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Abstract Self-similar patterns are frequently observed in

Nature. Their reproduction is possible on a length scale

102–105 nm with lithographic methods, but seems impos-

sible on the nanometer length scale. It is shown that this

goal may be achieved via a multiplicative variant of the

multi-spacer patterning technology, in this way permitting

the controlled preparation of fractal surfaces.
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Introduction

Nanotechnology is essentially related to the problems of

(1) predicting the properties of matter on the nanometer

length scale, (2) preparing samples with accurately con-

trolled size on that length scale, and (3) making accessible

such samples to the macroscopic world. The first problem

is essentially related to the fact that the nanoscale is

characterized by the so called (N ? 1) problem: the prop-

erties of a system with N particles may be largely different

from those of a system with (N ? 1) particles [1]. The

preparation of nanoscopic samples with assigned properties

requires therefore an extreme accuracy in the preparation.

The master road for the reproducible preparation of

bodies in planar arrangement with assigned shape is pho-

tolithography. This technique has been able to produce

features with progressively scaled size, the currently pro-

ducible feature size being of several tens of nanometers.

This size reduction, however, has been possible only thanks

to the development of apparatuses of either huge economic

cost (extreme ultraviolet lithography) or very low

throughput (electron beam lithography).

In recent years, however, techniques not involving

the use of advanced lithography have been developed for

the preparation of nanometer-sized features. The most

advanced ones are based on the transformation of vertical

features into horizontal features and allow the preparation

of lines with controlled width of 10–20 nm. Although this

strategy allows the preparation of simple geometries only

(line arrays), the development of new architectures [2]

makes up for this inherent limitation. Among them the

crossbar structure is particularly attractive [3, 4, 5] because

it may simply be produced by crossing two perpendicularly

oriented wire arrays and each cross-point may be func-

tionalized with the insertion of suitable molecules [6].

The first method for the non-lithographic preparation of

ultra-dense line arrays was originally proposed by Natel-

son et al. [7]. It is essentially based on the sequential

alternate deposition of two films A and B characterized

by the existence of a preferential etch for one of them

(say, A). After cutting at 90�, polishing, and controlled

etching of A, one eventually gets a mold that can be used

as a mask for imprint lithography (IL). Actually IL is a

contact (rather than proximity) lithography; what is non-

lithographic is uniquely the way used for the preparation

of the mask. The first practical application of this idea

was provided by Melosh et al. [8] who prepared a contact

mask for IL with pitch of 16 nm by growing on a
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substrate a quantum well via molecular beam epitaxy,

cutting the sample perpendicularly to the surface, polishing

the newly exposed surface, and etching selectively the

different strata of the well.

Another route for the non-lithographic preparation of

ultra-dense line arrays is the multi-spacer patterning tech-

nique (SnPT). This technology was developed by

Cerofolini et al. [9, 10] with the goal of producing wire

arrays with pitch on the nanometer length scale exploiting

the already existing CMOS (complementary metal-oxide-

semiconductor) IC (integrated circuit) technology only. In

this way the SnPT may be viewed as a conservative

extension of the current IC technology to the nanoscale

length scale [11]. In the original formulation of SnPT

(hereinafter referred to as ‘additive route’, SnPT?) an array

of 2n bars is directly defined onto a substrate via a

sequence of n conformal depositions and anisotropic

etchings. This idea is just an extension of the spacer

patterning technique (SPT), conventionally used in

microelectronics for the self-alignment of the gate elec-

trode on source-and-drain regions [12]. The density limit of

crossbars prepared using SnPT? are discussed in Ref. [13]:

although cross-point density of 8 9 1010 could be achieved

within the current technology, the overall process would

however require 20 repetitions of each SPT cycle.

Multiplicative Route

Managing so many deposition-etching cycles may however

be difficult and expensive. Observing that the SPT allows,

starting from one seed, the preparation of two spacers, the

above difficulty may be removed using a multiplicative

variant (referred to as SnPT9) of the multi-spacer pattern-

ing technique.

SnPT9 requires that each newly grown spacer is used as

seed for the subsequent growth—that is possible if the

original seed is etched away at the end of any cycle. In

SnPT9 each multiplicative SPT9 cycle involves therefore

the following steps:

(i) the conformal deposition of a film on an assigned seed

of high aspect ratio,

(ii) anisotropic etching of the film down to the appear-

ance of the original seed, and

(iii) the selective etching of the seed.

Figure 1 sketches two SPT9 repetitions and shows that

the material nature changes on going from one set of spacers

to the subsequent one, so that the spacer material alternates,

in our preferred embodiment, between poly-silicon and

SiO2. Since the wire material is poly-silicon, the material of

the first deposited layer depends on the parity of n: if n is

even, it should be in SiO2; otherwise in poly-silicon.

The figure, however is highly idealized and does not

show that, due to unavoidable side effects, the eight of the

spacer at a given stage is lower than that at the previous

stage [13]; previous studies have shown that the spacer

height tn decreases from the height of the lithographic seed

t0 almost linearly with n,

tn ¼ t0 � ns; ð1Þ

with s being the height loss per SPT9 cycle; s depends on

how accurately the technology has been set.

The first demonstrators of SnPT9 for the generation of

gratings sub-lithographic pitch go back to more than a

score of years [14]; the usefulness of this technique for the

preparation of wire arrays potentially useful for biochips,

instead, is much more recent [15].

Let P and W denote the lithographic pitch and wire

width, respectively; P is determined by the considered

lithographic technology while W may be varied almost at

will controlling exposure, etching, etc. As discussed in Ref.

[13], the maximum density is however achieved taking

P ¼ 3W ð2Þ

and depositing on the bar of width wn-1 a conformal film of

thickness sn given by sn ¼ 1
2

wn�1 ¼ 1
2

sn�1; so that

wn ¼ sn ¼ 1

2n
W : ð3Þ

While the repetition in additive way of n SPTs per

(bottom and top) layers magnifies the lithographically

achievable cross-point density by a factor of (2n)2, the

repetition in a multiplicative way gives a magnification

of 22n.

Fig. 1 Two steps for the formation of a sub-lithographic wire array

starting from a lithographic seed array
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This matter is discussed thoroughly in another paper

[13]; rather, in this work we intend to discuss another

property of SnPT9—the possibility of preparing self-similar

features with sub-lithographic definition.

The Multiplicative Route as a Technique

for the Generation of Fractal Structures

Imagine for a moment that, in spite of the atomistic nature

of matter and of the inherent technological difficulties, the

multiplicative route can be repeated indefinitely. Remem-

bering that the (n ? 1)-th step generates a set Snþ1 that is

nothing but the one at the n-th, Sn, at a lower scale, the

sequence fS0; . . .;Sn; . . .g defines a fractal; it will be

referred to as multi-space set fractal. Assuming the scaling

law above [Eq. (3)], this fractal is self-similar only if the

height of each spacer varies with n as 2-n. Otherwise, if the

structure scales only in one dimension or if its height scales

with different law than in (Eq. (3)), the fractal is self-affine

[16]. As mentioned above, the ‘spontaneous’ height

decreases with n (Eq. (1)) renders the fractal self-affine. A

self-similar fractal can be obtained at the end of process

planarizing the whole structure with a resist and sputter

etching in a non-selective way the composite film until the

thickness is reduced to t0/2n.

It is however noted that even ignoring the technological

factors, the atomistic structure of matter limits the above

considerations to an interval of 1–2 orders of magnitude,

ranging from few atomic layers to the lower limits of

standard lithography.

Having clarified in which limits the set Sn may be

considered a fractal, it is interesting to compare it with

other fractal sets. The prototype of such sets, and certainly

the most interesting from the speculative point of view, is

certainly the Cantor middle-third excluded set. Figure 2

compares sequences of three discrete processes eventually

leading to the multi-spacer fractal set S and to the Cantor

set C: The comparison shows interesting analogies: Take

P = 2W; if wn ¼ 1
3

wn�1; the measure of each multi-fractal-

step set coincides with that of the Cantor-step set. This

implies that the multi-spacer fractal set has null measure.

Similarly, it can be argued that the multi-spacer set, con-

sidered as a subset of the unit interval, has the same fractal

dimension as the Cantor middle-third excluded set—

lnð2Þ=lnð3Þ [16].

At each step the multi-spacer fractal set is characterized

by a more uniform distribution of single intervals than the

Cantor set; this makes the former more interesting for

potential applications than the latter. In spite of that, trying

to reproduce the Cantor set on the nanometer length scale

seems of a certain interest. This is possible with existing

technologies; as shown in Fig. 3, the process involves

(C1) the lithographic definition of seed (formed, for

instance, by poly-silicon) generating the Cantor set,

(C2) its planarization (for instance, via the deposition of a

low viscosity glass and its reflow upon heating),

(C3) the etching of this film to a thickness controlled by

the exposure of the original seed,

(C4) the selective etching of the original film,

(C5) the conformal deposition of a film of the same

material as the original seed (poly-silicon, in the

considered example) and of thickness equal to 1/3

of its width,

(C6) its anisotropic etching, and

(C7) the selective etching of the space seed (glass, in the

considered example).

Although the preparation of fractal structures may

appear at a first sight nothing but a mere exercise of

technology stressing, in the following we discuss some of

Fig. 2 Generation of the multi-spacer set (left) and of the Cantor

middle-third excluded set (right)

Fig. 3 A process for the generation of Cantor middle-third excluded

set
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their possible applications: (1) Systems biology, i.e. the

study of the complex interactions in biological systems, is

now overcoming the limits of molecular biology. Systems

biology requires the knowledge of the cellular state at

subcellular level (single constituting organelles: mito-

chondria, ribosomes, etc.). Sensing at this level, with

space resolution in the deep sub-micrometer region, is

impossible with CMOS devices, defined lithographically.

Several attempts to overcome the CMOS limits are known

[17, 18]; fractal technology, being able to transform a

smart lithographic pattern (i.e. designed to the wanted

function) in itself at a much lower scale, seems suitable

for such a purpose. In particular, a matrix formed by the

Cartesian product of two Cantor sets [16] would have

next-to-nothing contact area, thus providing sensing with

minimum perturbation. (2) Superhydrophobic surfaces

may be prepared controlling roughness and surface ten-

sion of non-wetting surfaces [19, 20, 21]. Whereas surface

tension is a material property, roughness can be controlled

by the preparation. For instance, roughness may be

imparted depositing a suitable relief on the surface. In this

way, however, an amount of area is lost for other appli-

cation. Although it is possible that the control of wetting

properties does not require to manage geometries on the

nanoscale, this loss may be minimized designing the relief

in such a way as to have almost nil area (as in the

example above). (3) If the SnPT is used for the prepara-

tion of crossbar structures for molecular electronics, the

functionalization with organic molecules of the cross-

points can only be done after the preparation of the

hosting structure. According to the analysis of Ref. [22],

this requires an accurate control of the rheological and

diffusion properties in a medium embedded in a domain

of complex geometry. Understanding how such properties

change when the size is scaled and clarifying to which

extent the domain can indeed be viewed as a fractal (so

allowing the analysis on fractals [23] to be used for their

description) may be a key point for the actual exploitation

of already producible nanometer-sized wire arrays in

molecular electronics.

Discussion

Figure 4 shows in plan view a comparison between the

following crossbars:

(a) a 2 9 2 crossbar obtained by crossing lithographically

defined lines;

(b) a 16 9 16 crossbar obtained via S8PT? starting

from lithographically defined seeds separated by a

distance allowing the optimal arrangement of the wire

arrays;

(c) a 16 9 16 crossbar obtained via S3PT9 starting from

lithographically defined seeds separated by a distance

satisfying Eq. (2), and

(d) a 16 9 16 crossbar obtained via S3PT9 starting from

lithographically defined seeds and arranging the pro-

cess to generate the Cantor middle-third excluded set.

The figure has been drawn in the following hypotheses:

– the lithographic lines in (a) and (b) have width at the

current limit for large-volume production, say W

= 65 nm;

– the height loss s is such that the maximum number of

repetitions in the additive route is 8, and the sub-

lithographic pitch is the same as reported in Refs. [9,

10]; and

– the lithographic width of (c) is chosen to allow the

minimum pitch to be consistent with the one obtained

with the additive route (W = 100 nm), in this way

producing sub-lithographic wires with width (12.5 nm)

that has been proved to be producible [15].

Figure 4 shows that the multiplicative route succeeds in

producing crossbars with cross-point density comparable

with that achieved with the additive route, however, using a

remarkable smaller number of SPT repetitions. To estimate

the advantage of SnPT9 over SnPT?, consider for instance

Fig. 4 Plan-view comparison of the crossbars obtained (a) crossing

lithographically defined lines, (b) using the lithographically defined

lines above as seeds for S8PT?, (c) using the lithographically defined

lines above as seeds for S3PT9, and (d) a Cantor middle-third excluded

set using a minor variant of S3PT9. In each structure the square with

dashed sides denotes a unit cell suitable for the complete surface tiling
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the case of the repetition of three SPT9 per layer. This

would produce a magnification of the lithographic cross-

point density by a factor of 23 9 23. Taking W = 0.1 lm,

after 3 SPT9 repetitions the spacer width should be of

12.5 nm, with minimum separation of 25 nm. Taking into

account Eq. (2), the cross-point density achievable with the

repetition of 2 9 3 SPT9 would thus be nearly the same as

that obtainable with the repetition of 2 9 8 SPT?.

Conclusions

Some fractals (Cantor set, Peano and Koch curves, etc.)

were known in mathematics well before the construction of

a comprehensive theory [16]. Actually, the theory of

fractals affirmed as such that only after Mandelbrot

observation many physical phenomena can be described,

although approximately and on a limited length scale, as

fractals [24].

The usefulness of fractal algorithm is well known:

assuming that human hairpins can be described, at least

approximately as fractals, the use of fractal generator,

rather than of the whole image, would greatly simplify

storage and transmission of the corresponding image.

That real systems may be pictured as fractal set on the

nanometer (and thus microscopic) length scale was first

demonstrated by the analysis by Avnir, Farin and Pfeifer

for the surfaces of several porous adsorbents [25, 26, 27].

In this work we have shown that the multiplicative route of

the multi-spacer patterning technique allows the prepara-

tion of ordered fractals on the mesoscopic length scale.

Although at this stage we have no ideas of the possible

practical applications of fractal technology, we nonetheless

believe that the possibility of preparing, without the use of

advanced lithography, fractal structures at the mesoscopic

scale opens a virgin field of applications. The above con-

siderations are certainly highly speculative, but not so

speculative as those contained in van Gulick’s paper in

topochemistry [28], outlining applications currently not

achievable at that time, but later demonstrated to be

possible.
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