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Abstract Within the framework of adiabatic approxima-

tion, the energy levels and direct interband light absorption

in a strongly prolated ellipsoidal quantum dot are studied.

Analytical expressions for the particle energy spectrum and

absorption threshold frequencies in three regimes of quan-

tization are obtained. Selection rules for quantum transitions

are revealed. Absorption edge and absorption coefficient for

three regimes of size quantization (SQ) are also considered.

To facilitate the comparison of obtained results with the

probable experimental data, size dispersion distribution of

growing quantum dots by the small semiaxe in the regimes

of strong and weak SQ by two experimentally realizing

distribution functions have been taken into account. Distri-

bution functions of Lifshits–Slezov and Gaussian have been

considered.
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Introduction

Development of the novel growth techniques, such as the

Stranski–Krastanov epitaxial method etc., makes possible

to grow semiconductor quantum dots (QDs) of various

shapes and sizes [1–3]. As is known, the energy spectrum

of charge carriers in QDs is completely quantized and

resembles the energy spectrum of atoms (artificial atoms)

[4]. In recent years, many theoretical and experimental

works have evolved, where ellipsoidal, pyramidal, cylin-

drical, and lens-shaped QDs were considered [5–13]. As a

result of diffusion, the confining potential, formed during

the growth process, in most cases can be approximated

with a high accuracy by a parabolic potential. However, an

effective parabolic potential may arise in a QD in view of

features of its external shape [14]. In particular, the case in

point is a QD having the shape of a strongly prolated

ellipsoid of revolution [15].

Investigations of the optical absorption spectrum of

various semiconductor structures are a powerful tool for

determination of many characteristics of these systems:

forbidden band gaps, effective masses of electrons and

holes, their mobilities, dielectric permittivities, etc. There

are many works devoted to the theoretical and experimental

study of the optical absorption both in massive semicon-

ductors and size-quantized systems. The presence of size

quantization (SQ) essentially influences the absorption

mechanism. In fact, the formation of new energy levels of

the SQ makes possible new interlevel transitions.

In this paper, the electron states and direct interband

absorption of light in a strongly prolated ellipsoidal QD

(SPEQD) at three regimes of SQ is considered. Absorption

edge and absorption coefficient for three regimes of SQ are

also considered. To facilitate the comparison of obtained

results with the probable experimental data, size dispersion

distribution of growing QDs by the small semiaxe in the

regimes of strong and weak SQ by two experimentally

realizing distribution functions have been taken into

account. Distribution function of Lifshits–Slezov has been
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considered in the first model and distribution function of

Gauss has been considered in the second case.

Theory

Regime of Strong Size Quantization

Consider the motion of a particle (electron, hole) in an

SPEQD (see Fig. 1). The particle potential energy in cylin-

drical coordinates can be written as

U q;u; Zð Þ ¼
0;

q2

a2
1

þ Z2

c2
1

� 1

1;
q2

a2
1

þ Z2

c2
1

[ 1

8
>>><

>>>:

; a1\\c1; ð1Þ

where a1 and c1 are the small and large semiaxes of the

SPEQD, respectively.

In the regime of strong SQ, the energy of the Coulomb

interaction between the electron and hole is much less than the

energy caused by the SQ contribution. In this approximation,

the Coulomb interaction can be neglected. Then, the problem

is reduced to the determination of separate energy states of the

electron and hole. It follows from the geometrical form of a

QD that the particle motion along the radial direction occurs

more rapidly than along the Z-direction. This allows one to use

the adiabatic approximation [16]. The Hamiltonian of the

system in the cylindrical coordinates has the form

Ĥ ¼ � �h2

2lp

o2

oq2
þ 1

q
o

oq
þ 1

q2

o2

ou2

� �

� �h2

2lp

o2

oZ2

þ U q;u; Zð Þ; ð2Þ

and it can be represented as a sum of the Hamiltonians

for the ‘‘fast’’ (Ĥ1) and ‘‘slow’’ (Ĥ2) subsystems in

dimensionless quantities:

Ĥ ¼ Ĥ1 þ Ĥ2 þ U r;u; zð Þ; ð3Þ

where

Ĥ1 ¼ � o2

or2
þ 1

r

o

or
þ 1

r2

o2

ou2

� �

; ð4Þ

Ĥ2 ¼ � o2

oz2
: ð5Þ

Here, Ĥ ¼ Ĥ
ER
; r ¼ q

aB
; and z ¼ Z

aB
; lp is the effective mass

of the particle, ER ¼ �h2

2lpa2
B

is the effective Rydberg energy,

aB ¼ j�h2

lpe2 is the effective Bohr radius of the particle, e is the

particle charge, and j is the dielectric constant. The wave

function can be sought in the form

w r;u; zð Þ ¼ eimuR r; zð Þv zð Þ: ð6Þ

At a fixed value of the slow subsystem z-coordinate, the

particle motion is localized in a two-dimensional potential

well with the effective variable width

L zð Þ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2

c2

r

; ð7Þ

where a ¼ a1

aB
and c ¼ c1

aB
: From the fast subsystem

Schrödinger equation, we obtain particle energy spectrum

e1 zð Þ ¼
a2

nþ1;m

L2 zð Þ ; n ¼ 0; 1; 2. . .;m ¼ 0;�1;�2. . .; ð8Þ

where an?1,m are the zeros of the first-kind Jm(r) Bessel

function. For the lower levels of the spectrum, the particle

is mainly localized in the region |z| \\ a. Based on this, we

expand e1(z) into a series

e1 zð Þ � e0 þ x2
0 z2; ð9Þ

where e0 ¼ a2
nþ1;m

a2 ; x0 ¼ anþ1;m

ac : Expression (9) is the

effective potential entering the Schrödinger equation of

the slow subsystem. For the total energy of the system, one

derives

e ¼ e0 þ 2x0 N þ 1

2

� �

;N ¼ 0; 1; 2. . .: ð10Þ

Regime of Intermediate Size Quantization

For this regime, one should consider the electron–hole

interaction. It is evident that in view of SQ such an inter-

action is clearly exhibited only in the Z-direction.

Therefore, we restrict ourselves to the case of a one-

dimensional exciton. It is clear that in this SQ regime, the

energy of electron motion predominates over the energy of

heavy-hole motion (from the condition le \\lh). Based

Fig. 1 Strongly prolated

ellipsoidal quantum dot
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on the above, the electronic potential acted on the hole can

be averaged over the electron motion and written as

~Vn;m;N Z; rð Þ ¼ � e2

j

Zc1

�c1

Wn;m;N Z 0; rð Þ
�
�

�
�2

Z � Z 0j j dZ 0; ð11Þ

where Wn,m,N(Z 0) is the electron wave function. The

condition ah \\ a1 allows us to expand potential (11) into

a series near the point Z = 0, where ah ¼ j�h2

lhe2 is the

effective Bohr radius of the hole. Finally we obtain for

expression (11) in dimensionless quantities

V100 rð Þ ¼ a þ b2r2; ð12Þ

where the following notations are introduced:

V100 rð Þ ¼
~V100 qð Þ

ER
; a ¼ 3

4

1

c
1 þ ln

a10c

a

� � ffiffiffiffiffiffiffiffiffi
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a10c

a

r

: ð13Þ

The hole wave function and energy are determined from

the Schrödinger equation with averaged potential (12).

After simple transformations, for the hole energy spectrum

in dimensionless quantities, we derive

e ¼ e0 þ a þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ b2

q

N 0 þ 1=2ð Þ;N 0 ¼ 0; 1; 2; . . .;

ð14Þ

where e0 ¼
a2

n0þ1;m0
a2 ; x0 ¼ an0þ1;m0

ac :

Regime of Weak Size Quantization

In this case, the system’s energy is caused mainly by the

electron–hole Coulomb interaction. In other words, we

consider the motion of an exciton as a whole in SPEQD.

Then, the wave function of the system can be represented

as

f r~e; r~hð Þ ¼ u r~ð ÞUnr ;l;m R~
	 


; ð15Þ

where r~¼ r~e � r~h; R~¼ ler~eþlhr~h

leþlh
: Here, u r~ð Þ describes the

relative motion of the electron and hole, while Un;l;m R~
	 


describes the motion of the center of gravity of the exciton.

The Hamiltonian of the system is written as

Ĥ ¼ � �h2

2M
D2

R~
� �h2

2l
D2

r~ � e2

jr
; ð16Þ

where M ¼ le þ lh; l ¼ lelh

leþlh
. For the exciton center of

mass energy, one obtains the result analogous to

formula (10), but by the mass lp is meant the exciton

mass M. For the energy spectrum of the exciton’s relative

motion, we have in dimensionless quantities

eex ¼ Eex

ER

¼ l
M

1

k2
; k ¼ 1; 2; . . .: ð17Þ

Finally for the total energy, we derive

e ¼ e0 þ 2x0 N þ 1

2

� �

� eex;N ¼ 0; 1; 2. . .; ð18Þ

where e0 ¼ a2
nþ1;m

a2 ; x0 ¼ anþ1;m

ac :

Direct Interband Light Absorption

Let us proceed to consideration of the direct interband

absorption of light in an SPEQD in the regime of strong

SQ. Consider the case of a heavy hole when le \\ lh. The

absorption coefficient is defined by the expression [18]

K ¼ A
X

m;m0

Z

We
mW

h
m0 dr~

�
�
�
�

�
�
�
�

2

d �hX � Eg � Ee
m � Eh

m0
	 


; ð19Þ

where m and m0 are the sets of quantum numbers

corresponding to the electron and heavy hole, Eg the

forbidden band gap of a massive semiconductor, X the

incident light frequency, A a quantity proportional to the

square of modulus of the matrix element of the dipole

moment taken over the Bloch functions [17]. Finally, in the

regime of strong SQ, for the quantity K and the absorption

threshold, we obtain

K ¼ A
X

n;m;N

J1þm anþ1;m

	 


J1�m anþ1;m

	 


 !2

d �hX � Eg � Ee � Eh

	 

;

ð20Þ

W000 ¼ 1 þ a2
10

d2

a2
1

þ a10

d2

a1c1

: ð21Þ

here W000 ¼ �hX000

Eg
and d ¼ �hffiffiffiffiffiffiffiffi

2lEg

p : Formula (21) character-

izes the dependence of the effective forbidden band gap on

the semiaxes a1 and c1. With increasing semiaxes, the

absorption threshold decreases, but the dependence on the

small semiaxis becomes stronger. Consider now the selec-

tion rules for transitions between the levels with different

quantum numbers. For the magnetic quantum number, the

transitions between the levels with m = -m0 are allowed,

while for the quantum number of the fast subsystem the

transitions with n = n0. For the oscillatory quantum number,

the transitions for the levels with N = N0 are allowed. Note

that the analytical form of expression (20) is given with

allowance for the above-mentioned selection rules.

We proceed to consideration of the direct interband

absorption of light in SPEQD in the regime of intermediate

SQ. In this case, the consideration of the electron–hole

interaction leads to the fact that in the spectrum of the

interband optical absorption each line corresponding to

given values of m transforms into a set of closely spaced
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lines corresponding to different values of m0. In this regime

of SQ, the absorption coefficient has the form

K ¼ A
X

m;m0

Z

W r~e; r~hð Þd r~e � r~hð Þdr~edr~h

�
�
�
�

�
�
�
�

2

d �hX � Eg � Ee
m � Eh

m0
	 


: ð22Þ

Finally we derive for the absorption coefficient and

absorption threshold

K ¼ A
X

m;n

N;N0
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N;N 0
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q
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Here, Im;n
N;N 0 is an integral, which is calculated numerically,

W000 ¼ �hX000

Eg
; and d ¼ �hffiffiffiffiffiffiffiffi

2lEg

p . In this case, the transitions

between the levels with m = -m0 and n = n0 are allowed.

It should also be noticed that taking into account the

effective one-dimensional Coulomb interaction leads to the

destruction of the previous symmetry of the task and to the

full removal of selection rules for the oscillatory quantum

number N.

Let us consider the direct interband absorption of light

in the regime of weak SQ. Taking into account the local-

ization of an exciton in a relatively small vicinity of the QD

center, for the absorption coefficient one can write the

expression

K ¼ A
X

n;nr ;l;m

u 0ð Þj j2
Z

Un;nr ;m R~
	 


dR~
�
�
�
�

�
�
�
�

2

d �hX � Eg � E
	 


ð25Þ

where E is the energy (18) in dimensional quantities. It

should be noted that u(0) = 0 only for the ground state

when l = m = 0 (l is the orbital quantum number). Finally,

in the regime of weak SQ, we get for the absorption

coefficient and absorption threshold the expressions

K ¼ A
X

nR;NR

JnR
NR

�
�

�
�2d �hX � Eg � E
	 


; ð26Þ

W1000 ¼ 1 þ a2
10

h2

a2
1

þ a10

h2

a1c1

� h2

al
exaM

ex

: ð27Þ

Here, JnR
NR

denotes an integral, which is calculated numeri-

cally, W1000 ¼ �hX1000

Eg
; h ¼ �hffiffiffiffiffiffiffiffi

2MEg

p ; al
ex ¼ j�h2

le2 ; and aM
ex ¼ j�h2

Me2 :

The most important feature of this case is the fact that with

changing semiaxes of the SPEQD the excitonic level shift is

determined by the total mass of the exciton.

Direct Interband Light Absorption with Account

of Dispersion of QDs Geometrical Sizes

So far we have studied the absorption of a system con-

sisting of semiconductor QDs having identical dimensions.

For comparison of the obtained results with experimental

data, one has to take into account the random character of

SPEQD dimensions (or half-axis) obtained in the growth

process. The absorption coefficient should be multiplied by

concentration of QDs. Instead of distinct absorption lines,

account of size dispersion will give a series of fuzzy

maximums. In the first model, we use the Lifshits–Slezov

distribution function [19]:

PðuÞ ¼
34eu2 exp ð�1=ð1�2uÞ=3Þð Þ
25=3ðuþ3Þ7=3ð3=2�uÞ11=3 u\3=2

0; u [ 3=2
; u ¼ a

�a
¼ a1

�a1

;

(

ð28Þ

where �a is some average value of the half-axis. In the

second model, the Gaussian distribution function is used

(see e.g., [20]):

P uð Þ ¼ Ae�
u�1ð Þ2
r=�a : ð29Þ

In the case of strong SQ with account of general size

distribution function P(u), we obtain for the absorption

coefficient corresponding formula:

K ¼ A
X
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where k1 ¼ �hX�Eg

Eg
; k2 ¼ a2
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� �
:In the case of weak SQ with

account of general size distribution function P(u), we

obtain for the absorption coefficient corresponding

formula:

K ¼ A
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where k1 ¼ �hX�Eg

Eg
þ d2

l
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1
q2 ; k2 ¼ a2
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�a1
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d2
l

�a1c1
N þ 1ð Þ; aex ¼ j�h2

le2 :
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Discussion

As is seen from formula (10), the energy spectrum of CCs

in SPEQD is equidistant. This result is related only to the

lower levels of the spectrum. Numerical calculations for

the case of strong SQ were performed for a GaAs QD with

the following parameters: le = 0.067me, le = 0.12lh,

j = 13.8, ER = 5.275 meV, ae ¼ 104 Å and ah ¼ 15 Å

are the effective Bohr radii of the electron and hole,

Eg = 1.43 eV is the forbidden band gap of a massive

semiconductor. In the strong SQ regime, the frequency of

transition between the equidistant levels (for the value

n = 0), at fixed values a1 = 0.5ae and c1 = 2.5ae, is equal

to x00 = 3.32 9 1013 s-1, which corresponds to the

infrared region of the spectrum. For the same values of

quantum numbers, but with the values a1 = 0.4ae and

c1 = 2ae, we obtain x10 = 5.19 9 1013 s-1, which is half

as much again the preceding case. As is seen from for-

mula (10), with increasing semiaxes the particle energy is

lowered. Note that this energy is more ‘‘sensitive’’ to

changes of the small semiaxis, which is a consequence of

the higher contribution of SQ into the particle energy in the

direction of the axis of ellipsoid revolution. With increas-

ing semiaxes, the energy levels come closer together, but

remain equidistant.

Figures 2 and 3 present the dependences of the absorption

threshold on the small and large semiaxes of the SPEQD,

respectively. With decreasing semiaxes, the absorption

threshold increases, which is a consequence of the higher

contribution of SQ (the ‘‘effective’’ forbidden band gap

increases). As is seen from the plots, the change in the

absorption threshold is larger in the dependence on the small

semiaxis of the SPEQD.

In the regime of intermediate SQ, the influence of the

electron–hole Coulomb interaction is exhibited by means

of the coefficients a and b in formulas (12) to (14). Note

that with the limiting transition a ? 0, b ? 0, we arrive at

the results of the regime of strong SQ.

In the regime of weak SQ, when the particle motion is

determined by the Coulomb interaction and the contribu-

tion of SQ is a correction to it, as seen from formula (18),

the families of equidistant levels caused by the SQ are

disposed over each excitonic level. With increasing semi-

axes, the equidistant levels are lowered and the interlevel

distances decrease. Figures 4 and 5 show the dependences

of the absorption edge on the semiaxes of the SPEQD. As

is seen, in this case, the consideration of the Coulomb

interaction leads to the decrease in the ‘‘effective’’

Fig. 2 Dependences of the absorption threshold on the small

semiaxis of the SPEQD at a fixed value of the large semiaxis

Fig. 3 Dependences of the absorption threshold on the large semiaxis

of the SPEQD at a fixed value of the small semiaxis

Fig. 4 Dependences of the absorption threshold on the small

semiaxis of the SPEQD at a fixed value of the large semiaxis
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forbidden band width. In other words, the transitions are

possible at lower frequencies of the incident light and,

hence, in this case, the AE takes lesser values. From this, it

follows that the consideration of the Coulomb interaction

between an electron and hole leads to the shift of the AE to

the long-wave region.

Figure 6 shows the dependences of the electron ground

state in a SPEQD, quantum wire, and cylindrical QD from

GaAs (for equal values of the large semiaxis and cylinder

height), respectively, on the small semiaxis, quantum wire

radius, and radius of the cylindrical QD. As seen, the curve

of the electron ground state energy in SPEQD is disposed

higher, which is caused by the larger contribution of SQ

into the particle energy as compared to other two cases.

Further, Fig. 7 illustrates the dependence of absorption

coefficient K on the frequency of incident light, for the

ensemble of SPEQDs in strong SQ regime. As it mentioned

above, instead of distinct absorption lines, account of size

dispersion will give a series of fuzzy maximums. Note that

both in the model of Gaussian and in the model of Lifshits–

Slezov, QDs distributions a single distinctly expressed

maximum of absorption is observed. When the light fre-

quency is increased, the second weakly expressed

maximum is seen. Further increase of the incident light

frequency results in a fall of absorption coefficient.

Schematic diagrams for appropriate transitions, in which

the absorption of light is present, are depicted in the Fig. 8

to understand in detail the process of absorption. From the

comparison of diagram and Fig. 7, it is obvious that first

clear expressed maximum corresponds to the n = n0 = 1

transition family, and weak expressed picks are the result

of the transitions between equidistant levels. The second

Fig. 5 Dependences of the absorption threshold on the large semiaxis

of the SPEQD at a fixed value of the small semiaxis

Fig. 6 Dependences of the electron ground state in a SPEQD,

quantum wire, and cylindrical QD, respectively, on the small

semiaxis, quantum wire radius, and radius of the cylindrical QD

Fig. 7 Dependence of absorption coefficient K on the frequency of

incident light, for the ensemble of SPEQDs for the strong SQ regime

1n =

1n′ =

0 1 2 3N , , ,=

0 1 2 3N , , ,′ =

gE

0 1 2 3N , , ,′ =

2n =

2n′ =

0 1 2 3N , , ,=

gE

Fig. 8 Schematic plot of corresponding interband transitions
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weaker pick corresponds to the n = n0 = 2 transition

family. It is also obvious from Fig. 7 that the intensity

corresponding to the above-mentioned family is weaker

than the first maximum. This is the result of the small

volume of the overlapping integral. The above-mentioned

means, that the probability of transition is decreased.

Finally, Fig. 9 illustrates the dependence of absorption

coefficient K on the frequency of incident light, for the

ensemble of SPEQDs in weak SQ regime. As can be seen

from the picture taking into account the Coulomb inter-

action leads to the appearing of secondary well-expressed

maximums of absorption. By the other word, the difference

with the previous case has the quantitative character.

Conclusion

In this work, we obtained that the electron energy is

equidistant inside SPEQD in all three SQ regime cases. The

impact of the dispersion of geometrical sizes for the QDs

ensemble on direct light absorption is also investigated.

The SPEQDs, as more realistic nanostructures than

quantum wires, have various commercial applications, in

particular, in large two-dimensional focal plane arrays in

the mid- and far infrared (M&FIR) region they have

important applications in the fields of pollution detection,

thermal imaging object location, and remote sensing as

well as infrared imaging of astronomical objects.

These optimized quantum structures can be formed by

direct epitaxial deposition using a self-assembling QDs

technique, e.g., described in US Patent # 6541788 entitled

‘‘Mid infrared and near infrared light upconverter using

self-assembled quantum dots’’ as well as by usage of MBE,

MOCVD, or MOMBE deposition systems.

This theoretical investigation of SPEQDs can be effec-

tively used for direct applications in photonics as

background for simulation model. For further investiga-

tions, it is also important to develop a scheme for

optimization of growth of SPEQDs needed for second

harmonic generation.
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