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Abstract By combining with the physical concept of

inscribed surface, the standard Cauchy–Born rule (CBR) is

straightly extended to have a rigorous and accurate atom-

istic continuum theory for the monolayer crystal films.

Resorting to using Tersoff–Brenner potential, the present

theory to graphite sheet and single-walled carbon nano-

tubes (SWCNTs) is applied to evaluate the mechanical

properties. The results are validated by the comparison

with previously reported studies.
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Introduction

Based on atomistic simulations, a series of values of

mechanical properties of CNTs are given and agreed

qualitatively with experimental studies, but such methods

quickly become computationally extremely demanding as

the number of atoms increases. In other words, there exists

a rigorous limitation on atomistic simulation by its time

and length scales. So, a direct link between the continuum

analysis and atomistic simulation is needed to investigate

the mechanical properties of CNTs more effectively. In

general, the so-called CBR [1, 2] is viewed as the funda-

mental assumption for linkage between the deformation

descriptions of crystal configurations and the continuum

theories of crystal mechanics. Without considerations of

diffusions, phase transitions, lattice defects, slips, or other

non-homogeneities, it is quite suitable for the space-filling

materials. In a space-filling material, the crystal deforma-

tion is homogenous and continuous at the atomic scale, and

the lattice vector and its tangent are coincident. Thus, CBR

is widely accepted as the form of a = F�A, where F

denotes a two-point deformation gradient tensor, A and a

denote one lattice vector on the respective undeformed and

deformed crystals.

However, the standard CBR fails to extend directly to

the case of monolayer crystal films. In short, if the

monolayer crystal film is treated as a surface, the defor-

mation gradient F maps the tangent space of the surface

and the lattice vectors are regarded as chords of the surface.

Obviously, the finite length lattice vector does not fall into

the tangent space of infinitesimal material vectors, so the

deformation gradient F cannot give an accurate description

of relationship between the undeformed and the deformed

lattice vectors.

To generalize the standard CBR in the monolayer crystal

films, two main type modifications are developed until now.

In the study of finite crystal elasticity for curved single layer

lattices, Arroyo and Belytschko [3, 4] developed the

exponential CBR. First, the undeformed lattice vector A is

mapped into the tangent space by the exponential inverse

mapping to get an undeformed finite line element. After the

deformation calculations of finite line element on the tan-

gent space, the deformed finite line element on the tangent

space is pulled back to the deformed surface by the expo-

nential mapping to determine the deformed lattice vector a.

In practice, it requires the knowledge of the geodesic curves

of the surface. That means much computational cost is

needed to pay to solve a set of non-linear partial differential
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equations. Besides, on the deformation gradients in atom-

istic continuum modeling, Sunyk and Steinmann took into

account the second quadratic term in the Taylor’s series

expansion of the deformation field [5]. Then, Guo et al. [6]

and Wang et al. [7] performed the higher order CBR for

predicating the mechanical properties of SWCNTs. For the

monolayer films, they illuminated that higher order term of

the deformation gradient can pull the tangent vector close to

the deformed manifold. Sometimes, this method has to be in

the face of convergence problem. Both of two modified

CBRs mentioned in the above are approximate methods

from mathematics. However, based on the physical concept

of inscribed surface, the present study discovered that the

standard CBR can be extended straightly to describe

monolayer crystal films accurately.

New Extension of CBR

As shown in Fig. 1, one atomic chain ABCDE including

five atoms marked by solid circles is deformed to one

equilateral pentagon from a line. The sides of equilateral

pentagon are tangent to its inscribed circle C2 at five open

circles m, n, o, p, q. The circumcircle of this equilateral

pentagon is denoted by C1. At the straight line state of

Fig. 1a, the circumcircle C1 and the inscribed circle C2

recovery back to straight atomic chain. If one-dimensional

deformation along this line is considered, the atomic chain

can be treated as the space-filling materials. The standard

CBR can be introduced directly due to the lattice vector

and its tangent coincide particularly well to each other.

However, at the equilateral pentagon state of Fig. 1b, this

atomic chain is always viewed as the curve C1 generally

owing to the position of atoms. If the standard CBR is

applied to the atomic curve C1, it means the deformation of

the bond AB is described by tangent behavior along the

direction of AK. So errors will be inevitably introduced.

Interestingly, the chord AB of circumcircle C1 exactly is

the tangent of the inscribed circle C2 at any time of

deforming. That is to say, the deformation gradient of the

lattice vector AB maps the tangent space of the inscribed

circle C2 at tangent point m. In other words, the variation of

the bond (the chord of the circumcircle C1) can be inves-

tigated by the deformation gradient (the tangents) of the

inscribed circle C2 at the tangent point.

Generally, inscribed curves for one atomic chain are not

unique due to the positions of tangent points as shown in

Fig. 1c. That means different tangent points offer different

inscribed curves. In the practical calculations, the repre-

sentative cell should be introduced. Due to the axisym-

metry of every two representative cells, this tangent point

should be selected as the middle point of each bond. By

applying this idea to the three-dimensional structures of

SWCNTs as shown in Fig. 2, monolayer crystal films can

use the tangent space of their inscribed surface to describe

the deformations of their bonds [8]. Furthermore, as indi-

cated by Cousins [9], Tadmor et al. [10], and Zhang et al.

[11], the inner equilibrium of the representative cell in the

non-centrosymmetric structure as SWCNTs cannot be

guaranteed by CBR. With introducing the inner shift vector

k, the lattice vector is expressed as:

a ¼ F A=2; kð Þ � ðA þ kÞ; ð1Þ

where A and a denote one lattice vector in the undeformed

and deformed crystals, respectively; the deformation gra-

dient based on the inscribed surface of F(A/2,k) is function

of the position of middle point of undeformed lattice vector

A as well as the inner shift vector k. So the method of using

the deformation gradient of the tangent point on the

inscribed surface to describe the deformation of whole

lattice vector of single-layer crystal film is developed. This

extension is named the inscribed CBR due to main refer-

ence is inscribed surface.

Fig. 1 Illustration of an atomic chain deformed in two dimensional

spaces

Fig. 2 The inscribed surface models for each type SWCNT (the inner

shift between two sub-lattices is not considered in this figure)
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By the way, for the crystal film with centrosymmetric

structure, the inner shift k in Eq. 1 disappears. Moreover,

for the space-filling materials in homogenous deforma-

tions, inscribed surface and atomic surface are superposed,

so Eq. 1 is rewritten back to the standard CBR. To be brief,

those modifications are summarized as shown in Table 1.

Applications to Graphite Sheets and SWCNTs

SWCNTs are viewed as results of rolling up different size

graphite sheets along the different directions. Figure 3

shows the cross section of armchair CNT (2, 2) in the

whole process of rolling up deformation. In the unde-

formed state, the black width lines PQ and QR along the

axis X2 denote the representative cell A and B, respectively.

In the deformed state, three dashed lines from the outer to

the inner (in red, black, and blue) denote the configurations

of the atomic surface, the C–C bond, and the inscribed

surface without considering the shift vector k, respectively.

Following the same logic, three solid lines from the outer

to the inner show the configurations of the atomic surface,

the C–C bond, and the inscribed surface with incorporating

the shift vector k, respectively.

From the outer dashed line (the atomic surface without

considering the inner shift) to the outer solid line (the

atomic surface with considering the inner shift), there is no

change except that the radius of circle becomes a little

larger. This is so called the phenomenon of relaxation.

However, by comparing with the inner dashed curve (the

inscribed surface without considering the inner shift), the

inner solid curve pqr (the inscribed surface with consid-

ering the inner shift) has obvious changes in shape to

average the curvature distribution. From the view of

energy, the curve with small curvature will be much stea-

dier than with large curvature. So it is not difficult to say

that the inner shift gives the deformation gradient a self-

adjustment to uniformly distribute the energy. This

adjustment of energy distribution of the inscribed surface

can be comprehended as the physical origin of relaxation.

With the use of the geometric relationships in Fig. 3, the

radius of atomic surface of armchair CNT ra is obtained as:

ra ¼
4 sinð p

mþnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2½5 þ 4 cosð p
mþnÞ� þ ð8k2

2 � 4ak2Þ½1 � cosð p
mþnÞ�

q :

ð2Þ

By the same logic, the radius of atomic surface of zigzag

CNT ra is expressed as:

rz ¼
4 sinð p

mþnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6a2½1 þ cosð p
mþnÞ� þ 8k2

2½1 � cosð p
mþnÞ�

q ð3Þ

where a is the equilibrium bond length of graphite sheet, ra

and rz denote the respective radii of armchair CNTs and

zigzag CNTs. Obviously, the radii of SWCNTs depend on

a pair of parameters (n,m) as well as the inner shift k.

Based on Brenner’s interatomic potential [12, 13], the

present study gives graphite sheet lattice constant of

0.145068 nm and equilibrium graphite sheet energy of

-7.3756 eV per atom. The strain energies of bending are

defined by assuming that the zero strain energy state cor-

responds to the equilibrium graphite sheet. By homoge-

nizing this strain energy over its representative cell in the

undeformed configuration leads to strain energy density of

W = W[F1,F2,F3,k], where subscripts 1, 2, and 3 means

three C–C covalent bonds in one representative cell. By

minimizing the strain energy of representative cell with

respect to k, the inner shift vector is obtained by

oW=okjk¼�k¼ 0: Then, the radii of SWCNTs are deter-

mined by Eqs. 2 and 3. Compared with the undeformed

circumference of a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðn2 þ mn þ m2Þ
p

in the graphite

sheet, in the rolling up of a graphite sheet to SWCNT, the

strain in the circumferential direction is independent of the

bending direction as shown in Fig. 4.

Table 1 The extensions of CBR for different types of materials

Monolayer crystal film Space-filling material

Non-centrosymmetric Centrosymmetric Non-centrosymmetric Centrosymmetric

a ¼ F A=2; kð Þ � ðA þ kÞ a ¼ F A=2ð Þ � A a = F�(A ? k) a = F�A

All the deformation gradients in monolayer crystal film are based on inscribed surface

Fig. 3 The mapping of rolling up a graphite sheet to an armchair

CNT
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The strain energies of bending are determined as shown

in Fig. 5, which are in good agreement with results from

molecular dynamics (MD) simulations [14]. With the same

atomic surface curvature, bending along the zigzag direc-

tion has larger strain energy per atom than along the

armchair direction. That is due to the inscribed surface of

zigzag CNT has not only the same circumferential curva-

ture deformation as armchair CNT (see Fig. 4) but also its

own longitudinal curvature deformation (see Fig. 2).

Meanwhile, by comparing with the curve Lj2=2ðL ¼
0:8 eVÞ; the strain energy increase scales with j2 only at

small bending curvature.

Then, the first Piola–Kirchhoff stress tensor P is derived

by

P ¼
X

3

i¼1

oW

oFi
þ oW

ok
ok
oFi

� �
�

�

�

�

k¼�k

ð4Þ

and the modified tangent modulus tensors is expressed as

Q ¼
X

3

i;j¼1

o2W

oFioFj
� o2W

oFiok
� oW2

okok

� ��1

� oW

okoFj

" #
�

�

�

�

�

k¼�k

ð5Þ

Based on Cartesian coordinates (x1,x2,x3) as shown in

Fig. 3, x1 denotes the axial direction of a SWCNT, and x2,

x3 locate on the cross section. For the simple tension along

the axial direction x1 of tube, Young’s modulus is obtain

as: Yh ¼ Q1111 � ðQ1122Þ2=Q2222; where Y is Young’s

modulus of nanotube, h is the thickness of nanotube.

Since the representative surface is selected to instead of the

representative volume, the thickness h appears here. As

shown in Fig. 6, the trends of In-Plane stiffness Yh by the

present study have some differences with the results by

exponential CBR [4] and higher order CBR [7] even they

all range from 180 to 235 Nm (graphite sheet state). In

order to display this difference in trend, Fig. 7 shows that

Young’s modulus of SWCNTs is normalized by that of

graphite sheet to compare with the results by the empirical

tight-binding method [15]. It is observed that the present

study is in better agreement with the tight-binding

simulations [15] than exponential CBR [4] and higher

order CBR [7] over a wide range of CNT diameter.

Conclusions

In summary, the present study has discovered that the

mechanical phenomena of monolayer crystal films are

governed by their inscribed surface, not atomic surface.

Based on this congenital advantage of inscribed surface, a

new extension of CBR, called inscribed CBR, is proposed

to build a rigorous and accurate atomistic continuum the-

ory. It straightly connects the continuum mechanics with

monolayer crystal films at nanoscale. Applications of this

theory to the graphite sheet and SWCNTs are validated by

previously reported empirical studies.

Fig. 4 The circumferential strains during the rolling up of graphite

sheet to SWCNT versus the nanotube radius

Fig. 5 The strain energy per atom during bending of graphite sheet

versus the bending curvature

Fig. 6 In-Plane stiffness of SWCNT versus diameter of nanotube
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