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Abstract Raster type of forest inventory data with site and

growing stock variables interpreted for small square-

shaped grid cells are increasingly available for forest

planning. In Finland, there are two sources of this type of

lattice data: the multisource national forest inventory and

the inventory that is based on airborne laser scanning

(ALS). In both cases, stand variables are interpreted for

16 m 9 16 m cells. Both data sources cover all private

forests of Finland and are freely available for forest plan-

ning. This study analyzed different ways to use the ALS

raster data in forest planning. The analyses were conducted

for a grid of 375 9 375 cells (140,625 cells, of which

97,893 were productive forest). The basic alternatives were

to use the cells as calculation units throughout the planning

process, or aggregate the cells into segments before plan-

ning calculations. The use of cells made it necessary to use

spatial optimization to aggregate cuttings and other treat-

ments into blocks that were large enough for the practical

implementation of the plan. In addition, allowing prema-

ture cuttings in a part of the cells was a prerequisite for

compact treatment areas. The use of segments led to 5–9%

higher growth predictions than calculations based on cells.

In addition, the areas of the most common fertility classes

were overestimated and the areas of rare site classes were

underestimated when segments were used. The shape of the

treatment blocks was more irregular in cell-based planning.

Using cells as calculation units instead of segments led to

20 times longer computing time of the whole planning

process than the use of segments when the number of grid

cells was approximately 100,000.

Keywords Raster data � ALS-based inventory � Spatial

optimization � Segmentation � Simulated annealing �
Cellular automata

Introduction

Forest inventories in Finland and other countries rely

increasingly on airborne laser scanning (ALS) data (Moz-

geris 2009; Shan et al. 2009; Maltamo et al. 2014). The

area-based interpretation approach of ALS data may

interpret stand characteristics for any area, for instance

existing stands, numerically derived segments, or grid cells

(Vauhkonen et al. 2014). In Finnish ALS-based forest

inventory, site and stand variables are systematically cal-

culated for both existing stands and grid cells of

16 m 9 16 m (www.metsakeskus.fi).

From the interpretation point of view, the ideal size of

the interpretation unit is the same as the area of the field

plots that are used in area-based interpretation (Pascual

et al. 2018). Therefore, stand attributes interpreted for grid

cells may be regarded as better estimates than attributes

interpreted for larger areas. Another problem of using

existing stands as interpretation units is that they are often

subjectively demarcated and sometimes obsolete. Fixed

stand boundaries decided before the planning calculations

are constraints, which decrease the possibilities of forest
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planning to optimize forest management (Heinonen et al.

2007).

Modern landscape level forest planning typically con-

sists of two steps (Falcão and Borges 2002; Pukkala 2004;

Hirvelä et al. 2017). First, alternative treatment schedules

are simulated for the calculation units, which can be

inventory plots, grid cells, segments, stands, or strata.

Then, combinatorial optimization is used to find such a

combination of the simulated treatment schedules, which

maximizes the objective function of the forest landowner

(e.g., net present value) while satisfying the possible con-

straints (e.g., non-decreasing timber drain, sufficient area

of old-forest habitat). Linear programming, goal program-

ming and various metaheuristics can be used for combi-

natorial optimization (Kangas and Pukkala 1992; Borges

et al. 2002; Bettinger et al. 2002; Shan et al. 2009; Lappi

and Lempinen 2014).

In Finland, ALS-based stand attribute data are currently

freely available for anyone, for both stands and grid cells.

These data sources provide very good input data for forest

planning since the data are detailed and spatially continu-

ous. The precision of ALS based forest inventory is the

same as or better than achieved in visual relascope inven-

tory (Næsset 2002; Packalén 2009; Vauhkonen et al. 2014).

If grid data are used, planning is not constrained by

existing and fixed stand boundaries. Theoretically, this

offers possibilities to improve the quality of planning and

increase the efficiency of forest production (Heinonen et al.

2007).

On the other hand, some problems arise when grid data

are used in forest planning. First, the computational burden

greatly increases if grid cells are used as calculation units

throughout the planning process. Second, the harvest

blocks and other treatment units, derived in planning cal-

culations, may be too small, irregular and scattered for the

implementation of the plan.

An obvious solution to the first problem is to aggregate

the cells into homogeneous segments before planning cal-

culations (Mozgeris 2009; Dechesne et al. 2017; Pascual

et al. 2018). The second problem can be alleviated by using

spatial optimization to aggregate treatments (Heinonen

et al. 2018). Pre-planning segmentation is also a partial

solution to the second problem (Pascual et al. 2018).

However, if the segments produced before planning cal-

culations (i.e., before simulation and optimization) are

small, it is possible to increase the aggregation of cuttings

and other treatments by using spatial optimization. In this

case, aggregation is started with pre-planning segmentation

and continued by using spatial optimization.

This study explored the effects these methodologies

(pre-planning segmentation and spatial optimization) on

the time consumption of the planning process, estimated

forest attributes, and similarity of prescriptions. The study

aimed at producing useful information for the use of the

current sources of grid data in forest management planning.

In addition to the ALS-based forest inventory data, the

results of the multi-source forest inventory of Finland are

also available for 16 m 9 16 m raster cells (Tomppo et al.

2008). Also this source of raster data can be used in forest

planning (Mäkisara et al. 2016).

Three alternatives to use raster data in forest planning

were analyzed: (1) using grid cells as calculation units and

spatial optimization to aggregate treatments (this alterna-

tive is referred to as post-simulation aggregation); (2)

aggregating cells into large enough segments to serve as

treatment units (pre-simulation aggregation); and (3) using

segmentation to create small segments, and then using

spatial optimization to further aggregate treatments (pre-

and post-simulation aggregation). These three options dif-

fer in the need for spatial optimization: spatial optimization

is necessary when cells are used as simulation units, useful

with small segments, and not necessary with large

segments.

It is obvious that simulation and optimization are the

fastest when large segments are used as simulation units.

On the other hand, the use of large segments omits the

within-stand spatial variation in site and growing stock

characteristics, which may cause bias. It may be hypothe-

sized that pre-planning aggregation leads to overestimated

growth prediction due to the concave relationship between

stand density and increment (Pukkala 1990). This may lead

to overestimated net present value and wood production.

The segments formed by aggregating grid cells most

probably have within-stand variation also in site charac-

teristics. The most important site characteristics in Finland

are categorical variables such as fertility class and soil type

(for instance mineral soil vs. peat). If the most common

category among the cells that constitute the segment is

given to the whole segment, it can be hypothesized that the

areas of common site categories become overestimated and

the areas of rare site types are underestimated if calculation

is based on segments.

Materials and methods

Materials

The ALS-based forest inventory data are organized into

sets of 375 9 375 cells of 16 m 9 16 m in size (3600 ha).

Ordinary site and stand characteristics are available for

each cell. The site characteristics include land use category

(productive forest, stunted forest, agricultural land, etc.),

soil group (mineral soil, spruce mire, pine bog, and open

bog), and fertility class (mesotrophic herb-rich, herb-rich,

mesic, sub-xeric, xeric, and barren heath). The growing
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stock characteristics include all variables required in Fin-

nish forest planning systems, namely stand basal area,

number of trees per hectare, stand age, mean tree diameter

and mean tree height. These attributes are available for the

total growing stock and separately for pine, spruce and

broadleaves.

One set of ALS data from eastern Finland was down-

loaded from www.metsaan.fi/paikkatietoaineistot. The

whole set of 375 9 375 cells (3600 ha) was used in the

planning calculations of this study (the x and y coordinates

of the lower left corner of the study area were 650,000 and

6,924,000 m, respectively, in the GRS 1980 Transverse

Mercator system). In addition, a sub-sample of 236 9 149

cells (900 ha) was selected to have two different sizes of

ALS grids. The cells and the variables available for the

cells were either used directly as simulation units, or they

were passed to a segmentation software to aggregate the

cells into larger simulation units. In both cases, cells which

were not classified as productive forest land were dis-

carded. These cells mainly represented lakes, agricultural

fields, roads, stunted forest (mean annual volume incre-

ment 0.1–1 m3 ha-1) and wasteland (forestry land with

mean annual volume increment less than 0.1 m3 ha-1).

The area of productive forest was 2500 ha in the grid of

375 9 375 cells and 603 ha in the grid of 236 9 149 cells.

In the results section, numerical results are reported for the

whole area but maps are shown only for the sub-area (for

better visibility).

Segmentation

The study employed existing methodologies developed for

segmentation, simulation and optimization. Since all these

methods have been described in detail is earlier literature,

only brief descriptions are given here.

The segments were formed by the cellular automaton

described in Pukkala (2019). The cell features used in

segmentation were land use category, soil group, fertility

class, mean height, mean diameter and stand basal area.

Stand attributes of the total growing stock were used (not

species-specific values). Land use category was used as a

mask to filter-out cells that did not represent productive

forest.

The cellular automaton (CA) first divided the area into

square-shaped initial segments of equal size. Then, each

cell of the grid was joined to one of its adjacent segments

for several iterations, based on the following criteria: (1)

length of common border between the cell and the seg-

ment, (2) area of the segment, and (3) similarity of stand

attributes in the cell and the segment (Fig. 1). A cell could

have a maximum of four adjacent segments, depending on

the segment number of the cell to the east, west, north and

south. Segmentation aimed at decreasing within-segment

variation in stand attributes while maximizing between-

segment variation. At the same time, the purpose was to

create compact segments and avoid forming very small

segments. The method is described in detail in a recent

article (Pukkala 2019).

Segmentations with two different segment sizes were

accomplished by altering the initial size of the segments

and the parameters of the CA. These two segmentations are

referred to as small and large segments. The main param-

eters that were used to control the size of the segments was

the area of initial segments (0.5 and 3 ha, respectively,

when the aim was to create small and large segments), and

the weight of segment area when deciding the segment to

which a cells was joined.

Calculation of stand attributes for segments

After creating the segments, their stand attributes were

derived from the corresponding attributes of the cells that

constituted the segment. Categorical variables (soil group

and fertility class) were obtained as the mode of the cell

values (the most common value of the cells was given to

whole segment). The stand basal area of the segment was

calculated as the mean of the cells values. Mean diameter

and mean height were calculated as basal-area-weighted

means of the cell values.

Although segmentation was based on the attributes of

the total growing stock, the segment values of basal area,

mean dimeter and mean height were calculated separately

1

2

3
4

Fig. 1 In the cellular automaton used for segmentation, each segment

is joined to one of its adjacent segments for several iterations. The

white cell is joined to segment 2, 3 or 4, depending on the weight of

the area of the segment, length of common border between the cell

and the segment, and similarity of stand attributes in the cell and

segment
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for Scots pine (Pinus sylvestris L.), Norway spruce (Picea

abies Karst (L.) H. Karst) and broadleaved species. The

broadleaf species was assumed to be silver birch (Betula

pendula Roth).

The area of the segment was equal to the area of cells

that belonged to the segment. The stand attributes obtained

in this way were imported to a forest planning system.

When cells were used as simulation units, the values of the

above-listed stand attributes were obtained directly from

the ALS data.

Adjacency information, required in spatial optimization,

was calculated in GIS. It consisted of the length of common

boundary between adjacent cells or segments. In the case of

segments, the ‘‘raster to polygon’’ tool of the GIS software

(ArcMap) was used to straighten segment boundaries (Fig. 2).

The length of the common boundary between adjacent seg-

ments was calculated from the obtained polygons.

Simulation

The site and stand variables, as well as the adjacency

information, were imported to the Monsu forest planning

software (Pukkala 2004). Monsu was first used to calculate

forest-level variables for different datasets to find out

whether segmentation leads to biased estimates. Then, the

simulation tool of Monsu was used to simulate alternative

treatment schedules for each simulation unit (cells or seg-

ments) for a 10-year period. The treatments of the schedule

were simulated in the middle of the 10-year period. All

schedules represented even-aged management. The possi-

ble cutting types were thinning, clear-felling, seed tree cut,

or removing the upper canopy layer from a two-storied

stand. Pre-commercial thinnings were simulated for young

seedling and sampling stands. After clear-felling, site

preparation and artificial regeneration were simulated for

the same 10-year period.

Simulation of cutting was based on instructions for the

minimum mean diameter at clear-felling and minimum

stand basal area at thinning (Äijälä et al. 2014). Alternative

schedules were obtained by postponing the cutting from the

earliest moment dictated by the thinning basal area and

clear felling diameter. If the removal of a thinning treat-

ment was less than 30 m3 ha-1, the schedule was rejected,

i.e., thinning was not simulated. All simulation units had

also a treatment schedule in which there was no cutting.

The average number of different schedules was only

around two per simulation unit (segment or cell) since there

was only one 10-year period and many segments had only

one realistic management option for the coming 10-year

period (usually, letting the stand grow without any

treatment).

It was anticipated that the use of cells might lead to

irregular treatment units with uncut cells within harvest

blocks. This is because there may be sparse cells within

thinning areas and cells of smaller trees within clear-felling

areas. One reason for this outcome is that thinning alter-

natives may not be simulated for sparse cells, and clear-

felling alternatives may not be simulated for cells where

the trees are smaller than the clear-felling diameter.

Therefore, a second set of simulations was conducted for

cells so that the basal area required for thinning and the

mean diameter required for final felling were both multi-

plied by 0.8. In addition, the minimum thinning removal

was reduced from 30 to 5 m3 ha-1. These changes made it

possible to cut sparsely populated cells simultaneously

with the other cells of a thinning block, or clear-cut a cell

of smaller trees simultaneously with the cells of a clear-

felling block. In the cell-based simulation for the whole

area, this adjusted parametrization was used as the only

alternative.

Optimization

Simulated annealing programmed in Monsu (Pukkala and

Kurttila 2005) was used for combinatorial optimization.

Simulated annealing (SA) is a cooling method resembling

threshold accepting and great deluge (Bettinger et al.

2002). First, an initial solution was produced by randomly

selecting a treatment schedule for each simulation unit

from those simulated beforehand. Then, a candidate solu-

tion was produced by selecting a random simulation unit

and then a random treatment schedule of the selected unit

(from the schedules simulated beforehand). If the candidate

solution obtained in this way produced a higher objective

function value than the current solution, it became the new

current solution. Otherwise, the candidate solution was

either accepted or rejected, depending on the current

‘‘temperature’’ of the SA process. A certain number of

candidate solutions were produced and evaluated in this

way. Then, the temperature was decreased, which reduced

the probability of accepting inferior solutions. After this, a

certain number of candidate solutions was evaluated again

in the new temperature. The number of evaluated candi-

dates was increased by 5% when the temperature was

decreased, to intensify search when the process cooled. The

search was terminated when the temperature fell below a

predefined freezing temperature.

SA was parametrized following the guidelines of Puk-

kala and Heinonen (2006):

• Initial temperature = 0.1/n (n is the number of simu-

lation units)

• Freezing temperature = (Initial temperature)/20

• Number of candidates evaluated at initial

temperature = n

• Iteration multiplier = 1.05
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a

Fig. 2 Segment boundaries (small segments drawn with yellow lines

and large segments with red lines) with fertility class (a) and mean

diameter (b). Darker tone implies higher fertility. The most common

fertility class (purple) is herb-rich. In the lower map, dark tone

implies high mean diameter. The highest mean diameter (black color)

is 30 cm

Using ALS raster data in forest planning 1585

123



• Cooling multiplier = 0.9

The last two parameters were used as follows: after

evaluating a certain number of candidate solutions, the

temperature was multiplied by 0.9 and the number of eval-

uated candidates per temperature was multiplied by 1.05.

Objective function

In all optimizations, the target value for the total 10-year

harvest was set in such a way that the initial growing stock

volume of the forest was maintained. The target harvest was

35,000 m3 for the subarea of 900 ha and 140,000 m3 for the

total area of 3600 ha. The net present value calculated with a

3% discount rate was maximized with this harvesting target.

Calculation of net present value took into account the pre-

dicted NPV of the remaining growing stock at the end of the

10-year period (Pukkala 2015). Both non-spatial and spatial

versions of the planning problems were solved. The spatial

problems included additional objective variables aiming at

aggregating all cuttings and separately aggregating final

fellings.

Technically, the problems were formulated in the utility

theoretic way as follows (Pukkala and Kangas 1993):

maxU ¼
XK

k¼1

wkuk qkð Þ ð1Þ

subject to:

qk ¼ QkðxÞ k ¼ 1; . . .;K ð2Þ
Xnj

i¼1

xij ¼ 1 j ¼ 1; . . .; n ð3Þ

xij ¼ 0; 1f g ð4Þ

where K is the number of objective variables, wk is the

weight, uk is the sub-utility function, and qk is the quantity

of objective variable k, n is the number of simulation units,

nj is the number of treatment alternatives simulated for unit

j, Qk() is the procedure that calculates the value of objec-

tive variable k for a candidate solution, and x is a vector

holding information on the treatment schedules that are

included in the solution. It is a vector of 0–1 variables,

where 1 indicates that the schedule belongs to the solution.

The objective functions of the non-spatial and spatial

problems were as follows:Non-spatial problem:

U ¼ w1u1ðNPVÞ þ w2u2ðHVÞ ð5Þ

Spatial problem:

U ¼ w1u1ðNPVÞ þ w2u2ðHVÞ þ w3u3ðCCÞ þ w4u4ðCnCÞ
þ w5u5ðFFÞ þ w6u6ðFnFÞ

ð6Þ

where NPV is net present value calculated with a 3% dis-

count rate (€), HV is harvested volume (m3), CC is the

length of cut–cut boundary (boundary between two adja-

cent simulation units that are both cut during the 10-year

period), CnC is the length of cut–non-cut boundary, FF is

the length of the boundary between such adjacent simula-

tion units that are both treated with final felling (clear-

felling or seed tree cut) and FnF is the boundary length

between final-felled and not final-felled simulation units.

The sub-utility functions for NPV, CC and FF were

linear so that the minimum possible value of the variable

gave a zero sub-utility while the maximum possible value

gave sub-utility equal to one. CnC and FnF were mini-

mized and therefore the lowest possible value resulted in

sub-utility one and the largest value in sub-utility zero. The

sub-utility function for HV was ascending-descending so

that sub-utility increased until the target harvest

(35,000 m3 for the 900-ha area and 140,000 m3 for the

whole 3600-ha area) after which it decreased until it was

zero at the maximum possible harvest.

In the non-spatial problem, the weights of both objective

variables were equal. The weights of all six objective

variables were also equal in the spatial problems when

large segments were used as simulation units. Since it was

assumed that there is a greater need for aggregation with

smaller simulation units, weights w3–w6 were 1.5 times

larger than w1 and w2 when working with small segments,

and twice are large as w1 and w2 when working with cells.

Results

Segmentation

When aiming at ‘‘small’’ segments, the average area of the

segments was 0.36 ha in the whole area (3600 ha) and

0.35 ha in the sub-area of 900 ha (Fig. 2). The area of the

smallest segment was 0.03 ha (exactly: 256 m2, i.e., the

area of one cell) in both cases while the largest segment

was 8.01 (sub-area) or 14.90 ha (whole area). When the

aim was to create ‘‘large’’ segments, their average area was

1.27 ha (whole area) or 1.14 ha (sub-area) with a range of

0.03–8.96 ha (sub-area) or 0.03–11.85 ha (whole area).

Segmentation explained 54.6–98.1% of the total varia-

tion in site and growing stock attributes between grid cells

(Table 1). The degree of explained variance (R2) was the

highest for soil group (mineral soil, spruce mire, pine bog,

open bog) and the lowest for stand basal area. Logically, R2

was higher for small segments than for large segments.
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Initial inventory

When segments were used to calculate the totals of

growing stock variables, saw log volume was underesti-

mated by 1–2% and pulpwood volume was overestimated

by 3–6%, as compared to results derived from grid cells

(Table 2). The total growing stock volume was overesti-

mated by 1%, and the species-specific total volumes were

overestimated by 1–2%. The largest bias was observed in

volume increment where the overestimate was 5% for

small segments and 9% for large segments.

As expected, the area of the most common fertility class

(herb-rich) was overestimated when segments were used to

calculate the areas of fertility classes (Fig. 3). The over-

estimate was 2% for small segments and 9% for large

segments. The areas of the ‘‘adjacent’’ fertility classes

(mesotrophic herb-rich and sub-xeric) were underestimated

by 6–51%. The largest relative underestimate was obtained

for mesotrophic herb-rich site when using large segments.

The area estimate of this site class was 147.5 ha when

calculated from cells but only 72.6 ha when calculated

from large segments.

Treatment prescriptions

Differences between plans in the areas of different cutting

types were not systematic. When segments were used in

planning, the volume of harvested pulpwood was 9–23%

smaller and the volume of saw log was 2–11% larger, as

compared to planning where grid cells were used as sim-

ulation units (Table 3). The total area of cutting prescrip-

tions was 2–25% larger in segment-based planning. Since

the total harvest was almost the same in all plans, the

harvested volume per hectare was larger (3–21% larger) in

cell-based planning.

The spatial layout of cutting prescriptions was very

scattered when the plan was combined using non-spatial

optimization and cells were used as simulation units

(Fig. 4a). Allowing earlier cuttings of cells by reducing the

thinning basal area and clear-felling diameter created some

cutting aggregations but many cuttings were still very

scattered (Fig. 4b). A clear improvement was achieved

when spatial optimization was used in planning (Fig. 5).

Major cuttings were concentrated in the same places in

all four cases (cells with two different simulation rules,

small segments, and large segments) although their exact

boundaries differed. The cutting areas of the two segment-

based plans (Fig. 5c, d) resembled each other, but there

were differences in the exact boundaries of clear-felling

and thinning areas.

The estimated wood production, calculated from har-

vested volumes and change in standing growing stock

volume, was about 4–9% higher in segment-based plan-

ning. This difference is mainly explained by the overesti-

mated growth prediction for segments. Despite higher

predicted wood production for segments, the net present

value of the non-spatial plan was 3–4% higher for cells. In

the spatial plans, the NPV was almost exactly the same for

cells and segments. Spatial optimization decreased NPV by

3.6% when cells were used, and less than 0.1% when

segments were used. This means that the cost of aggre-

gating cuttings was clearly higher in cell-based planning.

Time consumption of planning

Of the various steps of the whole planning process, simu-

lation of treatment alternatives was usually the most time

consuming (Tables 4, 5). However, when the planning area

was larger (3600 ha of which 2500 ha was productive

forest) segmentation required more computing time than

simulation with segments. Non-spatial optimization was

very quick as well as spatial optimization with segments.

When grid cells were used as simulation units, spatial

optimization and simulation were both very time-

Table 1 Statistics calculated

for the segments created from

grid cells by cellular automaton

Variable R2a RMSEb

Small segments Large segments Small segments Large segments

Soil group 0.981 0.924 0.003 0.009

Fertility class 0.871 0.674 0.027 0.048

Mean diameter (cm) 0.814 0.692 0.605 0.728

Mean height (m) 0.834 0.704 0.441 0.570

Stand basal area (m2 ha-1) 0.766 0.546 0.788 1.002

The table shows results for the segmentation of the whole study area (3600 ha). The average area of the

segments was 0.36 ha when small segments were targeted and 1.27 ha when large segments were targeted
aR2 = 1 - SSE/SST where SSE is the variation not explained by the segmentation (sum of squared

deviations from segment mean) and SST is the total deviation (sum of squared deviations from overall

mean)
bStandard deviation of the difference between cell value and segment mean
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consuming. Since the relationship between the number of

simulation units and simulation time was linear (Fig. 6)

and the relationship was non-linear for spatial optimization,

it can be concluded that spatial optimization eventually

becomes the most time-consuming step of planning when

the number of simulation units increases. The time required

for segmentation increased with the number of cells, and it

was clearly higher when small segments were targeted

although the total area of the segments was the same

(Fig. 6).

Discussion

The use of raster type of forest data will most probably

increase in Finnish forest planning since the results of

ALS-based forest inventory, calculated for 16 m 9 16 m

grid cells, are now (from year 2018 onwards) freely

available for forest planners. The current study provided

some results and insights into the use of raster data in forest

planning calculations. The most straightforward way would

be to use the raster cells directly as calculation and simu-

lation units. This would lead to the most precise treatment

prescriptions and it would most probably also maximize

the efficiency and economic profitability of forest produc-

tion (Heinonen et al. 2007). This conclusion can be drawn

from previous studies (Heinonen et al. 2007) and the fact

that cell-based planning produced equally good or higher

net present values than segment-based planning although

the estimated volume growth was 4–9% lower for cells.

The forest management plans developed in this study

had only one 10-year period. Longer planning horizons and

a higher number of time-periods would provide longer-

Table 2 Total volumes and

predicted annual volume

increments calculated for the

productive forest (2500 ha) of

the whole study area (3600 ha)

Variable Cells Small segments Large segments

Usable volume (m3) 359,793 363,294 364,817

Saw log volume (m3) 177,252 176,051 173,873

Small log volume (m3) 12,315 11,600 11,893

Pulpwood volume (m3) 170,227 175,642 179,052

Pine volume (m3) 94,144 94,734 95,293

Spruce volume (m3) 169,888 171,013 171,453

Birch volume (m3) 95,760 97,546 98,071

Volume increment (m3) 16,477 17,285 17,947

0

500

1000
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Fig. 3 Areas of different fertility classes calculated from grid cells,

small segments and large segments

Table 3 Areas of different types of cutting and total harvested volume when the planning was based on grid cells or segments

Variable Non-spatial problem Spatial problem

Cells Small segments Large segments Cells Small segments Large segments

Clear-felling (ha) 237.9 311.1 337.8 198.2 208.1 200.4

Thinning (ha) 604.1 547.6 587.1 617.3 718.0 960.5

Other cuttings (ha) 31.8 32.3 11.5 162.1 77.5 58.7

Total cut area (ha) 873.8 889.0 936.4 977.6 1003.6 1219.6

Saw log (m3) 89,339 91,193 91,321 79,144 89,222 87,705

Small log (m3) 1529 1743 1722 2823 1995 1823

Pulpwood (m3) 51,321 47,057 46,958 60,222 48,780 50,465

Total (m3) 142,189 139,992 140,000 142,188 139,998 139,993
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term predictions on the development of the forest resource.

It also increases the time consumption of planning calcu-

lations, especially in simulation and optimization. It was

calculated that in the case of small segments, increasing the

number of 10-year periods from one to five increased the

simulation time sixfold, due to higher number of alterna-

tive treatment schedules and longer duration of the simu-

lation of one schedule. However, the time consumption of

spatial optimization increased only twofold.

The use of cells makes it necessary to use spatial opti-

mization in planning, so as to aggregate cuttings and other

treatments. On the other hand, segmentation of cells into

larger calculation units is not required, which simplifies the

planning process. In addition to spatial optimization, it is

necessary to allow pre-mature cuttings in some cells within

the harvest blocks since otherwise the cutting areas would

be scattered and very irregular. The map of Fig. 5b shows

that in this case the cutting areas are usually large but they

are still clearly more irregular than obtained in segment-

based planning. There are frequently uncut cells within

thinning areas and also some thinned cells within clear-

felling areas. Uncut cells within thinning blocks are not a

problem since these cells are most probably sparse forest

where thinning is not required. Thinned cells within clear-

felling blocks are places where trees are smaller than in the

surroundings. Treating these cells with thinning instead of

clear-felling is most probably economically optimal.

However, leaving small groups of trees to continue grow-

ing in a clear-felling area may increase wind throws.

The results of the study verified the hypothesis that the

growth estimate will increase when raster data are orga-

nized into larger segments before planning calculations.

The reason behind this effect is the concave relationship

between stand density and tree growth, and the non-linear

relationship between tree size and growth. As a conse-

quence of these relationships, the volume growth of a

heterogeneous stand is smaller than that of a homogeneous

stand (Pukkala 1990). When segments are used in planning

they are assumed to be homogeneous and described with

only one set of stand variables. In this study, the effect of

segmentation on the growth estimate was substantial: 5%

increase (compared to cells) for small segments (0.36 ha in

average) and 9% increase for large segments (average size

1.27 ha).

The effect of within-stand variation on growth and

management has been dealt with in forestry literature

Fig. 4 Cutting areas of the sub-area (900 ha) in non-spatial optimization. Red color is clearcutting, blue color is thinning and green color is seed

tree cut (a cells with normal simulation rules; b cells with premature cuttings allowed; c small segments; d large segments)
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already long time ago. For example, Pukkala (1990) noted

that growth predictions may be smaller when they are

based on the individual relascope plots measured in visual

compartment inventory, compared to a case where the field

data are condensed into a single set of growing stock

variables, which is the usual practice in visual compart-

ment inventory. The thinning removal may be larger if

thinning is simulated separately for individual field plots.

Pukkala and Miina (2005) calculated that the optimal basal

area to conduct a thinning treatment is lower in a hetero-

geneous stand. Also the optimal remaining basal area may

be lower for a heterogeneous stand.

A possible way to reduce biases caused by condensing

cell-level information into segment-level information is to

describe each segment with several sets of stand attributes,

based on the variation and correlation of growing stock

variables within the segments (Pukkala and Miina 2005).

Another possibility is to calculate indices for within-seg-

ment variation and use them to correct growth predictions,

thinning basal areas, etc. (Corona et al. 2012). A third

approach would be to use very small segments, paying

much attention to obtaining segments that have low within-

segment variation in stand basal area and average tree size.

Fig. 5 Cutting areas of the sub-area (900 ha) in spatial optimization. Red color is clearcutting, blue color is thinning and green color is seed tree

cut (a cells with normal simulation rules; b cells with premature cuttings allowed; c small segments; d large segments)

Table 4 Time consumption in different steps of the planning process for the larger planning area (900 ha of which 603 ha are productive forest)

Operation Cells, normal simulation rules Cells, premature cutting alloweda Small segments Large segments

No. of simulation units 23,562 23,562 1703 530

Segmentation – – 3 min 55 s 1 min 5 s

Simulation 74 min 10 s 77 min 40 s 5 min 40 s 2 min 4 s

Non-spatial optimization 1 min 33 s 1 min 55 s 5 s 1 s

Spatial optimization 12 min 28 s 17 min 1 s 53 s 14 s

Processor of the computer: Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz; RAM 16 GB
aThe basal area required for thinning and mean tree diameter required for final felling multiplied by 0.8
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Another anticipated consequence of segmentation was

that the areas of the most common site categories were

overestimated. Consequently, the areas of more extreme

site types (very fertile, very poor) might be clearly

underestimated, especially if these sites occur as small

spots within continuous areas of more common site types.

This type of bias may not be serious for growth prediction

and timber management planning, but for instance for

ecological planning it would be important to avoid clearly

biased estimates of rare sites.

The best method for avoiding the above-mentioned biases

would be to use cells as calculation and simulation units in

all steps of the planning process. However, this would

greatly increase the time consumption of planning. The

computing time of the various steps depends on many

things, for instance computer, length of the planning period,

complexity of the planning problem, optimization method,

and the implementation of the procedures (segmentation,

simulation, and optimization) as computer programs. Based

on the experiences of the current study it can be concluded

Table 5 Time consumption in

different steps of the planning

process for the larger planning

area (3600 ha of which 2500 ha

are productive forest)

Operation Cellsa Small segments Large segments

Number of simulation units 97,893 6885 1968

Segmentation – 52 min 50 s 20 min 25 s

Simulation 320 min 10 s 13 min 3 s 6 min 42 s

Non-spatial optimization 26 min 56 s 50 s 5 s

Spatial optimization 113 min 23 s 3 min 36 s 44 s

Processor of the computer: Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz; RAM 16 GB
aThe basal area required for thinning and mean tree diameter required for final felling multiplied by 0.8

(corresponds to ‘‘premature cutting allowed’’ in Table 4)
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units (simulation and optimization)
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that the total time consumption is 10–20 times higher in cell-

based planning if the number of cells is about 100,000.

The three basic alternatives to deal with small-grained

lattice data in forest planning (pre-simulation, pre- and

post-simulation, and post-simulation aggregation) are

summarized in Fig. 7 for the sub-area of 900 ha. Pre-

simulation aggregation refers to large segments without the

use of spatial optimization in planning. It is the easiest

approach since spatial optimization is not needed. It is also

by far the fastest approach and results in good aggregation

of treatments.

The other extreme is to use cells throughout the plan-

ning process. It makes the use of spatial optimization

necessary, and some of the treatment blocks may be too

small for the practical implementation of the plan. The

treatment blocks often have irregular shapes. On the other

hand, post-simulation aggregation results in the least-bi-

ased estimates of site and growing stock variables and the

most accurate prediction of removals and future develop-

ment of the forest. It leads to the most efficient manage-

ment of the forest resource.

A good compromise between the use of cells and large

segments that correspond to normal stand compartments

Pre-simulation aggregation
● Growth overestimated by 9%
● Area of major fertility class overestimated by 9%
● Very fast simulation
● Easy and fast optimization
● Additional segmentation step required
● Total time consumption 3.1 min for 603 ha and 21.7 min 
for 2500 ha

Pre- and post-simulation aggregation
● Growth overestimated by 5%
● Area of major fertility class overestimated by 2%
● Fast simulation
● Additional segmentation step required
● Spatial optimization required
● Total time consumption 10.5 min for 603 ha and 90.4 min 
for 2500 ha

Post-simulation aggregation
● High time consumption in simulation and optimization
● Highest number of small treatment units
● Least biased results
● Some premature cuttings required for good aggregation
● Total time consumption 94.7 min for 603 ha and 433.6 min 
for 2500 ha

Fig. 7 Summary of the results for different approaches to deal with raster data in forest planning
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would be to use small and homogeneous segments. This

would greatly reduce computing time, as compared to

using cells as simulation units. The optimal average size of

segments might be smaller than the 0.36 ha (14 cells) of

this study because 0.36-ha average size still led to biased

growth predictions and biased areas of fertility classes. The

use of small segments would also lead to the need for

spatial optimization to aggregate treatments. In addition to

treatments, also other forest features such as old forest

habitats could be simultaneously aggregated (Pukkala et al.

2014). Use of small segments leads to computing times that

are approximately 10% of the time consumption of cell-

based planning.
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