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Abstract The frequency equation of carbon-nanotube-

based cantilever sensor with an attached mass is derived

analytically using nonlocal elasticity theory. According to

the equation, the relationship between the frequency shift

of the sensor and the attached mass can be obtained.

When the nonlocal effect is not taken into account, the

variation of frequency shift with the attached mass on the

sensor is compared with the previous study. According to

this study, the result shows that the frequency shift of the

sensor increases with increasing the attached mass. When

the attached mass is small compared with that of the

sensor, the nonlocal effect is obvious and increasing

nonlocal parameter decreases the frequency shift of the

sensor. In addition, when the location of the attached

mass is closer to the free end, the frequency shift is more

significant and that makes the sensor reveal more sensi-

tive. When the attached mass is small, a high sensitivity is

obtained.
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Introduction

Carbon nanotube (CNT) have many potential applications in

nanobiological devices and nanomechanical systems

because of excellent mechanical properties, chemical and

thermal stability, and hollow geometry [1–4]. In addition, the

CNT is ultralight and is highly sensitive to its environment

changes. Therefore, many researchers have explored the

potential of using CNT as nanomechanical resonators in

atomic-scale mass sensor [5–7]. For example, Chiu et al. [6]

utilized the detection of shifts in the resonance frequency of

the nanotubes to measure nanotube resonator vibration

characteristics.

The atomic-scale mass sensing with a resonator is based

on the fact that the resonant frequency is sensitive to the

attached mass. The attached mass causes a shift to the res-

onant frequency of resonator. In addition, the shift in reso-

nant frequency is associated with the location of attached

mass. To analyze the effects of adsorbed mass and its loca-

tion on the resonant frequency of CNT, the continuum

models based on beam as well as shell was used [8].

Recently, Dai et al. [9] studied the nanomechanical mass

detection using nonlinear oscillators based on continuum

elastic model and obtained that nonlinear oscillation leads to

the unique resonant frequency shift due to mass adsorption,

quite different from that in harmonic oscillation. The ulti-

mate goal of a resonator sensor is single molecule detection

capability. Chowdhury et al. [10] presented an equivalent

approximation model to analyze frequency shift of a single-

walled carbon nanotube (SWCNT) due to an attached par-

ticle fixed at a location.

It is more useful for a mass sensor to simultaneously detect

the mass and position of the attached particle. In this Letter,

frequency shift of carbon-nanotube-based sensor with an

attached mass is studied using nonlocal elasticity theory,

which is a modified classical elasticity theory. This theory

with long-range interactions is often applied to analyze the

vibration behaviour of CNT [11–13]. In addition, the effects

of nonlocal parameter, attached mass and its location on the

frequency shift of a cantilevered SWCNT are analyzed.
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Analysis

A schematic diagram of a SWCNT with an attached mass

M located at c from the fixed end is described as a can-

tilever beam as depicted in Fig. 1. The SWCNT with

length L has an equivalent bending rigidity EI, the volume

density q, the cross-sectional area A, and transverse dis-

placement Y depend on the spatial coordinate X and time

t. Based on nonlocal elasticity theory [14], the governing

equation of transverse vibration for the SWCNT can be

expressed as

EI
o4Y

oX4
þ 1 � ðe0aÞ2 o2

oX2

� �
qA

o2Y

ot2
¼ 0 ð1Þ

where e0a is the nonlocal parameter, and it is used to

modify the classical elasticity theory and is limited to apply

to a device on the nanometer scale.

The harmonic solution of the governing equation can be

assumed as

YðX; tÞ ¼ WðXÞeixt ð2Þ

where x is the angular frequency.

By introducing the dimensionless parameters x = X/L,

and substituting Eq. 2 into Eq. 1, one obtain

d4w

dx4
þ ck2d2w

dx2
� k4w ¼ 0 ð3Þ

where

k4 ¼ qAL4

EI
x2; c ¼ e2k2; e ¼ e0a

L
: ð4Þ

The corresponding boundary conditions are

w1ð0Þ ¼
dw1ð0Þ

dx
¼ 0 ð5Þ

d2w2ð1Þ
dx2

þ ck2w2ð1Þ ¼ 0 ð6Þ

d3w2ð1Þ
dx3

þ ck2dw2ð1Þ
dx

¼ 0 ð7Þ

w1ðnÞ ¼ w2ðnÞ ð8Þ

dw1ðnÞ
dx

¼ dw2ðnÞ
dx

ð9Þ

d2w1ðnÞ
dx2

þ ck2w1ðnÞ ¼
d2w2ðnÞ

dx2
þ ck2w2ðnÞ ð10Þ

d3w1ðnÞ
dx3

þ ck2dw1ðnÞ
dx

� d3w2ðnÞ
dx3

þ ck2dw2ðnÞ
dx

� �

þ mk4w1ðnÞ
¼ 0

ð11Þ

where m = M/qAL and n = c/L are the dimensionless

mass and position of the attached mass, respectively; w1

and w2 are the dimensionless transverse displace-

ments on the left and right sides of the attached mass,

respectively.

The boundary conditions given by Eq. 5 correspond to

conditions of zero displacement and the zero slope at fixed

end (x = 0), Eqs. 6 and 7 are zero moment and the zero

shear force at free end (x = 1), respectively. Eqs. 8, 9, 10

and 11 are the compatibility conditions at the location of

the attached mass [15].

The general solutions of Eq. 3 for the SWCNT with

attached mass are

w1ðxÞ ¼ C1 cos kax þ C2 sin kax þ C3 cosh kbx
þ C4 sinh kbx ð12Þ

w2ðxÞ ¼ C5 cos kax þ C6 sin kax þ C7 cosh kbx
þ C8 sinh kbx ð13Þ

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 þ c2

p
þ c

2

s
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 þ c2

p
� c

2

s
: ð14Þ

and C1, C2, C3,…C8 are constants.

Substituting Eqs. 12 and 13 into Eqs. 5, 6, 7, 8, 9, 10

and 11, we can obtain the following matrix form:

A½ � Cf g ¼ 0 ð15Þ

where

L 

Y

X 

c 
M

Fig. 1 A cantilevered nanotube-based mass sensor with an attached

mass
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Cf g ¼ ½C1 C2 C3 C4 C5 C6 C7 C8 �T ð17Þ

in which

Therefore, the characteristic equation is given by

Hðm; kÞ ¼ Aj j ¼ 0 ð19Þ

where Aj j is the determinant of the matrix A½ �:
According to dimensionless variables k4 ¼ qAL4

EI x2 given

in Eq. 4, the frequency is

f ¼ x
2p

¼ k2

2p

ffiffiffiffiffiffiffiffiffiffiffi
EI

qAL4

s
: ð20Þ

Meanwhile, the dimensionless sensitivity rm can be

obtained from the following equation:

rm ¼ 1

1
2p

ffiffiffiffiffiffiffiffi
EI

qAL4

q df

dm
¼ �2k

oHðm; kÞ=om

oHðm; kÞ=ok
: ð21Þ

While neglecting the nonlocal effect (e = 0), and

assuming the attached mass at free end (n = 1), the

frequency equation for a cantilevered SWCNT with

attached mass can be reduced. Then the frequency

expressed in dimensionless wave number k can be

obtained by solving the following equation:

1 þ cos k cosh k þ mkðcos k sinh k � sin k cosh kÞ ¼ 0:

ð22Þ

Furthermore, neglecting the attached mass (m = 0), the

dimensionless wave number k can be obtained from

1 þ cos k cosh k ¼ 0: ð23Þ

The above frequency equation expressed in dimen-

sionless wave number k for the free vibration of a

cantilever beam can also be found in the textbook about

vibration [16].

Results and Discussion

Based on nonlocal elasticity theory, we have derived the

frequency equation to analyze the effects of nonlocal

parameter, e0a/L, attached mass and its location, c/L, on the

frequency shift of carbon-nanotube-based mass sensor.

According to the equation, the relationship between the

dimensionless frequency shift and dimensionless added

mass on the cantilever mass sensor for mode 1 with

c/L = 1 and e0a/L = 0 is obtained and shown in Fig. 2.

The dimensionless frequency shift is defined as the ratio of

the difference between the fundamental frequency of a

nanotube with and without attached mass,Df ; to that

without attached mass, f0. To compare with a previous

study, we use the same normalized mass as described in

Ref. [10], where the value of parameter l is 140/33. It can

be seen that the comparison of the two results shows good

agreement. However, the previous work that assumes a

fixed location of attached mass (i.e., c/L = 1); and it is

only a special case of this study. In addition, the nonlocal

effect was not taken into account in their analysis (i.e., e0a/

L = 0).

Conventional continuum mechanics theories assume

that the stress at a point is a function of strain at that point

in local elasticity. Material behaviors predicted by such a

a35 ¼ ðc � a2Þ cos ka; a36 ¼ ðc � a2Þ sin ka; a37 ¼ ðc þ b2Þ cosh kb;

a38 ¼ ðc þ b2Þ sinh kb; a51 ¼ cos kan; a52 ¼ sin kan; a53 ¼ cosh kbn;

a54 ¼ sinh kbn; a71 ¼ ðc � a2Þa51; a72 ¼ ðc � a2Þa52; a73 ¼ ðc þ b2Þa53; a74 ¼ ðc þ b2Þa54;

a81 ¼ mka51 þ a3a52 � ac sin ka; a82 ¼ mka52 � a3a51 þ ac cos ka;

a83 ¼ mka53 þ b3a54 þ bc sinh kb; a84 ¼ mka54 þ b3a53 þ bc cosh ka:

ð18Þ

A½ � ¼

1 0 1 0 0 0 0 0

0 a 0 b 0 0 0 0

0 0 0 0 a35 a36 a37 a38

0 0 0 0 �aa36 aa35 ba38 ba37

a51 a52 a53 a54 �a51 �a52 �a53 �a54

�aa52 aa51 ba54 ba53 aa52 �aa51 �ba54 �ba53

a71 a72 a73 a74 �a71 �a72 �a73 �a74

a81 a82 a83 a84 aa72 �aa71 �ba74 �ba73

2
66666666664

3
77777777775

ð16Þ
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local theory are assumed to be scale-independence in the

constitutive law. When the continuum elasticity theory is

applied to the analysis of the nano-scale structures, it is

found to be inadequate because of ignoring the small scale

effect. For improving this situation, the nonlocal elasticity

theory was presented by Eringen [14]. The theory assumes

that the stress at a given point is a function of strain at

every point in the body. Accordingly, the small scale effect

can be taken into account in the constitutive equation.

Figure 3 depicts the effect of nonlocal parameter on the

frequency shift of the cantilever sensor with attached mass

for c/L = 1. It can be seen that the frequency shift of the

sensor increases with increasing the attached mass. Based

on the nonlocal elasticity theory, long-range interactions

are taken account in the analysis that makes the sensor

stiffer. Therefore, it can be found that increasing the non-

local parameter increases the frequency shift. The trend is

obvious when the attached mass is small compared with

that of the sensor.

In addition, the location of attached mass can influence

on the changes in frequency of the mass sensor. Figure 4

illustrates the effect of location of attached mass, c/L, on

the frequency shift of the cantilever mass sensor for e0a/

L = 0.3. It can be seen that the effect of the location of

attached mass on the frequency shift of the mass sensor is

significant. Increasing the value of c/L increases the fre-

quency shift. This is because the frequency of the sensor

with the attached mass decreases with increasing the par-

ticle mass. Increasing the value of c/L is equivalent to an

increase of the particle mass at the same location.
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Fig. 3 The effect of nonlocal parameter on the frequency shift of the

sensor with attached mass for c/L = 1
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Fig. 4 The effect of location of attached mass on the frequency shift

of the sensor for e0a/L = 0.3
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Fig. 2 The relationship between the dimensionless frequency shift

and dimensionless added mass on the mass sensor for mode 1 with

c/L = 1 and e0a/L = 0
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Fig. 5 The effect of location of attached mass on the sensitivity of

the sensor for e0a/L = 0.3
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It is important to know the sensitivity of the mass sen-

sor. The sensitivity of the sensor is defined as the ratio of

the variation of the frequency shift to the variation of the

attached mass. Figure 5 shows the effect of location of

attached mass on the sensitivity of the sensor for e0a/

L = 0.3. It can be seen from Fig. 4 that the frequency shift

is linearly downward with decreasing mass. Therefore, a

high sensitivity is revealed when the attached mass is

small. In addition, it can be observed that the sensitivity of

the sensor is strongly dependent on the location of attached

mass, c/L. The sensitivity of the sensor quickly drops as the

value of c/L decreased. This is because the frequency shift

decreases with decreasing the value of c/L.

Conclusions

In this Letter, the frequency shift and sensitivity of carbon-

nanotube-based sensor with an attached mass was studied

using nonlocal elasticity theory. The relationship equation

between the frequency shift of the sensor and the attached

mass was derived analytically. When the nonlocal effect

was not taken into account, the result was compared with

the previous study, which adopted a simplified method and

obtained an approximate result. According to this study,

the result showed that increasing the nonlocal parameter

obviously decreased the frequency shift of the sensor when

the attached mass was small compared with that of the

sensor. The value of frequency shift was larger when the

location of the attached mass was closer to the free end. In

addition, a high sensitivity of the sensor was revealed when

the attached mass was small. However, the sensitivity

quickly dropped as the location of the attached mass was

closed to the fixed end.
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