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Abstract We theoretically propose a double quantum

dots (QDs) ring to filter the electron spin that works due to

the Rashba spin–orbit interaction (RSOI) existing inside

the QDs, the spin-dependent inter-dot tunneling coupling

and the magnetic flux penetrating through the ring. By

varying the RSOI-induced phase factor, the magnetic flux

and the strength of the spin-dependent inter-dot tunneling

coupling, which arises from a constant magnetic field

applied on the tunneling junction between the QDs, a 100%

spin-polarized conductance can be obtained. We show that

both the spin orientations and the magnitude of it can be

controlled by adjusting the above-mentioned parameters.

The spin filtering effect is robust even in the presence of

strong intra-dot Coulomb interactions and arbitrary dot-

lead coupling configurations.
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Introduction

With the rapid progress in miniaturization of the solid-state

devices, the effect of carriers’ spin in semiconductor has

attracted considerable attention for its potential applica-

tions in photoelectric devices and quantum computing [1,

2]. The traditional standard method of spin control depends

on the spin injection technique, with mainly relies on

optical techniques and the usage of a magnetic field or

ferromagnetic material. Due to its unsatisfactory efficiency

in nano-scale structures [1, 3, 4], generating and controlling

a spin-polarized current with all-electrical means in mes-

oscopic structures has been an actively researched topic in

recent years. The electric field usually does not act on the

spin. But if a device is formed in a semiconductor two-

dimensional electron gas system with an asymmetrical-

interface electric field, Rashba spin–orbit interaction

(RSOI) will occur [5]. The RSOI is a relativistic effect at

the low-speed limit and is essentially the influence of an

external field on a moving spin [6, 7]. It can couple the spin

degree of freedom to its orbital motion, thus making it

possible to control the electron spin in a nonmagnetic way

[8, 9]. Many recent experimental and theoretical works

indicate that the spin-polarization based on the RSOI can

reach as high as 100% [7, 10] or infinite [11–13], and then

attracted a lot of interest.

Recently, an Aharnov-Bohm (AB) ring device, in which

one or two quantum dots (QDs) having RSOI are located in

its arms, is proposed to realize the spin-polarized transport.

The QDs is a zero-dimensional device where various

interactions exist and is widely investigated in recent years

for its tunable size, shape, quantized energy levels, and

carrier number [14–16]. A QDs ring has already been

realized in experiments [17] and was used to investigate

many important transport phenomena, such as the Fano and

the Kondo effects [18, 19]. When the RSOI in the QDs is

taken into consideration, the electrons flowing through

different arms of the AB ring will acquire a spin-dependent

phase factor in the tunnel-coupling strengths and results in

different quantum interference effect for the spin-up and

spin-down electrons [10, 13, 20, 21].

In this article, we focus our attention on the 100% spin-

polarized transport effect in a double QDs ring. As shown

in Fig. 1, the two QDs embedded in each arms of the ring
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are coupled to the left and the right leads in a coupling

configuration transiting from serial (k = 0) to symmetrical

parallel (k[ 0) geometry. We assume that the RSOI exists

only in the QDs and the arms of the ring and the leads are

free from this interaction. Furthermore, the two dots are

assumed to couple to each other by a spin-polarized cou-

pling strength tr ¼ tce�ir/R þ rDt; where tc is the usual

tunnel coupling strength, rDt may arises from a constant

magnetic field applied on the junction between the QDs

[22], and the phase factor /R is induced by the RSOI in the

QDs.

Model and Method

The second-quantized form of the Hamiltonian that

describes the double-dot interferometer can be written as

[20, 21]

H ¼
X

kar

ekac
y
karckar þ

X

ir

eid
y
irdir þ

X

i¼1;2

Uinirni�r

�
X

r

trðdy1rd2r þH:cÞþ
X

kiar

ðtairc
y
kardir þH:cÞ; ð1Þ

where c
y
kar ðckarÞ is the creation (annihilation) operator of

an electron with momentum k, spin index r ðr¼";# or

±1, and �r¼�rÞ and energy eka in the ath (a = L, R)

lead; d
y
ir ðdir; i ¼ 1;2Þ creates (annihilates) an electron

in dot i with spin r and energy ei;Ui is the Coulomb

repulsion energy in dot i with nir ¼ d
y
irdir being the particle

number operator, in the following we set U1 = U2 = U for

simplicity; tr describes the dot–dot tunneling coupling and

the matrix elements tair are assumed to be independent of k

for the sake of simplicity and take the forms of tL1r ¼
jtL1jeiu=4e�ir/R1=2; tR1r ¼ jtR1je�iu=4eir/R1=2; tL2r ¼ jtL2je�iu=4

e�ir/R2=2; and tR2r ¼ jtR2jeiu=4eir/R2=2: The phase factor /Ri

arises from the RSOI in dot i, which is tunable in

experiments [20, 23, 24]. In fact, the RSOI will also

induce a inter-dot spin-flip, which has little impact on the

current and is neglected here [25]. The spin-dependent

tunnel-coupling strength (line-width function) between

the dots and the leads is defined as Cijr
a = 2pP

ktairtajr
* d(e-ekar), (a = L, R). According to Fig. 1, the

matrix form of them read (here we set tL1 = tR2 = t and

tR1 = tL2 = kt)

CL
r ¼ C 1 kei/r=2

ke�i/r=2 1

� �
; ð2Þ

CR
r ¼ C 1 ke�i/r=2

kei/r=2 1

� �
; ð3Þ

where the spin-dependent phase factor /r = u-r/R, with

/R = /R1-/R2, this indicates that the tunnel-coupling

strength only depends on the difference between /R1 and

/R2, and then one can assume that only one QD contains

the RSOI, making the structure simpler and more favorable

in experiments. The phase-independent tunnel-coupling

strength is C = CL ? CR, with Ca = 2p|t|2qa, and qa is the

density of states in the leads (the energy-dependence of qa

is neglected).

The general current formula for each spin component

through a mesoscopic region between two noninteracting

leads can be derived as [26, 27]

Jr ¼ ie

2h

Z
deTrfðCL

r � CR
rÞG\

r ðeÞ þ ½fLðeÞCL
r

�fRðeÞCR
r �½Gr

rðeÞ � Ga
rðeÞ�g; ð4Þ

where faðeÞ ¼ f1 þ exp½ðe � laÞ=kBT �g�1
is the Fermi

distribution function for lead a with chemical

potential la. The 2 9 2 matrices G\ðeÞ and Gr(a)(e) are,

respectively, the lesser and the retarded (advanced) Green’s

function in the Fourier space. We employ the equation of

motion technique to calculate both the retarded and the

lesser Green’s functions by adopting the Hartree-Fock

truncation approximation, and arrive at the Dayson

equation form for the retarded one [28]:

Gr
rðeÞ ¼

1

gr
rðeÞ

�1 � Rr
r

; ð5Þ

where the retarded self-energy Rr
r ¼ �iCr=2: The diagonal

matrix elements of Green’s function gr
r (e) for the isolated

DQD are

gr
iirðeÞ ¼

e � ei � Uð1 � \ni�r[Þ
ðe � eiÞðe � ei � UÞ ; ð6Þ

and the off-diagonal matrix elements are tc. The advanced

Green’s function Gr
a(e) is the Hermitian conjugate of Gr

r (e).
The occupation number \nir[ in Eq. 6 needs to be

calculated self-consistently; its self-consistent equation is

\nir[ ¼
R

de=2pImG\
iirðeÞ: Within the same truncating

approximation as that of the retarded Green’s function, the

expression of G\
r ðeÞ can be simply written in the Keldysh

form G\
r ðeÞ ¼ Gr

rðeÞR\
r Ga

rðeÞ: The matrix elements of the

lesser self-energy R\
r are i½fLðeÞCL

r þ fRðeÞCR
r �: In general
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Fig. 1 System of a double QDs ring connected to the left and the

right leads with different coupling strengths
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Gr
rðeÞ � Ga

rðeÞ ¼ Gr
rðeÞðRr

r � Ra
rÞGr

rðeÞ; and thus Eq. 6 of

the current is reduced to the Landauer-Büttiker formula for

the non-interacting electrons [27]

Jr ¼ e

h

Z
de½fLðeÞ � fRðeÞ�TrfGa

rðeÞCR
rGr

rðeÞCL
rg; ð7Þ

and then the total transmission Tr(e) for each spin com-

ponent can be expressed as TrðeÞ ¼ TrfGa
rðeÞCR

rGr
rðeÞCL

rg:
The linear conductance Gr(e) is related to the transmission

Tr(e) by the Landauer formula at zero temperature [28],

Gr(e) = (e2/h)Tr(e).

Results and Discussion

In the following numerical calculations, we set the tem-

perature T = 0 throughout the article. The local density of

states in the leads q is chosen to be 1 and t = 0.4 so that the

corresponding linewidth C ¼ 2pqjtj2 � 1 is set to be the

energy unit.

Figure 2a–c shows the dependence of the conductance

Gr and spin polarization p ¼ ðG" � G#Þ=ðG" þ G#Þ on the

Fermi level e for k = U = 0 and various Dt. The two dots

now are connected in a serial configuration and the con-

ductance of each spin component is composed of two

Breit-Wigner resonances peaked at e�r ¼ ½ðe1 þ e2Þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � e2Þ2 þ 4t2

r

q
�=2; respectively [18, 21]. Since the

phase factors originating from both the magnetic flux and

the RSOI do not play any role, the device is free from their

influences. When Dt = 0, the spin-up and spin-down con-

ductances are the same and the spin polarization p = 0 as

shown by the solid lines in the three figures. With

increasing Dt, the distance between the spin-up resonances

is enhanced whereas that between the spin-down ones is

shrunk because of t" [ t# as shown in Fig. 2a, b. Mean-

while, the spin polarization p increases accordingly. If Dt is

set to be Dt = tc, the spin-up and spin-down inter-dot

tunneling coupling strengths are t" ¼ 2tc and t# ¼ 0;

respectively. Then the spin-up conductance G" has a finite

value but meanwhile G# ¼ 0 as the conduction channel for

the spin-down electrons breaks off, which is shown by

the dot-dashed lines in Fig. 2a, b. The spin orientation of

the non-zero conductance can be readily reversed by tuning

the direction of the magnetic field, which is applied on the

tunnel junction between the dots, to set Dt = -tc.

We now study how the dot-lead coupling configuration

influences the spin filtering effect in Fig. 3 by varying the

value of k. It is found that if the parameters are set to be

Dt = tc and u = /R = p/2, the spin-down conductance G#
remains to be zero for any k, and then only G" is plotted.

For non-zero k, the transmission Tr(e) is

TrðeÞ ¼
4C2

XðeÞ
1þ k

2
tr �

ffiffiffi
k

p
ðe� e0Þcos

/r

2

� �2

;

XðeÞ ¼ ðe� e0Þ2 � t2
r �

ð1� kÞ2

4
C2 � kC2 sin2 /r

2

" #2

þ 4C2 1þ k
2

ðe� e0Þþ
ffiffiffi
k

p
tr cos

/r

2

� �2

;

ð8Þ

where e0 = e1 = e2. Since t# ¼ 0 and /# ¼ p; the spin-

down transmission T#ðeÞ ¼ 0 regardless of the choice of k.

The spin-up conductance is composed of one broad Breit-

Wigner and one asymmetric Fano resonance centered,

respectively, at the bonding and antibonding states [18, 21].

Detail investigation of this spin-dependent Fano line-shape
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Fig. 2 Spin-dependent conductance Gr and spin polarization p as

functions of the Fermi level e with k = U = 0 and various Dt. In this

and all following figures, the normal inter-dot tunneling coupling

tc = 1 and the dots’ levels are e1 = e2 = 0
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can be found in our previous papers and we do not discuss

it anymore here. It should be indicated that the spin

orientation of the nonzero conductance can be reversed

by setting Dt = -tc and u = -p/2 ? 2np with n is an

integer.

It is known that the Coulomb interaction in the QDs

plays an important role and we now study if the spin fil-

tering effect survives in the presence of it. Figure 4a shows

that the conductance of the spin down electrons is still zero

and that of the spin up shows typical Fano resonance. Due

to the existence of the intra-dot Coulomb interaction, two

resonances emerge in higher energy region. Moreover, the

positions of the bonding and antibonding states can be

readily exchanged by tuning the magnetic flux as shown in

Fig. 4b, where u is changed from p/2 to 5p/2. Since the

Fano effect is a good probe for quantum phase coherence in

mesoscopic structures, the tuning of its resonance position

and the asymmetric tail direction is an important issue. To

date, much works have been devoted to this topic con-

cerning both the charge and the spin-dependent Fano

effect. But most previous works about the Fano effect in

QDs ring ignored the Coulomb interaction [18], especially

when the spin degree of freedom is considered [20, 21],

and this limitation is supplemented here.

In fact, to realize the RSOI in a tiny device such as the

QDs is somewhat difficult, and then we study if the spin

filtering effect can be found in the absence of it. In Fig. 5,

we set /R = 0 and plot the two spin components conduc-

tance by varying Dt and the magnetic flux-induced phase

factor u. Figure 5a shows that when Dt = tc and u =

p ? 2np with n is an integer, the conductance of the spin-up

electrons still has finite value whereas that of the spin-down

electrons is exactly zero. Moreover, to swap the spin

direction of the non-zero conductance, one can simply tune
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Fig. 5 Spin-dependent conductance Gr as a function of the Fermi

level for fix /R = 0, U = 4, u = p and different Dt
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Fig. 4 Spin-dependent conductance Gr as a function of the Fermi

level for fix /R = p/2, U = 4, Dt = tc and different u. In this and the

following figure, the solid and the dashed lines are for the spin-up and

spin-down electrons, respectively
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level for fixed /R = u = p/2, Dt = tc and various k. Other param-

eters are the same as those of Fig. 2
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Dt from tc to -tc with unchanged magnetic flux as shown in

Fig. 5b. The peaks’ width and position of the non-zero

conductance in Fig. 5a, b are the same, indicating that one

can flip the electron spin in the bonding and antibonding

states without affecting its sate properties.

Conclusion

In conclusion, we have investigated the spin filtering effect

in a double QDs device, in which the two dots are coupled

to external leads in a configuration transiting from serial-

to-parallel geometry. We show that by properly adjusting

the spin-dependent inter-dot tunneling coupling strength tr,

a net spin-up or spin-down conductance can be obtained

with or without the help of the RSOI and the magnetic flux.

The spin direction of the non-zero conductance can be

manipulated by varying the signs of tr. The above means of

spin control can be fulfilled for a fixed RSOI-induced phase

factor, and then the QDs in the present system can be either

a gated or a self-assembly one, making it easier to be

realized in current experiments.
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176801 (2004); H.F. Lü, Y. Guo, Phys. Rev. B 76, 045120 (2007)

20. Q.F. Sun, J. Wang, H. Guo, Phys. Rev. B 71, 165310 (2005)

21. F. Chi, J.L. Liu, L.L. Sun, J. Appl. Phys. 101, 093704 (2007)

22. A.K. Huttel, S. Ludwig, H. Lorenz, K. Eberl, J.P. Kotthaus, Phys.

Rev. B 72, 081310 (2005); Z.J. Li, Y.H. Jin, Y.H. Nie, J.Q. Liang,

J. Phys.: Condens. Matter 20, 085214 (2008)

23. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett.

78, 1335 (1997)

24. F. Mireles, G. Kirczenow, Phys. Rev. B 64, 024426 (2001)

25. W.J. Gong, Y.S. Zheng, T.Q. Lü, Appl. Phys. Lett. 92, 042104
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