Skip to main content
Log in

Analysis and characterization of the Salix suchowensis chloroplast genome

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

By screening sequence reads from the Salix suchowensis chloroplast (cp) genome that were generated by next-generation sequencing platforms, we assembled a complete circular pseudomolecule for the cp genome. This pseudomolecule is 155,508 bp long and has a typical quadripartite structure that contains two single copy regions, a large single copy region (LSC, 84,385 bp), and a small single copy region (SSC, 16,209 bp) separated by inverted repeat regions (IRs, 27,457 bp). Gene annotation revealed that the S. suchowensis cp genome encoded 119 unique genes, including four ribosome RNA genes, 30 transfer RNA genes, 82 protein-coding genes, and three pseudogenes. Analysis of the repetitive sequences revealed 31 tandem repeats, 16 forward repeats, and five palindromic repeats. In addition, a total of 148 perfect microsatellites, which were characterized as A/T dominant in nucleotide composition, were detected. Significant shifting of the IR/SSC boundaries was revealed by comparing this cp genome with those of other rosid plants. We also constructed phylogenetic trees to demonstrate the phylogenetic position of S. suchowensis in Rosidae based on 66 orthologous protein-coding genes present in the cp genomes of 32 species. Sequencing 30 amplicons based on the pseudomolecule for experimental verification revealed 99.88% accuracy for the S. suchowensis cp genome assembly. Therefore, we assembled a high-quality pseudomolecule of the S. suchowensis cp genome, which is a useful resource for facilitating development of this shrub willow into a more productive bioenergy crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA et al (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15(12):3707–3714

    Article  PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze dna sequences. Nucleic Acids Res 27(2):573–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol Cb 12(2):62–64

    Article  Google Scholar 

  • Chen J, Hao Z, Xu H, Yang L, Liu G et al (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides hu et cheng. Front Plant Sci 6:447

    PubMed  PubMed Central  Google Scholar 

  • Dai X, Hu Q, Cai Q, Feng K, Ye N et al (2014) The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res 24(10):1274–1277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci 104(17):6879–6880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7(2):84–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22(2):97–104

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier LD, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. i. accuracy assessment. Genome Res 8(3):175–185

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Zhao S, Skvortsov AK (1999) Saliceae. In: Zheng-yi W, Raven PH (eds) Flora of China. Missouri Botanical Garden Press, St. Louis, pp 139–274

    Google Scholar 

  • Goulding SE, Wolfe KH, Olmstead RG, Morden CW (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet MGG 252(1–2):195–206

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast dna into the nucleus. Nature 422(6927):72–76

    Article  PubMed  CAS  Google Scholar 

  • Kuang D, Wu H, Wang Y, Gao L, Zhang S et al (2011) Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 54:663–673

    Article  PubMed  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1(6):270–272

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna RM, McGettigan PA et al (2007) Clustal w and clustal x version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Li S, Bi C, Hao Z, Sun C, Ning Y (2016) Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae). Curr Genet 63:1–13

    Google Scholar 

  • Mcpherson H, Merwe MVD, Delaney SK, Edwards MA, Henry RJ et al (2013) Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol 13(1):53–65

    Article  CAS  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT et al (2001) Many parallel losses of infa from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13(3):645–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Biol 51(4):111–140

    Article  CAS  Google Scholar 

  • Nock CJ, Baten A, King GJ (2014) Complete chloroplast genome of Macadamia integrifolia confirms the position of the gondwanan early-diverging eudicot family proteaceae. BMC Genom 15(Suppl 9):S13

    Article  Google Scholar 

  • Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Mo Bot Gard 75(4):1180–1206

    Article  Google Scholar 

  • Pyke KA (1999) Plastid division and development. Plant Cell 11(4):549–556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian J, Song J, Gao H, Zhu Y, Xu J et al (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8(2):e57607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (eds) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, Cambridge, MA, pp 45–68

    Chapter  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72(2):132–140

    Article  Google Scholar 

  • Sanchezpuerta MV, Abbona CC (2014) The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe hyoscyameae (solanaceae). PLoS ONE 9(5):e98353

    Article  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6(5):283–290

    Article  PubMed  CAS  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(suppl 2):W686–W689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman-Broyles S, Bombarely A, Grimwood J, Schmutz J, Doyle J (2014) Complete plastome sequences from glycine syndetika and six additional perennial wild relatives of soybean. G3: genes Genomes. Genetics 4(10):2023–2033

    CAS  Google Scholar 

  • Smart LB, Cameron KD (2008) Genetic improvement of Willow (Salix spp.) as a dedicated bioenergy crop. Genet Improv Bioenergy Crops 2:377–396

    Article  Google Scholar 

  • Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18(11):2869–2878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiura M (1995) The chloroplast genome. Essays Biochem 30(1):49–57

    PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135

    Article  PubMed  CAS  Google Scholar 

  • Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M (2011) Next generation sequence assembly with AMOS. Curr Protoc Bioinform 33:11.8.1–11.8.18

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145(4):1129–1143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vries JD, Sousa FL, Bölter B, Soll J, Gould SB (2015) YCF1: a green Tic? Plant Cell 27(7):1827–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Fang CF, Zhao SD (1984) Salicaceae. Flora Reipublicae Pop Sin 20(2):79–403

    Google Scholar 

  • Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8(1):1

    Article  CAS  Google Scholar 

  • Wu Z (2015) The new completed genome of purple Willow (Salix purpurea) and conserved chloroplast genome structure of Salicaceae. J Nat Sci 1:e49

    Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Tang P, Li Z, Li D, Liu Y, Huang H (2015) The first complete chloroplast genome sequences in actinidiaceae: genome structure and comparative analysis. PLoS ONE 10(6):e0129347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yap JYS, Rohner T, Greenfield A, Merwe MVD, Mcpherson H et al (2015) Complete chloroplast genome of the wollemi pine (Wollemia nobilis): structure and evolution. PLoS ONE 10(6):e0128126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang G, Guo G, Hu X, Zhang Y, Li Q et al (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20(5):646–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingnan Chen.

Additional information

Project Funding: This work was supported by the Key Forestry Public Welfare Project (201304102), and the Natural Science Foundation of China (31400564 and 315005533). It was also enabled by the Innovative Research Team of the Educational Department of China and the PAPD (Priority Academic Program Development) program at Nanjing Forestry University.

The online version is available at http://www.springerlink.com

Corresponding Editor: Yu Lei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Li, J., Dai, X. et al. Analysis and characterization of the Salix suchowensis chloroplast genome. J. For. Res. 29, 1003–1011 (2018). https://doi.org/10.1007/s11676-017-0531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0531-3

Keywords

Navigation