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Abstract The theory of large radius polaron in the

quantum wire is developed. The interaction of charge

particles with interface optical phonons as well as with

optical phonons localized in the quantum wire is taken into

account. The interface phonon contribution is shown to be

dominant for narrow quantum wires. The wave functions

and polaron binding energy are found. It is determined that

polaron binding energy depends on the electron mass

inside the wire and on the polarization properties of the

barrier material.

Keywords Quantum wire � Electron–phonon interaction �
Interface phonons � Polaron

Introduction

The electron–phonon interaction in semiconductor hetero-

structures is of greater interest in comparison to bulk

materials. This is due to the fact that the quasi-particle

space localization leads to the modifications of the energy

spectrum. The all-important factor is the rise of new

vibration branches of optical spectrum, namely, the inter-

face optical phonon [1]. In addition, the intensity of elec-

tron–phonon interaction is changed. The interaction of

charge particles with polar optical phonons should exhibit

the most intensity. This interaction is of considerable

importance in the understanding of the properties of het-

erostructures based on material with high ionicity. It can

lead to self-consistent bond state of a charge particle and

phonons, that is, the large radius polaron [2].

Currently, an investigation on the part played by inter-

face phonons has attracted considerable interest in polaron

state formation study. The heterostructures of different

symmetry are under investigation. The contributions to

polaron binding energy both of interface and of bulk

optical phonons are the same value order in the quantum

dots [3–5]. Taking into account, interface phonons are

essential for quantitative analysis of the polaron states. It

does not lead to new qualitative effects. Alternatively, the

interface phonon role dominates in polaron binding energy

for quantum well case [6, 7]. In response to this fact, the

strong electron–phonon interaction can be realized in the

quantum wells based on non-polar material with high

iconicity barrier material. In addition, from the results, it

follows that profound polaron effects should be expected,

e.g., in the Si/SiO2 compounds. Although there are no polar

optical phonons in the material of such quantum well, these

may be produced at the heteroboundary. As a result, the

strong interaction of charged particles with interface pho-

nons becomes possible. Conversely, the essential depres-

sion of electron–phonon interaction is possible when the

quantum well is made of polar material and for the barriers

is taken non-polar material.

In recent years, varied technologies of semiconductor

quantum wire growth with assorted barriers are progressing

rapidly. The most success has been achieved for the quan-

tum wires based on III–V compounds [8–12]. Some

advances have been made in the formation of II–VI semi-

conductor wire structures [13, 14]. It is in these structures

that the polaron states can arise. At the same time, no

extended theoretical study of the polaron states in such

structures is available. Proper allowance must be made for

the interaction of charge particles with interface optical
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phonons for an understanding of this problem. In this paper,

we develop a theory of polarons in the quantum wires,

taking into account the interaction of charged particles with

all branches of the optical phonon spectrum.

Interface Phonons in the Quantum Wire

The interface phonon spectrum is being examined in [15].

The general equations have been obtained to describe the

phonon spectrum taking into account the interaction of

polarization and deformation potentials. In materials with

high ionicity degree, the charge particle interaction with

polar optical phonons is of crucial importance in polaron

state formation. This has led us to use the model which

takes into account this phonon type in the quantum wire.

The polar optical phonons we describe by the outline

suggested in [16]. Optical-phonon modes in the quantum

wire are determined using the classical electrostatics

equations:

PðrÞ ¼ viðxÞEðrÞ; ð1aÞ
EðrÞ ¼ �ruðrÞ; ð1bÞ

r2uðrÞ ¼ �4pqðrÞ; ð1cÞ
qðrÞ ¼ �rPðrÞ; ð1dÞ

together with conventional boundary conditions at

heterointerfaces, where PðrÞ is the polarization field,

EðrÞ the electric field, uðrÞ the scalar potential, qðrÞ the

total charge density, and vðiÞðxÞ is the dielectric

susceptibility of the material i (i = 1, 2). The dielectric

function eðiÞðxÞ is given by:

eðiÞðxÞ ¼ eðiÞ1
x2 � x2ðiÞ

LO

x2 � x2ðiÞ
TO

; ð2Þ

where xðiÞ
LO and xðiÞ

TO are the frequencies of longitudinal-

optical (LO) phonons and transverse-optical (TO) phonons,

respectively, and eðiÞ1 is the high-frequency dielectric

constant. The solution of system (Eq. 1) for the

cylindrical quantum wire leads to the equation defining

the dispersion law for interface optical phonons:

I
0
mðkq0Þ

Imðkq0Þ
eð1ÞðxÞ ¼ K

0
mðkq0Þ

Kmðkq0Þ
eð2ÞðxÞ: ð3Þ

Here, Im is the m-th order modified Bessel function of the

first kind, Km is the m-th order modified Bessel function of

the second kind, k is the wave vector, q0 is the quantum

wire radius. The spectrum of interface phonons is deter-

mined by solution of Eq. 3. In Fig. 1 is shown the wave-

vector dependence of the interface phonon frequencies.

This dependence is calculated for the quantum wire based

on CdSe surrounded by ZnSe barriers with m = 0 in Eq. 3.

The material parameters are taken from [17].

The Hamiltonian operator for phonon subsystem is

conveniently written in terms of the phonon creation and

annihilation operators:

bHph ¼
X

k;n;m

�hx0aþ
nmðkÞanmðkÞ þ

X

k;m

�hxmðkÞaþ
mkamk; ð4Þ

where the operators aþ
nmðkÞ describe the creation of bulk

phonons localized inside the quantum wire, aþ
mk are the

interface phonon creation operators. The Hamiltonian of

electron–phonon interaction for the cylindrical quantum

wire can be represented by the method supposed in [16]:

bHe�ph ¼
X

k;m;n

amnðk; qÞ anmðkÞ þ aþ
nmðkÞ

� �

þ
X

k;m

amðkÞ aþ
mk þ amk

� �

: ð5Þ

Here, the coefficients amnðk; qÞ are defined as:

amnðk; qÞ ¼
2pe2�hxLO

L

� �1=2

� 1

eð1Þopt

� �1=2

q0

exp ikz½ �JmðkqÞ exp imu½ �

q2 þ 1
q2

0

l2
nðmÞ

� �1=2
; q� q0; ð6Þ

here, ln(m) is n-th order root of the equation Jm(l) = 0, Jm

is the m-th order Bessel function of the first kind.

The interaction parameters am(k) have the form:

amðkÞ ¼
2pxse

2

L

� �1=2

� b�1
ð1ÞðxsÞI1ðkq0Þ þ b�1

ð2ÞðxsÞ
Imðkq0Þ
Kmðkq0Þ

I2ðkq0Þ
� 	1=2

�

ImðkqÞ
Imðkq0Þ

exp imu½ � exp ikz½ �; q� q0 ð7Þ

The expressions (6), (7) do not require in the region q� q0.

Fig. 1 The wave-vector dependence of interface optical phonon

frequencies for ZnSe/CdSe/ZnSe quantum wire
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The reason is that we suppose the total electron localization

within the quantum wire. In Eq. 7 were used the following

symbols:

bðxÞ ¼ 1

eopt

x2
LO

x2

x2 � x2
TO

x2
LO � x2

TO

� �2

; ð8Þ

I1ðkq0Þ ¼
Z

kq0

0

I2
mðzÞ þ

dImðzÞ
dz

� �2

þm2

z2
I2
mðzÞ

" #

zdz; ð9Þ

I2ðkq0Þ ¼
Z
1

kq0

K2
mðzÞ þ

dKmðzÞ
dz

� �2

þm2

z2
K2

mðzÞ
" #

zdz: ð10Þ

The Polaron in the Quantum Wire

We consider a cylindrical quantum wire with the radius q0.

Let the quantum wire be surrounded with compositionally

identical barriers. In order to separate the effect of exactly

dielectric irregularities, we assume that the potential well

for electrons is rather deep, so that the penetration of the

wave functions under the barrier can be disregarded. In this

case, the interaction of charged particles with barrier

phonons is weak. We write the Hamiltonian of the system

as

bH ¼ bHe þ bHph þ bHe�ph ð11Þ

Here, bHe is the electron Hamiltonian for which the

interaction of the electron with phonons is disregarded.

The Hamiltonian is given by

bHe ¼ � �h2

2M
r2 þ VðqÞ ð12Þ

where VðqÞ is the quantum wire potential and M is the

electron effective mass. If the interaction of an electron

with polar optical phonons is strong, the polaron binding

energy can be determined with the use of adiabatic

approximation. In so doing, the electron subsystem is fast

and phonon subsystem is slow. The adiabatic parameter

here is the ratio of the quantum wire radius q0 to the

polaron radius a0:

q0

a0

� 1: ð13Þ

The exact expression for polaron radius a0 is obtained

below. The condition (Eq. 13) implies that the main

contribution to the polaron binding energy is given by

small values of the wave vector k such that

kq0\1: ð14Þ

If condition (Eq. 13) is satisfied, the wave function of an

electron localized in the n-th size-quantization level can be

represented as:

WeðrÞ ¼ uðnðeÞ;mðeÞ; qÞ exp imðeÞu
h i

v nðeÞ;mðeÞ; z
� �

; ð15Þ

where the wave function uðnðeÞ;mðeÞ; qÞ describes the two-

dimensional electron motion not disturbed by electron–

phonon interaction. This motion occurs inside the quantum

wire. The wave function v n eð Þ;m eð Þ; z

 �

represents the

electron localization in the self-consistent potential well

created by phonons. The quantum numbers n(e), m(e) define

not disturbed electron state in the quantum wire. In the case

of total electron localization in the cylindrical quantum

wire, the wave function uðn eð Þ;m eð Þ; qÞ has the form:

uðn eð Þ;m eð Þ; qÞ ¼ Jm eð Þ ln eð Þ m eð Þ
� � q

q0

� 	

: ð16Þ

Here lnðeÞ ðmðeÞÞ is n(e)-th root of m(e)-th order Bessel func-

tion. The wave function v n eð Þ;m eð Þ; z

 �

is to be obtained by

solving self-consistent problem. In so doing, the total wave

function from Eq. 15 is perceived to be normalized.

The procedure of polaron binding energy determination

is similar to that used in [7]. We average the total Hamil-

tonian of the system from expression (Eq. 11) with yet

unknown electron wave function from formula (Eq. 15).

The Hamiltonian bHe from (Eq. 12) takes the form after this

procedure:

bHe

D E

¼ E
ð0Þ
nðeÞ;mðeÞ þ

�h2

2M

Z

dz
dvðzÞ

dz

� �2

: ð17Þ

Here E
ð0Þ
nðeÞ;mðeÞ is the energy of an electron on relevant size-

quantization level, M is the electron mass inside the

quantum wire. The form of phonon Hamiltonian bHph from

Eq. 11 remains unchanged. Averaged Hamiltonian of

electron–phonon interaction bHe�ph can be written as:

bHe�ph

D E

¼
X

k;m;n

eamnðkÞ anmðkÞ þ aþ
nmðkÞ

� �

þ
X

k;m

eamðkÞ amk þ aþ
mk

� �

: ð18Þ

Here, eamnðkÞ and eamðkÞ are the coefficients amnðk; qÞ and

am(k) from Eq. 5 averaged with the electron wave function

from formula (Eq. 15). We obtain average Hamiltonian
bHav :

bHav ¼ bHph þ bHe�ph

D E

: ð19Þ

It can be brought to the form diagonal in phonon variables

by the unitary transformation e�U
bHav eU ; where

U ¼
X

k;m;n

eamnðkÞ anmðkÞ � aþ
nmðkÞ

� �

þ
X

k;m

eamðkÞ amk � aþ
mk

� �

: ð20Þ

The unitary transformation application gives the following

equation:
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e�U
bHav eU ¼ bHph þ DEe ð21Þ

From expression (Eq. 21), we can see that, in the adiabatic

approximation used here, the bulk phonon spectrum and

the interface phonon spectrum remain unchanged. The last

summand in expression (Eq. 21) presents the energy of a

large radius polaron. In the general case, the energy DEe

involved in (Eq. 21) depends on the dielectric properties of

the materials of both the quantum wire and the barriers. In

the general case, the polaron binding energy DEe depends

on electron size-quantization level number and on optical-

phonon spectrum properties. These phonons are localized

in the quantum wire and at the heteroboundary. After the

procedure of angle averaging which is expressible in

explicit form, we obtain this energy DEe as:

DEe ¼ �
X

n;k

ea2ð0; n; kÞ
�hx0

�
X

k

ea2ð0; kÞ
�hxS

: ð22Þ

The energy (Eq. 22) is defined by the electron interaction

with phonon modes correspond to m = 0 only. This

equation (Eq. 22) contains the contribution to polaron

energy for all size-quantization levels. This contribution is

caused by the interaction of localized electron with con-

fined and interface phonons. It can be used for numerical

analysis of electron–phonon interaction characteristic

properties. However, the electron energy and wave func-

tion can be obtained analytically on condition the un-

equality (Eq. 14) is satisfied.

Results and Discussion

The most significant contribution to the polaron binding

energy in the parameter (Eq. 14) gives the interaction of an

electron with interface phonon mode of the frequency close

to barrier frequency xð2Þ
LO: The largest contribution to the

energy in the parameter (Eq. 14) has the form:

DEe ¼
e2

2eð2Þopt

X

k

Z

v zð Þj j2exp ikz½ �dz

�

�

�

�

�

�

�

�

2

lnðkq0Þ: ð23Þ

The Eq. 23 contains the optical dielectric function of the

barriers eð2Þopt: It is defined as 1
eopt

¼ 1
e1

� 1
e0
:. This quantity

comes about from taking into account the interaction of an

electron with interface optical phonons. It is seen from Eq.

23 that the quantum wire material properties have no effect

on the polaron state formation. The part of quantum wire

material dielectric properties can be obtained in higher

orders in the parameter (Eq. 14). It is seen from Eq. 23 that

the characteristic values of the phonon wave vector k which

describe the value of electron–phonon interaction is of

the order reciprocal to polaron radius a0 k 	 a�1
0


 �

: The

logarithmic function changes weakly in this region.

Therefore, we can consider with the same accuracy in

parameter (14) that the energy is equal to:

DEe ¼
e2

2eð2Þopt

ln
q0

a0

� �

X

k

Z

vðzÞj j2exp ikz½ �dz

�

�

�

�

�

�

�

�

2

ð24Þ

The substitution of the energy from Eq. 24 to the average

Hamiltonian from Eq. 19 leads to the expression for

polaron binding energy as the functional of unknown yet

wave function v(z). It can be written as:

Epol ¼
�h2

2M

Z

dvðzÞ
dz

� �2

dz þ e2

2eð2Þopt

ln
q0

a0

� �

�
X

k

Z

vðzÞj j2exp½ikz�dz

�

�

�

�

�

�

�

�

2

: ð25Þ

The following equation is obtained by variational method

using wave functions v(z):

� �h2

2M

d2vðzÞ
dz

� e2

eð2Þopt

ln
a0

q0

� �

 !

v3ðzÞ ¼ EpolvðzÞ: ð26Þ

This nonlinear Eq. 26 has the solutions which can be

written in the form with any energy values Epol:

vðzÞ ¼ 1
ffiffiffiffiffiffiffi

2a0

p 1

ch z=a0ð Þ: ð27Þ

The polaron binding energy is found by substitution of

Eq. 27 to 26:

Epol ¼ � Me4

�h2 eð2Þopt

� �2
ln2 a0

q0

� �

: ð28Þ

The polaron radius a0 is obtained by solving the

transcendental equation. It has the form:

a0 ¼
�h2eð2Þopt

Me2 ln a0

q0

� �: ð29Þ

It is this quantity from Eq. 29 which contains the adiabatic

parameter (Eq. 13). Substituting material parameters [17]

into Eq. 29 for the quantum wire ZnSe/CdSe/ZnSe leads

one to expect that the strong polaron effects for these

structure should be observed when the quantum wire radius

q0 \ 40 Å.

It might be well to point out that both the polaron

binding energy (Eq. 28) and polaron radius (Eq. 29)

depend on effective electron mass inside the quantum wire

and barrier dielectric properties. This clearly demonstrates

the prevailing role of the interaction of an electron with

interface optical phonons. The availability of the surface

phonons leads to widening the range of materials in which

the strong polaron effect should be expected. The strong

electron–phonon interaction may exist near the interface
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between polar and non-polar materials. Among other things

the significant electron–phonon interaction can result from

the interface phonon influence in Si/SiO2 heterostructures.

The results obtained show that the intensity of electron–

phonon interaction is determined significantly by interface

optical phonons in narrow quantum wires corresponding to

the condition (Eq. 13). These interface phonons are local-

ized basically in the heteroboundary vicinity. And its field

penetrates also into the barriers region. By this is meant

that the interface phonons can produce the effective canal

of excitation transfer in the structures with several quantum

wires. Related ways should be allowed for the transport

theory development in quantum nanostructures.
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