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Abstract We consider electrons in the presence of
interfaces with different effective electron mass, and
electromagnetic fields in the presence of a high-permit-
tivity interface in bulk material. The equations of motion
for these dimensionally hybrid systems yield analytic
expressions for Green’s functions and electromagnetic
potentials that interpolate between the two-dimensional
logarithmic potential at short distance, and the three-
dimensional 7' potential at large distance. This also yields
results for electron densities of states which interpolate
between the well-known two-dimensional and three-
dimensional formulas. The transition length scales for
interfaces of thickness L are found to be of order Lm/2m
for an interface in which electrons move with effective
mass ms, and Le,/2e for a dielectric thin film with per-
mittivity €, in a bulk of permittivity e. We can easily test
the merits of the formalism by comparing the calculated
electromagnetic potential with the infinite series solutions
from image charges. This confirms that the dimensionally
hybrid models are excellent approximations for distances
rz L2.
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Introduction

When we suppress motion of particles in certain directions
through confining potentials, e.g. in quantum wells or
quantum wires, we often model the residual low energy
excitations in the system through low-dimensional quan-
tum mechanical systems. Prominent examples of this
concern layered heterostructures, and one instance where
the number d of spatial dimensions enters in a manner
which is of direct relevance to technology is in the density
of states. In the standard parabolic band approximation,
this takes the form (with two helicity or spin states)

md \/Ed72
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These are densities of states per d-dimensional volume and
per unit of energy. The corresponding dependence of the
relation between the Fermi energy and the density n of
electrons on d is

d
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Variants of these equations (including summation over
subbands) are often used for d = 2 or d = 1 to estimate
carrier densities in quasi two-dimensional systems or
nanowires, and the density of states plays a crucial role
in all transport and optical properties of materials. Indeed,
the obvious relevance for electrical conductivity properties
in micro and nanotechnology implies that densities of
states for d = 1, 2, or 3 are now commonly discussed in
engineering textbooks, but there is another reason why I
anticipate that variants of Eq. (1) will become ever more
prominent in the technical literature. Densities also play a
huge role in data storage, but with us still relying on binary
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logic switching between two stable states (spin up or down,
charge or no charge, conductivity or no conductivity), data
storage densities are limited by the physical densities of the
systems which provide the dual states. We could (and
likely will) drive information technology and integration
much further if we can find ways to utilize more than just
two states of a physical system to store and process
information. Then, data storage densities should become
proportional to energy integrals |, ApdEQ(E) of local
densities of states. Equation (1) for d =1 or d =2 is
certainly applicable for particles which have low energies
compared to the confinement energy of a nanowire or a
quantum well, but how can we effectively model particles
which are weakly confined to a nanowire or quantum well,
or which are otherwise affected by the presence of a low-
dimensional substructure? In these cases, we can devise
dimensionally hybrid models [1, 2] which yield e.g.
densities of states which interpolate between d = 2 and
d = 3 [3, 4]. This construction will be reviewed in Sect. 2.
Based on the experience gained with dimensionally hybrid
Hamiltonians for massive particles, we can also construct
inter-dimensional Hamiltonians for photons which should
be applicable to photons in the presence of high-
permittivity thin films or interfaces. These models can
also be solved in terms of infinite series expansions using
image charges, and the merits of this approach can easily
be tested. The case of high-permittivity thin films and
testing the theory against image charge solutions will be
discussed in Sect. 3.

Dimensionally Hybrid Hamiltonians and Green’s
Functions for Massive Particles in the Presence
of Thin Films or Interfaces

We use the connection between Green’s functions and the
density of states to generalize Eq. (1) for massive particles
in the presence of a thin film or interface.

The energy-dependent Green’s function for a Hamilto-
nian H with spectrum E, and eigenstates In, v) is

G(E) = sz(E): 1 ' :Z/ \n,v><n,v'|

? E—H +ie vE—E, +ie
B |n,v){n,v|
PZ/ E En
—inz O(E — E,)|n,v)(n,v|. (3)

ny

Here, v is a degeneracy index and the notation implies that
continuous components in the indices (n, v) are integrated.
The first equation simply states the relation between
the resolvent G(E) of the Hamiltonian and the Green’s

function G(E) which is normalized as
G(E)lg=s = (4nr)~!

The zero-energy Green’s function G(0) determines e.g.
2-particle correlation functions and electromagnetic inter-
action potentials, and the energy-dependent Green’s func-
tion G(E) determines e.g. scattering amplitudes for
particles of energy E. Application for resistivity calcula-
tions is therefore another technologically relevant appli-
cation of Green’s functions. However, in the present
section we are interested in this function because it also
determines the local density of states in a system with
Hamiltonian H through the relation

o(E,, %) —ZZ/ (X|n, v){n,v|X) =

lim,, 0.0

“ES(FGE) 9.
(4)

Here, we explicitly included a factor 2 for the number of
spin or helicity states, because the summation over
degeneracy indices in (3,4) usually only involves orbital
indices.

For our present investigation, the distinctive feature of
the interface is that the particles move in it with an
effective mass m=, while their mass in the surrounding bulk
is m. We use coordinates x = {x,y} parallel to a plane
interface, which is located at z = zy. Bold vector notation
is used for guantities parallel to the interface, e.g. p =
{p.p:} and V = {V,0.}.

We assume that the interface has a thickness L. If the
wavenumber component orthogonal to the interface is
small compared to the inverse width, Ik, LI < 1, i.e. if the
de Broglie wavelength and the incidence angle satisfy
A > 2nlicosdl, we can approximate the kinetic energy of
the particles through a second quantized Hamiltonian

2
H= /dzx/dz;fmﬁlﬁ(x,z)-ﬁw(x,z)

h2
+ [ S ) Vo), 5)
where yt = m+/L. The corresponding first quantized
Hamiltonian is
P+ r’
H= —. 6
T |ZO><ZO| o (6)

The interesting aspect of the Hamiltonians (5,6) is the
linear superposition of two-dimensional and three-
dimensional kinetic terms. The formalism presented here
could and will certainly be extended to include also kinetic
terms which are linear in derivatives, in particular in the
interface term. This would be motivated either by a Rashba
term arising from perpendicular fields penetrating the
interface [5-11] of from the dispersion relation in
Graphene [12-15]. However, for the present investigation
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we will use a parabolic band approximation in the bulk and in
the interface.

The energy-dependent Green’s function (¥|G(E)|¥') =
(z|G(E;x —x')|Z) describes scattering effects in the pres-
ence of the interface but also applies to scattering off
perturbations which are not located on the interface. In an
axially symmetric mixed representation

{k,z|G(E)IK', ') = (z|G(E;k)|Z')o(k — k) (7)

the first order approximation to scattering of an
orthogonally incoming plane wave off an impurity
potential

V(x,z) = 412/d2kV(k 7) exp(ik - x)

corresponds to

nm
V(x,2) v YT / d*x' / d’k
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{exp(ik 12) —

x expli(k - x + k. 2')] exp(—ik ~x’)]

m 2
n2h2/dk

[ 42 G(ERI) V) expith x + k.7 ﬂ

L fontti-

Green’s functions for surfaces or interfaces are
commonly parametrized in an axially symmetric mixed
representation like G(E;k,z,7'). In bra-ket notation, this
corresponds for the free Green’s function Gy(E), which is
also translation invariant in z direction, to
(k,z|Go(E)|K',2')

= Go(E;k,z—2)o(k —k').

We will briefly recall the explicit form of the free
Green’s function Go(E) in the axially symmetric mixed
parametrization for later comparison. The equation

2mE
(ag e %) Go(E:k,2) = —5(2)

yields

1 exp(ik z)
Go(Ek,z) =— [ dk
o(Eik2) 2n/ TR K — (2mE/ ) —ie

_ hO(I*k* —2mE) ZmE) ( \/lel)
= —V k™ —2mE—
VK —2mE h

1h®(2mE nk?) 2 2|Z|
exp V2mE — h'k"—
2V2mE — 1°k* (
(8)
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To study how this is modified in the presence of the
interface, we observe that the Hamiltonians (5) or (6) yield
a Schrodinger equation

2 2

72h_mAl/j(x’ Z) — h—é(Z - ZO)Vzw(x, Z)‘

Elp(xvz) = 24

The corresponding equation for the Green’s function or
2-point correlation function is
2m m
<?E +A+0(z— Zo);V2> (x,z|G(E)|x', )
=—-0(x—x)o(z—7). 9)

The solution of this equation is described in the
Appendix. In particular, we find the representation (see
Eq. (27))

(G(E,K)I) =

hO (1’k* — 2mE) { ( \/le - z’|>
————————|exp| —V Ik - 2mE————
2VIK? — 2mE h
hk*¢

VIPk* — 2mE + hk*¢
— 20| + 17 — 20}
Y/ rERp k]
X exp< m 7
N hO2mE — h2k*)
2V2mE — h*k*
I
X [exp (i V2mE — h2k2|ZTZ>
; hic*(
V2mE — 1°k* + ihk*(
— / —
xexp(i\/ 2mE—hzk2|Z ZOH;I|Z ZO)], (10)

where the definition ¢{=m/2u = Lm/2m« was used. The
{-independent terms in (10) correspond to the free Green’s
function Go(E) (8).

The interface at zy breaks translational invariance in z
direction, and we have with Eq. (7)

0(E,2) = 53 (x,2|G(E) ¥, 2)

- s / &k (Z|G(E, k)|z).

We will use the result (10) to calculate the density of
states 9(E, zo) in the interface. Substitution yields

m
olE,m) = 53 / 0k 20/ G(E, k) 20)

=" o(E) / T g Y2mE — R
T n2h 0 2mE — W*k2 + kA2

and after evaluation of the integral
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(11) 0.01 -
This is a more complicated result than the density (1) for
d =2 or d = 3. However, it reduces to either the two- °% 20 40 60 80 100

dimensional or three-dimensional density of states in the
appropriate limits, see Fig. 1. For large energies, i.e. if the
states only probe length scales smaller than the transition
length scale ¢, we find the two-dimensional density of
states properly rescaled by a dimensional factor to reflect
that it is a density of states per three-dimensional volume,

m 1
SmEF* > W . o(E,z) — ®(E)m = 1720=2) (E).

(12)
For small energies, i.e. if the states probe length scales
larger than ¢, we find the three-dimensional density of states

V2m?3

SmEP* < 1 o(E,z) — @)(E)W\/E = 0(4=3)(E).

(13)

This limiting behavior for interpolation between two and
three dimensions is consistent with what is also observed
for the zero-energy Green’s function in the interface, see
equations (21-22) below.

Equation (11) also implies interpolating behavior for the
relation between electron density and Fermi energy on the
interface. The full relation is

(@) = VvmEp 1 O(h* — SmEp(?)
M) = R 16a63 PyYE

x E <4mEF£2 + /R - 8mEF€2)

\8mE
—2i\/h* — 8mEp(? - arctan SmErt
i+ /1 — SmEp(?

O(SmEp> — h?)

8m2he3
VBMERl — \/8mER2 — I
x \/SmEpéz—hzln( mEr : mEE )
2nmE g l?
=

E[peV]

Fig. 1 The red line is the two-dimensional limit (12). The blue line is
the three-dimensional density of states. The it black line is the inter-
dimensional density of states (11) for ¢ = 50 nm

This approximates two-dimensional behavior for
I’I’lEFé2 > hz,
( ) mEp 1
n(z0) ~ ——= = —N(4=2),
O a2 40

and three-dimensional behavior for mEgf? < h2,

V2mEr
3n2h’
It is intuitively understandable that the presence of a layer
reduces the available density of states for given energy, or
equivalently increases the Fermi energy for a given density
of electrons. The presence of a layer generically implies
boundary or matching conditions which reduce the number

of available states at a given energy.

A condition for relevance of the inter-dimensional
behavior is a large transition scale compared to the layer
thickness, ¢ > L, see also Fig. 2. In terms of effective
particle mass, this means

m>> m,, (14)

n(zo) =~ = N(d=3)-

i.e. the energy band in the interface should be more
strongly curved than in the bulk matrix for the transition to
two-dimensional behavior to be observable.

Electric Fields in the Presence of High-Permittivity
Thin Films or Interfaces

The zero-energy Green’s

0) |5C¥> |r:|)}‘—)‘c"‘ determines

function G(r) = (X|G(E =
electrostatic and exchange
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Fig. 2 The upper dotted (blue) line is the three-dimensional Green’s
function (47r)~! in units of ¢!, the continuous line is the Green’s
function (19) in units of ¢!, and the lower dotted (red) line is the
two-dimensional logarithmic Green’s function ¢-G = — (y + In(#/
20)/(47)

interactions through the electrostatic potential @(r) =
qG(r)/e. Here, ¢ is an electric charge in a dielectric
material of permittivity e. The zero-energy Green’s func-
tion in d spatial dimensions is given by

—r/2, d=1,
Gy = | —Cm /), d=2, (15)
e (ava' ) L azs

We cannot infer from the previous section that the zero
energy limit of the inter-dimensional Green’s function
calculated there also yields a dimensionally hybrid
potential, because we were dealing with solutions of
Schrodinger’s equation instead of the Gauss law. However,
we can rederive the zero energy limit of that Green’s
function from the Gauss law for electromagnetic fields in
the presence of a high-permittivity interface.

Suppose we have charge carriers of charge ¢ and mass m
in the presence of an interface with permittivity e, and
permeability p+, We continue to denote vectors parallel
to the interface in bold face notation, X = {x,z},
V ={V,0.},A = {A,A.}, etc.

If the photon wavelengths and incidence angles satisfy
the condition 4 > 2nllcosdl, we can approximate the
system with an action

S:L/d2 {6**2 ! B’z]
2 2”* =20

_lih 0 0
s faslv qe-gr )
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Variation with respect to the electrostatic potential,
08/0® = 0, yields the Gauss law in the form

eV -E+Led(z—2)V-E=qpy (16)
and the continuity condition E(zop — 0) = E(z9 + 0).
We solve Eq. (16) in Coulomb gauge,
0.0 =1 [ EXGEI W @0 (17)
€

where the Green’s function has to satisfy

AGE,T) + LE0(z — 20)VPG(F,X) = —0(F — ). (18)
€
This equation is the zero energy limit of Eq. (9) with the
substitution
m
— = L— — L—
H ny
We can therefore read off the solution from the results of
the previous section with £ = 0 and now ¢ = Le, /2e.

Equation (10) yields in particular
klexp(—k|z — zo| — k|z — ZQ|))

(ZGk)|) =
211< (e"p( Klz—2]) - 1+ Kl

with k = |k|. Fourier transformation yields

(€[Gx) :/ dk/zn exp 1k|x\cos<p)

« (exp(—k|z—z’|)

_ klexp(—k|z —zo| — k|2’ — zo|))

1+ k¢

* gk /
—/0 E(exp(—kk—z)

klexp(—k|z — zo| — k|z' — zo|)
— kix|).
s oK)

(19)

The zero-energy Green’s function in the interface is
given in terms of a Struve function and a Neumann
function’,

' Our notations for special functions follow the conventions of
Abramowitz and Stegun [16].
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= @[Ho (z) - Y (z)} . (20)  and from the continuity of D.,
. . . . . . . . qn — 4n+1 = Qn‘
This yields logarithmic behavior of interaction potentials
at small distances 7 < £ and 1/rbehavior for large separation ~ These conditions can be solved through
r > { of charges in high-permittivity thin films,  —e\" e (e — e\
1 Ny 2 qn(6 +6> 4 On=- +6(6+6> q;
¢: G :—7—1(—)—0—, * * *
r< ) 47%{ ) et (fz)] % M 1
21)  |d=<L/2: d= 4;]6 > C - 2) ;
N i P+ (e—nL)
l: =—|1-= — 22
e cn=ii-feo(®)] e

see also Fig. 2.

For the comparison with image charges, we set zo = 0
and recall that the solution for the potential of a charge g at
x =0, z = 0 proceeds through the ansatz

1 q
<L/2: O=—— .
<L/ 4me, | /12 + 72

=3 1 1
+> +
n=1 \/rz—i—(z—nL)2 \/r2+(z+nL)2

_ zoc: qpn| 7

and symmetric continuation to z < —L/2.
This yields electric fields

o\ "
[ <L/2: E =) -
n==4me, /12 + (z — nL)*
RS qn)(z — nL)
EZ - Z 39
= 4nen/r? + (z— nL)2
>L/2: E =) Qur 5
=0 47eq /12 + (z 4 nL)?
" On(z+nlL)
E, = 3>
n=0

4mer/r? + (z + nL)*

and the junction conditions at z = L/2 yield for n > 0 from
the continuity of E,,

z>L/2: ®=

q > e, —e\" 1
2n(es +€) nz:; (e* + e) /2 F et nL)z'

In particular, the potential at z = 0 is

n
q q € — € 1
O(r) = . 23
(r) dme,r + 2me, — (e* + 6> V2 +n2l2 (23)

We have
o0 n
Z(e*—e) & —¢
“—\ete 2e
and therefore for ¢, > ¢

q
dme,r

q
4mer

<®(r)<D(r)

a=0 —

The solution from image charges is in very good
agreement with the analytic model for distances r 2 L/2,
where both the image charge solution and the analytic
model show strong deviations from the bulk 7' behavior.
This is illustrated in Fig. 3 by plotting the reduced
electrostatic potential for a charge g, eL®(r)/q = LG(r)
in the interface.

It is also instructive to plot the relative deviation
(Dimage — Phypria)/ Pimage  between  the  dimensionally
hybrid potential ®@y,iq(r) = gG(r)/e which follows from
(20) and the potential ®;, g, (23) from image charges.

Figure 4 shows that for r 2 L/2, the dimensionally
hybrid model is a very good approximation to the potential
from image charges with accuracy better than 1072 if
e./€ = 100. For €, /e = 10, the accuracy is still better than
4 x 1072

Summary

An analysis of models for particles in the presence of a low
effective mass interface, and for electromagnetic fields in
the presence of a high-permittivity thin film, yields
dimensionally hybrid densities of states (11) and electro-
static potentials (17,20) which interpolate between two-
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0.008 A

0.006

0.004

0.002

r/L

Fig. 3 Different reduced electrostatic potentials are plotted for
€./€ = 100. The upper dotted (green) line is the three-dimensional
reduced potential L/(4nr). The central dotted (blue) line is the
reduced potential following from the image charge solution (22). The
solid (black) line is the potential from the analytic model (19). The
lower dotted (red) line is the reduced logarithmic potential. The
reduced potentials from our analytic model and from image charges
are indistinguishable for » > rsimL/2, see also Fig. 4

0.010 7

0.008

0.006

<I:‘image

0.004

(Dimage - (Dhybrid

0.002

r/L

Fig. 4 The relative deviation (Qinage — Phypria)/ Pimage between the
dimensionally hybrid potential from (19) and the potential (22) from
image charges for €, /e = 100

dimensional behavior and three-dimensional behavior. The
analytic model for the electromagnetic fields is in very
good agreement with the infinite series solution already for
small distance scales r = L/2, where the potential strongly
deviates from the standard bulk ' potential. At distance
scales smaller than L/2, r_l, behavior seems to dominate
again for the electrostatic potential, in agreement with
expectations that for distances which are small compared to

@ Springer

the lateral extension of a dielectric slab, bulk behavior
should be restored. However, note that neither the inter-
dimensional analytic model nor the solution from image
charges is trustworthy for very small distances, because
both models rely on a continuum approximation through
the use of effective permittivities, but the continuum
approximation should break down at sub-nanometer scales.

The most important finding is that interfaces and thin
films of width L should exhibit transitions between two-
dimensional and three-dimensional distance laws for
physical quantities at length scales of order Lm/2m-: or
Le. /2¢, respectively. Interfaces with strong band curvature
or high permittivity should provide good samples for
experimental study of the transition between two-dimen-
sional and three-dimensional behavior.
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Appendix: Solution of Eq. (9)

Substitution of the Fourier transform

(x,Z|G(E)|x',Z)
:%'“/ﬂ%w®WAmmw%ww
T
into Eq. (9) yields
2m
(3551 42 )t dG(En.2)
- %kzé(z — 20)(k, Z|G(E) K, 7))
=0k —K)o(z— 7). (24)
This yields with (7) the condition
2m
e
m,, !
—ﬁkﬂrﬂwMG@kW>
=-6(z— 7).

E+§)@aamw>

Fourier transformation with respect to z yields
2m
N [

m .
~ e [ s explies — ko)l (. GE R

- _\/%exp(—ilqz’). (25)

This result implies that (k, |G(E,k)|z’) has the form
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exp(ik,z0) (k. |G(E,k)|Z) = (z|G(E,k)|Z) =
(explikL(z0 — 2)]/V2r) +f(E,k,7) h@(h2k2 2mE) { < (2K — omE |z — )
K} +k* — (2mE/h?) 2VI’k* — 2mE
2
with the yet to be determined function f(E, k, 7') satisfying hkt
FE.K,Z) VI*k® — 2mE + hk*(
Y Z—2 + 7 -z
Ly / 1, (Xl (20 = 2)]/VER) +f (. 7) x exp(—v T ')}
2mu - K2 +k* — 2mE/R?) 2,2
=0 o e m'z )
2V2mE — ’k’
For the treatment of the integrals, we should be consistent ) hk2e
Exéi)th the calculation of the free retarded Green’s function —1 OmE — T2IE + ihie
' . |z — 20| + |7 — 20|
dic, exp(ix, 2) X exp (1\/ 2mE — k? ; ) (27)
2 LI (mE/R) The Green’s function with only k iabl
e Green’s function with only k space variables
" exp(—\/h2k2 —2mEl] /h) o , ,
= O(I*k* — 2mE) {k, kL |G(E)|K', K, ) = (kL |G(E; )|k )o(k — k')
? WK~ 2mE is found from the Fourier transform of Eq. (25)
is found from the Fourier transform of Eq. ,
. - exp(i\/ZmE - h2k2|z|/h) ) . d
e _ \ m .
T 12®(2mE k") omE — IPK2 : (k2 + 12— 7 )(kL|G(E kK )+ Ekz / dr, expli(rk,

This yields

[ - mh, 5 (@(h2k2 — 2mE) N O(2mE — hzkz))]
2u \ VI’K® — 2mE V2mE — 1°k’
mh O(1*k* — 2mE)
<f(Ek D)=~ ’2[ Vv
) 2uV2m W’k* — 2mE

/ j—
X exp (—v k> — 2mE|Z4ZO|) .

@)(ZmE 72k*) \/“‘“‘z‘zlz 2o
—exp 2mE — i’k
V2mE — °k* <

and therefore

1 1
V2nk: + K — (2mE/R) —
x lexp(—ikyZ)
Ik 0O (h*k* — 2mE)
 VIAE — 2mE + 1kt
X exp (—ikgo — Vi - 2mE|Z,;—ZO|)
. h 0O (2mE — I°k”)
V2mE — R+ ik
X exp (—ikLzo +iV2mE — hzkzwﬂ ,

(26)

(ki|G(E k)[Z') =

where the definition {=m/2u = Lm/2m- was used. Fourier
transformation of Eq. (26) with respect to &k, yields finally

- kL)ZO]<KL|G(E7k)|kIL>
=3k —K,)

and the ensuing equations

exp(ikz0)(k, |G(E,k)|K)

_exp(ikiz0)d(k. —K)) +f(E, k, K )
K+ k* — (2mE/1?)

K dic,
E kK ) +—f(E kK /
f( J_) Tff( J_) Ki"‘kz—(sz/hz)

)

K¢ exp(ik’ z0)
n K4+ k* — (2mE/R*)

This yields
(kL |GE,R)IK,)
1 !
= 5 ki —k
K+ & — (2mE/1?) — (ko —ky)
_ ’ﬁ expli(k), — kL)ZO]
n K4k — (2mE/R*) —
VI — 2mE@ (R k* — 2mE)
VI*k® — 2mE + hk*(
V2mE — I’k ©(2mE — I°’K%)
" VomE — K + ik '
It is easily verified that Fourier transformation yields again
the result (26).
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