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Abstract

obtained with the two approximations.

Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can
now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based
electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this
paper, the energy band structure and conductance of graphene nanoribbons and metal/semiconductor junctions
are obtained using a third nearest-neighbour tight binding analysis in conjunction with an efficient nonequilibrium
Green’s function formalism. We find significant differences in both the energy band structure and conductance

Introduction

Since the report of the preparation of graphene by
Novoselov et al. [1] in 2004, there has been an enormous
and rapid growth in interest in the material. Of all the
allotropes of carbon, graphene is of particular interest to
the semiconductor industry as it is compatible with pla-
nar technology. Although graphene is metallic, it can be
tailored to form semiconducting nanoribbons, junctions
and circuits by lithographic techniques. Simulations of
charge transport within devices based on this new tech-
nology exploit established techniques for low dimen-
sional structures [2,3]. The current flowing through a
semiconducting nanoribbon formed between two metal-
lic contacts has been established using a nonequilibrium
Green’s Function (NEGF) formalism based coupled with
an energy band structure derived using a tight binding
Hamiltonian [4-7]. To minimise computation time, the
nearest-neighbour tight binding approximation is com-
monly used to determine the energy states and overlap is
ignored. This assumption has also been used for calculat-
ing the energy states of other carbon-based materials
such as carbon nanotubes [8] and carbon nanocones [9].
Recently, Reich et al. [10] have demonstrated that this
approximation is only valid close to the K points, and a
tight binding approach including up to third nearest-
neighbours gives a better approximation to the energy
dispersion over the entire Brillouin zone.
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the original work is properly cited.

In this paper, we simulate charge transport in a gra-
phene nanoribbon and a nanoribbon junction using a
NEGF based on a third nearest-neighbour tight binding
energy dispersion. For transport studies in nanoribbons
and junctions, the formulation of the problem differs
from that required for bulk graphene. Third nearest-
neighbour interactions introduce additional exchange
and overlap integrals significantly modifying the Green’s
function. Calculation of device characteristics is facili-
tated by the inclusion of a Sancho-Rubio [11] iterative
scheme, modified by the inclusion of third nearest-
neighbour interactions, for the calculation of the self-
energies. We find that the conductance is significantly
altered compared with that obtained based on the
nearest-neighbour tight binding dispersion even in an
isolated nanoribbon. Hong et al. [12] observed that the
conductance is modified (increased as well as decreased)
by the presence of defects within the lattice. Our results
show that details of the band structure can significantly
modify the observed conductivities when defects are
included in the structure.

Theory

The basis for our analysis is the hexagonal graphene lat-
tice shown in Figure 1. a; and b; are the principal vec-
tors of the unit cell containing two carbon atoms
belonging to the two sub-lattices. Atoms on the con-
centric circles of increasing radius correspond to the
nearest-neighbours, second nearest-neighbours and third
nearest-neighbours, respectively.
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Figure 1 Armchair-edge graphene metal (index N = 23)/
semiconductor (index N = 13) junction. The rectangle shows the
semiconductor unit cell, and the concentric circles of increasing
radius show first, second and third nearest-neighbours, respectively.

Saito et al. [8] derived the dispersion relation below
using a nearest-neighbour tight binding analysis includ-
ing the overlap integral s,.

cy E2p Frof(k)
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Here, flk) =3 + 2 cosk-a; +2 cos k- by + 2 cos k -
(a; - by) and the parameters, &, ¥ and s, are obtained
by fitting to experimental results or ab initio calculations.

Most analyses of charge transport in graphene-based
structures simplify the result further by ignoring so. Reich
et al. [10] derived the dispersion relation for graphene
based on third nearest-neighbours. In this work, the
energy band structure of a graphene nanoribbon includ-
ing third nearest-neighbour interactions is obtained from
the block Hamiltonian and overlap matrices given below
for the unit cell defined by the rectangle in Figure 1.
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For the nth row of the above equation, we have

Hn,n—1¢n—1 + Hn,n¢n + Hn,n+1¢n+1

3)
- E(Sn,n—l¢n—1 + Sn,n¢n + Sn,n+l¢n+l) =0

Considering the energy dispersion in the direction of
charge transport, the Bloch form of the wavefunction
ensures that ¢,~e*”. Substitution of ¢, into the above
equation yields the secular equation

ik ik
det[H,, e +H,,+H,, e

—ik ik @)
- E(Sn,n—le + Sn,n + Sn,n+1e )] =0

In the case of first nearest approximation without
orbital overlap, S,,,..1 and S,,,,.1 are empty matrices. To
facilitate comparison with published results, we use an
armchair-edge with index [13] N = 13 as our model
nanoribbon. In the paper by Reich, tight binding para-
meters were obtained by fitting the band structure to
that obtained by ab initio calculations. Recently, Kundo
[14] has reported a set of tight biding parameters based
on fitting to a first principle calculation but more
directly related to the physical quantities of interest.
These parameters have been utilised in our calculation
and are presented below for third nearest-neighbour
interactions (Table 1).

Figure 2 compares the energy band structure of the
modelled armchair-edge graphene nanoribbon obtained
from the first nearest-neighbour tight binding method
with that obtained by including up to third nearest-
neighbours. Agreement is reasonable close to the K point
but significant discrepancies occur at higher energies.

Conductance of Graphene Nanoribbons and
Junctions

Conductance in graphene nanoribbons and metal/semi-
conductor junctions is determined using an efficient
nonequilibrium Green’s function formalism described
by Li and Lu [15]. The retarded Green’s function is
given by

G=[E*S—-H -zl -z”?! (5)

Here, E* = E + in and 7 is a small positive energy
value (107 eV in this simulation) which circumvents the
singular point of the matrix inversion [16]. H is a tight
binding Hamiltonian matrix including up to third near-
est-neighbours, and S is the overlap matrix. Open

Table 1 Tight binding parameters [14]
E;p(eV) 7(eV) 71(eV)
-045 -2.78 -0.15

Neighbours Ya(eV) so $1 52

-0.095 0.117 0.004 0.002

3rd-nearest
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Figure 2 Energy band structure of an N = 13 armchair graphene nanoribbon, a obtained from the first nearest-neighbour

tight binding method and b including third nearest-neighbours.

Energy E (eV)
o

boundary conditions are included through the left and
right self-energy matrix elements, =¥, The self-energies
are independently evaluated through an iterative scheme
described by Sancho et al. [11], modified to include
third nearest-neighbour interactions. Determination of
the retarded Green’s function through equation 5 is
facilitated by the inclusion of the body of the device in
the right-hand contact through the recursive scheme
described in ref. [15]. We will now outline the numeri-
cal procedure for deriving the conductance with third
nearest-neighbour interactions included. Figure 3 shows
a schematic of the unit cell labelling used to formulate
the Green’s function.

We calculate the surface retarded Green’s functions of
the left and right leads by

g(%,o = [E+So,0 —Hyo - (EJrSo,—l - Ho,—l)é]_l (6)

8113/1+1,M+1 = [E+So,o —-Hyo - (E+571/0 - 1'171/0)9]_l 7)

where 0 and @ are the appropriate transfer matrices
calculated from the following iterative procedure.

O =ty +1tot) +lotyty +-+lolity L, (8)
0 =ty +1toly + Loty + Loty L, ©)
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Contact Device Region Contact
Figure 3 Schematic showing the unit cell labelling used to

formulate the Green'’s function.

where ¢; and fl are defined by

==ty —t gt ) 't (10)

~ — 2

==ty —tigti )ty (11)
and

to=(E"Sp0 - Ho,o)il(EJrSo,—l -Hy_;) (12)

tA(; = (E+So,o - Ho,o)_l(E+S—1,o - H—I,O) (13)

The process is repeated until t0t~0 < & with ¢ arbitra-
rily small. The nonzero elements of the self-energies

2£ , and Zﬁ, u can be then obtained by

2lL,l = (E+51,0 - Hl,o)gg,o(EJrSo,l -Hy,) (14)
21}3/1,{\/1 = (E+So,1 - HO,l)gfd+1,M+l(E+Sl,O —Hy) (15)
The conductance is obtained from the relation
2¢?
G(E) = = T(E) (16)

where the transmission coefficient is obtained from

T(E)=Trr*cra’|, 17)
with T5% = j[zF% - (=851
Figure 4a, b compares the conductance of a graphene
armchair-edge nanoribbon of index N = 13 and metal/
semiconductor junction formed with the nanoribbon
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Figure 4 Conductance vs Energy for the junction shown in Figure 1, a using first nearest-neighbour parameters and b using third
nearest-neighbours parameters. Dotted lines are for N = 13 armchair nanoribbon, solid lines are for ideal metal/semiconductor junctions, dot—
dash lines and dash lines are for junctions with a single defect type A (triangle in Figure 1) and type B (rectangle in Figure 1) respectively.
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assuming first and third nearest-neighbour interactions,
respectively. For graphene nanoribbons, differences are
observed in the step-like structure, reflecting differences
in the calculated band structure. When only first
nearest-neighbour interactions are considered, the con-
ductance of the conduction and valence bands is always
symmetrical as determined by the formulation of the
energy dispersion relation, equation 1. In the case of
graphene nanoribbons, the conductance within a few
electron volts of the Fermi energy is symmetrical for
both first and third nearest-neighbour interactions.
However, it is notable that at higher energies, overlap
integrals introduced by third nearest-neighbour interac-
tions result in asymmetry between the conductance in
the conduction and valence bands. For metal/semicon-
ductor junctions, significant differences in conductivity
occur even at low energies due to mismatches of the
sub-bands. Asymmetry in the conduction and valence
band conductance (absent for first nearest-neighbour
interactions) is also apparent when third nearest-
neighbour interactions are included in the Green’s
function. Differences are also seen when defects are
incorporated within a metal/semiconductor junction, an
interesting system explored by Hong et.al. [12]. In this
work, vacancies are introduced in the lattice at the posi-
tions marked by the solid rectangle and triangle in
Figure 1 and the conductance obtained in each case.
Hong et al. derive a coupling term associated with dif-
ferences in band structure. For third nearest-neighbour,
the solution to the coupling strength must be derived
numerically.

Conclusions

In this paper, we have determined the energy band
structure of graphene nanoribbons and conductance of
nanoribbons and graphene metal/semiconductor

junctions using a NEGF formalism based on the tight
binding method approximated to first nearest-neighbour
and third nearest-neighbour. Significant differences are
observed, suggesting the commonly used first nearest-
neighbour approximation may not be sufficiently
accurate in some circumstances. The most notable dif-
ferences are observed when defects are introduced in
the metal/semiconductor junctions.
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