higher elevations (Dawadi et al. 2013; Liang et al.

2014, 2019; Panthi et al. 2017). Meanwhile, both temper-

ature and precipitation can have a significant influence on

tree growth (Sano et al. 2005; Sohar et al. 2017). To better

understand different growth responses to climate change in

the central Himalayas, it is necessary to investigate growth

responses along elevation gradients.

The objective of this study is to examine how Hima-

layan fir (Abies spectabilis (D. Don) Mirb.) growth

responds to climate along an elevation gradient in the

Manang valley of the central Himalayas (Nepal). Hima-

layan fir is an ecologically important species of sub-alpine

forest ecosystems which form natural treelines in the cen-

tral Himalayas (Sigdel et al. 2018b). Given that precipita-

tion in the central Himalayas decreases with increasing

elevations above 3000 m (Liang et al. 2014), it was

hypothesized that moisture stress rather than low temper-

atures primarily control the growth of Himalayan fir at high

elevations.

Materials and methods

Study area

The sampling sites are located along an elevation gradient

of the Manang valley (83�400–84�400E and 28�200–
29�00N). The elevation of the sampled Himalayan fir forest

ranges from 3076 to 3900 m a.s.l. (Fig. 1).

Climate in the central Himalayas is influenced by two

different weather circulation systems (Indian monsoons in

the summer, and westerly jet streams in the winter), with a

high inter-annual variability (Yao et al. 2012). The upper

part of the Manang valley receives much less annual pre-

cipitation as it is surrounded by the Annapurna Mountain

massif. Monthly mean maximum and minimum tempera-

tures at Chame climate station (28�330N, 84�140E; 2680 m)

are 11.3 �C and - 1.6 �C in winter, and 20.6 �C and

9.6 �C in summer (Fig. 2). Annual precipitation at

Manangbhot climate station (28�400N, 84�010E; 3520 m) is

about 400 mm (1977–2013) and ca. 65% of total annual

precipitation occurs during the monsoon season. According

to the climate data, annual maximum temperatures have

been increasing significantly, and total annual precipitation

has been significantly decreasing (Fig. 3).

Sample collection and dendrochronological analyses

Increment cores were extracted from a natural Himalayan

fir stand using an increment borer. Core samples were

collected along an elevation gradient from 3076 to 3900 m

at every 250–300 m differences. The sites cover the lowest

elevation limit and alpine timberline of Himalayan fir in

the Manang valley. At each sampling site, 15–30 mature,

healthy trees were selected and one to two cores were

collected from each tree at breast height. A total of 33, 48,

30 and 25 increment cores were collected and used to

develop chronologies from the sampling sites M1

(3076 m), M2 (3335 m), M3 (3666 m) and M4 (3900 m),

respectively (Table 1).

Samples were stored in paper tubes and labeled.

Preparation and processing were carried out following

standard dendrochronological methods (Cook and Kair-

iukstis 2013). The dried cores were fixed in wooden slots

and core surfaces smoothed with consecutively finer grades

of sand papers until ring boundaries were clearly visible.

Tree-ring widths were measured using a LINTAB mea-

suring system at 0.01 mm precision (Rinntech, Heidelberg,

Germany). The measurement and cross-dated series were

further verified using the COFECHA software (Holmes

1983). Standardization of cross-dated tree-ring width data

was performed using the computer program ARSTAN

(Cook 1985). To remove any biological trends and maxi-

mize the strength of climatic signals of the chronology, all

raw series were detrended and standardized by negative

exponential curves or a 67-year cubic smoothing spline.

Standard chronologies were used for all analyses.

Mean inter-series correlations (RBAR) and expressed

population signals (EPS) were calculated with a 50-year

moving window with a 25-year overlap (Wigley et al.

1984). The common period (1930–2013) with an EPS

C 0.85 was used for further analysis except for the

chronology at M1 (EPS = 0.78). A lower EPS value at M1
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may be due to moderate climatic conditions or low sample

depth.

Climate-growth relationships

Tree growth response to climate was investigated by cal-

culating Pearson’s correlation between the four standard

chronologies and seasonal (winter ‘DJF’, spring ‘MAM’

and summer ‘JJA’), as well as monthly climate data from

1979 to 2013 retrieved from high resolution (30 arc

sec, * 1 km) satellite data CHELSA (Climatologies at

High resolution for the Earth’s Land Surface Areas)

(Karger et al. 2017). Due to a lack of climatic data along

sampling gradients, satellite data CHELSA was used to

analyze climate-tree growth relationships. These climatic

data showed high correlations with temperature records of

Chame climate station (2680 m) from 1979 to 2012, and

with precipitation records from 1979 to 2013 at

Manangbhot climate station (3420 m). For monthly mean

maximum and minimum temperatures, the correlation

coefficient (r) ranged from 0.89 to 0.90 (p\ 0.001). For

precipitation data (r) ranged from 0.43 to 0.44 (p\ 0.001).

Fig. 1 Sampling sites of

Himalayan fir and the local

meteorological stations in the

Manang valley, central

Himalayas

Fig. 2 Monthly maximum,

minimum and mean

temperatures (1977–2012) at

Chame and precipitation

(1977–2013) at Manangbhot
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This demonstrates that the CHELSA climate data repre-

sents the climatic conditions of the four sampling sites.

Principal component analysis (PCA) was carried out

using the four chronologies during the common period

1930–2013. PCA was calculated on the covariance matrix

of the chronologies and only two principal components

(PC1 and PC2) were retained as they had eigenvalues

greater than one. Monthly and seasonal means of climatic

variables were correlated with PC1 and PC2 to investigate

the extent of common growth variations through time.

Linear association between the two factors was calculated

by employing partial correlation after excluding the third

factor.

Results

Statistics of the chronologies

The longest chronology (649 years) was developed from

the lowest elevation (M1) data, followed by a 402-year

chronology from the mid-elevation (M2), a 229-year

chronology from the higher-mid elevation (M3), and a

142-year chronology from the highest site (M4) (Table 1;

Fig. 4). Of the total rings measured from the four sampling

sites, locally missing rings accounted for 0.16%. During

the past 200 years, locally missing rings were observed in

1820, 1821, 1848, 1849, 1864, 1866, 1867, 1898, 1918,

1968, 1971, 1978, 1979, 2000, 2002, 2003, 2004, 2010 and

2011. Frequency of locally missing rings increased with

elevation, except for the M4 site where there were no

missing rings.

Within the chronologies, RBAR ranged from 0.15 to

0.61, and EPS crossed 0.85 from 1930 to 2013 at all sites

except M1 (Table 1). Mean sensitivity (MS) ranged from

0.15 to 0.26. Principal component analysis showed that

PC1 and PC2 explained 41.7% and 32.6% of variance,

respectively (Fig. 5). All chronologies did not load posi-

tively on PC1. The higher elevation sites (M3 and M4) had

positive loadings on PC1, while the lower elevation sites

(M1 and M2) demonstrated positive loadings on PC2.

(Fig. 5). Significant correlations have been observed

between adjacent sites M1 and M2 (r = 0.30, p\ 0.01),

and M3 and M4 (r = 0.66, p\ 0.001), while there were no

significant correlations between the chronologies at lower

and higher elevations (Table 2).

Climate-growth relationships

The growth of Himalayan fir varied in response to climatic

change along the elevation gradient. Tree-ring width

chronologies at M4 correlated positively with precipitation

during spring (r = 0.43, p\ 0.05), May (r = 0.46,

p\ 0.01), and summer (r = 0.69, p\ 0.001) (Fig. 6). Tree

growth at M3 also showed positive correlation with sum-

mer precipitation (r = 0. 59, p\ 0.001). On the other hand,

tree growth at both M3 and M4 was weakly associated with

temperature. Furthermore, growth of Himalayan fir at the

M1 site was positively correlated with winter precipitation

(r = 0.52, p\ 0.01) and negatively with spring tempera-

tures (r = - 0.54, p\ 0.01). In particular, the M1

chronology showed a negative correlation with April

temperatures (r = - 0.55, p\ 0.01). Lastly, M2

chronologies were significantly positive correlated with
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July temperatures (r = 0.42, p\ 0.05) (Fig. 6). The first-

order difference series for the chronologies and climatic

data also supported this analysis (Fig. 6).

Tree growth showed positive significant correlation

with Palmer Drought Severity Index (PDSI) during spring

(r = 0.38, p\ 0.05) and summer (r = 0.58, p\ 0.001) at

M3, and during summer at M4 (r = 0.34, p\ 0.05). At

M1, tree growth correlated positively with PDSI during

winter (r = 0.42, p\ 0.05) and spring (r = 0.38, p\ 0.05)

(Fig. 6).

Partial correlation analysis showed significant correla-

tions between summer precipitation and M3 (r = 0.59,

p\ 0.001), and M4 chronologies (r = 0.66, p\ 0.001)

when controlling for the effect of summer temperatures. In

addition, M4 chronology and spring precipitation corre-

lated significantly (r = 0.43, p\ 0.05) when reflecting the

influence of spring temperatures. In addition, there was

significant correlation between M1 chronology and winter

precipitation (r = 0.47, p\ 0.01), and spring temperatures

(r = - 0.55, p\ 0.001) after excluding the effect of

winter temperatures and spring precipitation.

PC1 showed significant and positive correlation with

summer precipitation (r = 0.48, p\ 0.01), while weak

correlation with summer temperature (r = 0.179,

p = 0.305) (Fig. 7). It also had significant positive corre-

lation with annual precipitation from July of the previous

year to June of the current year (r = 0.35, p\ 0.05).

However, PC2 was significantly negative correlated with

spring temperatures (r = - 0.52, p\ 0.01) (Fig. 7).

Discussion

Locally missing rings and drought

The occurrence of missing rings suggests that widespread

drought influenced tree growth in the Manang valley. The

missing rings synchronized with large-scale drought events

in Nepal during 1967–1973 and 1999–2001 (Sigdel and

Ikeda 2010). Most of the locally missing rings in our study

area also correspond with dry periods (1848–1849,

1859–1876, 1887–1901, and 1964–1973) in the western

Himalayas (Ram 2012). In addition, some of the missing-

ring years coincided with those for Himalayan birch (Be-

tula utilis D. Don) in 1968, 2000, 2003 and 2004 (Liang

et al. 2014). Furthermore, the occurrence of narrow rings in

the Himalayan fir chronologies also coincide with the

drought periods (1807–1828, 1892–1898, 1915–1927) in

the central Himalayas (Panthi et al. 2017), suggesting that

frequency of missing rings may archive the signals of past

drought events. However, the absence of missing rings at

the uppermost sampling site might be due to the presence

of young trees with good vigor. Hence, frequent locallyT
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missing rings provide an additional insight about extreme

climatic conditions and their effect on tree growth in the

semi-arid regions of the central Himalayas.

Climate-growth relationships

Relationships between the radial growth of Himalayan fir

and climate were not uniform along the elevation gradient.

Variations in aspect, slope, and elevation of sites may

influence tree growth (Lyu et al. 2017), hence obscuring

climatic signals embedded in tree rings. In this study, the

growth of Himalayan fir at high altitudes was mainly

constrained by moisture stress rather than by growing

season temperatures. Stronger precipitation signals at

higher elevations further support the premise that precipi-

tation decreases with increasing elevation in the central

Himalayas (Liang et al. 2014). Moisture stress during pre-

monsoon and monsoon seasons seems to limit Himalayan

fir growth across the elevation gradient in our study area.

Radial growth has a negative correlation with pre-monsoon

temperatures and a positive correlation with PDSI at the

M1 site, suggesting moisture stress on tree growth. The

negative correlation between PC2 and spring temperatures

further highlight the importance of moisture availability on

tree growth. Such results have been reported for different

tree species in the Himalayas and on the Tibetan Plateau

(Yadav et al. 2004; Sano et al. 2005; Borgaonkar et al.

2011; Dawadi et al. 2013; Liang et al. 2014; Kharal et al.

2017; Panthi et al. 2017; Mou et al. 2019; Sigdel et al.

2018a). Although warming temperatures enhance xylem

cell production, the thermal threshold is an important

indicator of tree growth at the alpine treeline (Li et al.

2017; Liang and Camarero 2018). High spring tempera-

tures can cause water deficits by enhancing evapotranspi-

ration and hence delay the onset of xylogenesis or wood
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Table 2 Correlation coefficients between all chronologies

(1930–2013 AD)

Items M1 M2 M3

M1

M2 0.30**

M3 0.10 - 0.11

M4 - 0.02 0.04 0.66***

** and *** indicates p\ 0.01 and p\ 0.001 respectively
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formation (Ren et al. 2018). Increased temperatures cou-

pled with lower precipitation in the early growing season

can cause drought stress, stomata closure and reduced

carbon assimilation (Wang et al. 2005). Likewise, signifi-

cant positive correlations between tree growth at the M1

site and total winter precipitation might be related to the

replenishing of soil moisture before the onset of xylogen-

esis. Further, tree growth at the M2 site was only signifi-

cantly correlated with July temperatures. M1 and M2

chronologies are significantly correlated with each other

(Table 2). However, it is difficult to understand why tree

growth at the M2 site did not show signals of drought

stress. Future studies should investigate the causes for

different growth responses to climate at the M2 site.

Likewise, site-specific climate data could better explain

such climate-growth relationships.

Generally, temperature is a growth limiting factor for

trees at higher elevations (Liu et al. 2005; Fan et al. 2008;

Affolter et al. 2010; Bayramzadeh et al. 2018; Yu and Liu

2018). In the central Himalayas, spring precipitation is

considered to be a driving factor for tree growth, in par-

ticular in high-elevation forests (Dawadi et al. 2013; Liang

et al. 2014, 2019; Panthi et al. 2017; Tiwari et al. 2017), as

well as in subtropical forests (Sigdel et al. 2018a). Not only

tree growth, treeline upward shift across the central

Himalayas was also primarily determined by spring pre-

cipitation (Sigdel et al. 2018b). However, this study shows

that tree growth at high elevations is limited by precipita-

tion during spring and summer seasons, possibly due to

much drier climate conditions at higher elevations of the

Manang valley compared with other research areas (Bhat-

tarai et al. 2004). Positive correlations between tree growth

and summer PDSI (Palmer Drought Severity Index) further

suggests that moisture shortages limit tree growth. On the

other hand, precipitation and surface water during summers

are the major source of moisture for tree growth in arid

locations (Littell et al. 2008), supporting our main findings.

Similar cases of growth-climate relationships have been

reported for the cold and arid regions of the northeastern

Tibetan Plateau (Chen et al. 2011; Yang et al. 2013; Lyu

et al. 2019).

Rising temperatures and decreasing precipitation could

further accelerate drought stress in the future, especially in

the highly sensitive, semi-arid trans-Himalayan region by

increasing evapotranspiration and vapor pressure deficits

(Wang et al. 2013; Ding et al. 2018). In addition,
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competition between nearby trees for soil moisture may

further exacerbate moisture stress for tree growth (Liang

et al. 2016). Warming and drying climates have already

caused growth decline, canopy dieback, and even mortality

for drought-prone forests on the Tibetan Plateau and in the

Himalayas (Liang et al. 2014, 2016; Fang et al. 2018).

Conclusions

The growth of Himalayan fir in the central Himalayas is

primarily limited by moisture stress. Despite different cli-

matic signals along the elevation gradient, moisture stress

is a common force for growth variations. Under climate

warming in recent decades, the growth of Himalayan fir in

the Manang valley will undergo increasing moisture stress

in the future. These findings contribute to a better under-

standing of the impacts of climate change on forest

ecosystems in the central Himalayas.
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