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Abstract Electron structure of a silicon quantum dot

doped with a shallow hydrogen-like donor has been cal-

culated for the electron states above the optical gap. Within

the framework of the envelope-function approach we have

calculated the fine splitting of the ground sixfold degen-

erate electron state as a function of the donor position

inside the quantum dot. Also, dependence of the wave

functions and energies on the dot size was obtained.
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Introduction

Introduction of shallow impurities into silicon quantum

dots is considered [1–5] as an efficient way to modify

optical properties of the dots. In connection to this, cal-

culations of electronic structure [6–11] and dielectric

function [12–18] of silicon nanocrystals doped with

V-group shallow donors have been carried out earlier.

The microscopic first-principles study of charge distribu-

tion and electrostatic fields in bulk silicon [19–21] and

silicon crystallites [16–18] in the presence of V-group

donors have shown existence of short-range and long-

range components of the electron–ion Coulomb interac-

tion in the system. The short-range potential differs from

zero only in a nearest vicinity (about Bohr radius) of the

donor nucleus. This extra potential, frequently named a

‘‘central-cell correction’’, leads to so-called valley–orbit

interaction [22, 23]. In turn, the valley–orbit interaction

causes the splitting of the electron ground state that is

sixfold degenerate if the spin variables have not been

taken into account. The degeneracy order exactly coin-

cides with the number of valleys in a conduction band of

bulk silicon. The long-range component represents stan-

dard e-times weakened Coulomb attraction between the

donor ion and electron.

Quantum confinement in nanocrystals considerably

strengthens the valley–orbit interaction and level splitting

[8–11] relative to the bulk systems [24]. Provided that the

valley–orbit interaction is strong, the sixfold degenerate

lowest energy level splits into three (if the donor occupies

the dot center) or six (if the donor position is arbitrary)

levels. In case of symmetric central-located donor position

in the nanocrystal the ground state splits into a singlet,

doublet, and triplet [8, 10, 11], as it takes place in the bulk

silicon [22, 23], the singlet level being strongly split off

from the doublet and triplet levels and always turns out to

be the lowest one.

However, not all the donors manifest strong valley–orbit

coupling. For example lithium, being interstitial donor of

the first group, has the splitting of about 1–2 meV [24]

which is one-two order less than that for V-group donors

such as P, As, Sb, and Bi. It is, therefore, logical to assume

also for quantum dots (without resorting to calculations),

that the valley–orbit splitting and central-cell effect for Li

will be weakened compared to the V-group donors by the

same order of magnitude. As was shown for 2–5 nm

nanocrystals [10, 11], maximal values of the splitting for

the V-group donors are of the order of several tenths of eV.

As a consequence, the valley–orbit splitting for Li in the

dot does not exceed, presumably, 10 meV. At the same

time, as will be shown below, the splitting caused by the
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long-range hydrogenic potential turns out to be consider-

ably greater (about 100 meV). This indicates a key role of

the hydrogenic potential compared to the central-cell one

for Li. On this reason, the hydrogenlike model may be

applied to a lithium donor in a silicon nanocrystal.

Therefore, when dealing with Li-doped dots, we shall

neglect the short-range central-cell field and, consequently,

the valley–orbit splitting.

In turn, for V-group donors in quantum dots, a contri-

bution of the long-range field to the energy splitting is 3–5

times less than that of the short-range field. In particular, in

the works of the authors [10, 11] electronic structure of

silicon crystallites doped with V-group donors has been

already calculated in the presence of both short- and long-

range Coulomb interactions. Note, however, that the results

of Refs [10, 11] may not be automatically extended to

Li-doped nanocrystals by zero setting the terms caused by

the short-range field. For V-group donors the central-cell

potential, being stronger than the hydrogenic one, imposes

certain symmetry to the Bloch states. The latter are

described by the functions possessing A1, E, or T2 sym-

metry. Existence of the hydrogen-like potential leads to

some insignificant corrections only. In case of a lithium

donor, the situation is opposite. Precisely the hydrogen-like

potential is a dominant factor, while the valley–orbit

interaction is negligibly small. As a result, we have to use

different approaches to solve the problem. Consequently,

the solutions obtained in these two cases are appreciably

different.

In the present article we find the energies and wave

functions of the ground and several excited electronic

states of silicon quantum dot with a lithium donor that may

be treated as a shallow hydrogenic one. We shall also

discuss an effect of degeneracy removal caused by the

presence of a hydrogenlike center in an arbitrary place

inside the dot, and calculate the splitting of the lowest

energy level being sixfold degenerate initially.

For this purpose we employ envelope-function approx-

imation. Of course, an applicability of the k � p method to

quantum dots is justified when the dot size considerably

exceeds the size of the unit cell. The latter approximately

coincides with the distance between adjacent atoms in

silicon lattice (2.35 Å
´

). We suppose this requirement to be

fulfilled for 2–5 nm nanocrystals. In this case, keeping

ourselves within the framework of a macroscopic picture,

one can use bulk static dielectric constants es and ed for

materials inside and outside the dot, respectively. As a

result, the standard Coulomb potential is modified due to

appearance of polarization charges at the nanocrystal

boundary [13, 14]. Existence of an excess positive charge

near the dot boundary has been directly confirmed by the

microscopic first-principles calculations of Delerue et al.

[16] and Trani et al. [18].

The Model and Basic Equations of the Problem

Let us consider a silicon quantum dot of radius R,

embedded into a wide-band matrix such as SiO2. The

potential barriers for electrons caused by the band dis-

continuity at the dot boundary are of the order of several

eV. Since the typical energies we shall further consider do

not exceed a few tenths of eV, the barriers may be treated

as infinitely high.

Within the frames of macroscopic treatment the total

electron potential energy U(r) consists of three parts:

Uðr; hÞ ¼ U0ðrÞ þ VspðrÞ þ Vieðr; hÞ: ð1Þ

Here r and h are the position-vectors of the electron and

impurity ion, respectively. U0(r) is the potential of an

infinitely deep well that is assumed to be zero inside, and

infinity outside, the dot. The second part Vsp(r) describes an

interaction between the electron and its own image arising

due to the charge polarization on the boundary between

silicon and silicon dioxide. Since the electron interacts with

its own image, Vsp(r) is frequently referred to as a self-

polarization term. It can be represented in the form, see,

e.g., Eqs (3.24), (3.26) in Ref. [25]:

VspðrÞ ¼
e2ðes � edÞ

2esR

X1

l¼0

l þ 1

les þ ðl þ 1Þed

r2l

R2l
: ð2Þ

At last, the third term Vieðr; hÞ; introduced in the Eq. 1,

represents an electron–ion interaction. It has the form [25]:

Vieðr; hÞ ¼ � e2

es r � hj j �
e2ðes � edÞ

esR

�
X1

l¼0

hlrl

R2l

l þ 1

les þ ðl þ 1Þed
PlðcoshÞ; ð3Þ

where h is the angle between h and r. The first term in the

expression (3) corresponds to the direct Coulomb attraction

between the donor and electron, while the second term,

represented by the sum over l, describes an interaction

between the ion image and electron. This term disappears

when es and ed become equal.

Notice that U0(r) and Vsp(r) are isotropic functions

independent of the electron position-vector direction. On

the contrary, the electron–ion interaction strongly depends

on the positional relationship of the ion and electron. As a

consequence, the direction of r influences the magnitude of

Vie.

In order to determine the electron states we have to

solve the single-particle Schrödinger-like equation for the

envelope functions FjðrÞ and the electron energy E:

Hij þ U r; hð Þdij

� �
Fj rð Þ ¼ EFi rð Þ: ð4Þ

Here, Hij is the matrix k � p Hamiltonian operator for bulk

Si, and the Einstein convention has been applied for
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summing over j. It is well known that energy minima in the

conduction band of silicon are located nearby X-points

symmetrically relative to the boundary of the Brillouin

zone. At the X-point energy branches intersect, which leads

to the double degeneracy. Since there are three physically

nonequivalent X-points in the conduction band, the spec-

trum is sixfold degenerate on the whole (without spin) as

was already mentioned above.

Frequently, when analyzing electron phenomena in

silicon, the model of parabolic energy band with longitu-

dinal ml = 0.92m0 and transverse mt = 0.19m0 effective

masses is used. However, such a representation is

correct for electron energies obeying the inequality

E � EDj j � EX � EDj j; where EX and ED are, respectively,

the energies of the X-point and the point of the energy

minimum located at the D-direction. It is not so in our case.

Due to the strong quantum confinement, typical electron

energies are of the order of, or even greater than [26–28],

the energy difference EX - ED = 0.115 eV [29]. There-

fore, interplay between the two crossing branches must be

taken into account. This requires more accurate consider-

ation of the electronic dispersion low, outgoing the frames

of parabolic approximation.

This has been done by Kopylov [29] for bulk semi-

conductors. We use here for the quantum dot the Kopylov’s

k � p Hamiltonian operator written in a basis of two Bloch

states Xj i; X0j if g; Yj i; Y 0j if g; or Zj i; Z 0j if g for each of

three nonequivalent X-points in the Brillouin zone. All the

Bloch functions belong to the spinless irreducible repre-

sentation X1 of an X-point. Let us consider, for

definiteness, the X-point along the direction (0, 0, 1). Then

the wave function is expanded as W ¼ FðrÞ Zj i þ F0ðrÞ Z 0j i;
where FðrÞ and F0ðrÞ are slow envelope functions being

the expansion coefficients in the Bloch-state basis

Zj i; Z 0j if g: The bulk k � p Hamiltonian operator may be

written as the sum of isotropic and anisotropic parts:

Hij ¼ H
0ð Þ

ij þ H
1ð Þ

ij ; where the former is represented by

H
0ð Þ

ij ¼ p2=2með Þdij with the effective electron mass me =

3ml mt /(2ml + mt). Such the explicit form of H
0ð Þ

ij is

obtained as the average of Hij over angles in the p-space.

The anisotropic part is defined with the following

expression:

H
1ð Þ

ij ¼
1

mt
� 1

ml

� �
p2�3p2

z

6
1

mt
� 1

m0

� �
pxpy þ i p0pz

ml

1
mt
� 1

m0

� �
pxpy � i p0pz

ml

1
mt
� 1

ml

� �
p2�3p2

z

6

0

@

1

A:

ð5Þ

Here p0 ¼ 0:144ð2p�h=a0Þ is the distance from the X-point

to any of the two nearest energy minima in the p-space,

a0 = 0.543 nm stands for the lattice constant of silicon.

The quasimomentum p and the energy E have the origin at

the X-point.

Equation 4 for an undoped nanocrystal has been already

solved earlier [26]. In the following we shall employ, in

fact, the solutions obtained in Ref. [26] as the zeroth

approximation of the problem with a doped dot.

Because of the isotropic and diagonal form of the

operator H
0ð Þ

ij þ U0 rð Þdij; it is possible to classify its

eigenstates similarly to atomic systems as the states of s-,

p-, d-type, etc. Accordingly, one may expand the envelope

functions over these eigenstates as:

FjðrÞ ¼
X

a

Cja aj i; ð6Þ

where aj i denote the s-, p-, d-,... states, and Cja are the

expansion coefficients. As was shown in Ref. [26], in order

to find energies and wave functions of a few lower states

with an accuracy of about several percent, it is sufficient to

keep in the expansion (6) only s- and p-states, so that aj i
becomes equal to sj i or paj i with a = x, y, z.

Substitution of the expansion (6) into Eq. 4 yields

algebraic equations for Cja:

E � Esð ÞCis ¼ sh jH 1ð Þ
ij þ V r; hð Þ sj iCjs

þ sh jH 1ð Þ
ij þ V r; hð Þ paj iCja,

E � Ep

� �
Cia ¼ pah jH 1ð Þ

ij þ V r; hð Þ sj iCjs þ pah jH 1ð Þ
ij

þ V r; hð Þ pbj iCjb:

ð7Þ

Here Es ¼ �h2p2=2meR2 and Ep ¼ �h2l2=2meR2 are the

energies of the s- and p-states, l = 4.4934 is the first root of

the spherical Bessel function j1(x). Explicit form of the

matrix elements of the operators H
1ð Þ

ij and V r; hð Þ can be

found, e.g., in Ref. [10]. The energy Es is doubly degenerate

while the energy Ep is the sixfold level. Thus, solving Eq. 7

we should obtain, in general case, eight electron states.

Within the restricted basis of s- and p-type envelope

states, which is used here, one can solve Eq. 7 analytically

[26] if neglect s-pa Coulomb matrix elements Va hð Þ �
sh jV r; hð Þ paj i and anisotropic components of pa-pb type

Vab hð Þ � pah jV r; hð Þ pbj i both for a = b and a = b. Notice

that the diagonal pa-pa Coulomb matrix elements consist

of two parts [10]: isotropic Vpp(h), and anisotropic

Vaa hð Þ� h2 � 3h2
a: As our numerical estimations show, the

latter is much less than the former. For comparison we

have plotted in Fig. 1 for 3 nm quantum dot both the

anisotropic Coulomb matrix elements Vz hð Þ;Vxy hð Þ;Vzz hð Þ
and isotropic ones Vss hð Þ � sh jV r; hð Þ sj i; Vpp(h) versus h,

in case the anisotropic matrix elements have their highest

possible values. For instance, Vz and Vzz achieve their

maximum when hx = hy = 0. On the contrary, Vxy has the

greatest value for hz = 0, hx = hy. As is seen in the figure,

the anisotropic elements Vxy and Vzz are small compared to

Vz. In turn, Vz is less than the diagonal isotropic matrix

elements Vss and Vpp. At last, all the Coulomb matrix
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elements are substantially smaller than the difference

Ep - Es.

Results and Discussion

Solution of the simplified Eq. 7 for V r; hð Þ � 0 has been

obtained in Ref. [26]. There was shown that the twofold

(s-type) and sixfold (p-type) levels split into four doubly

degenerate levels due to the band anisotropy leading to the

s-pz and px-py hybridization of the envelope states. The

s-s and p-p diagonal Coulomb matrix elements in Eq. 7

contribute only to the shift of the unperturbed energy

values: Es(h) = Es + Vss(h), Ep(h) = Ep + Vpp(h). As a

result, the twofold energies are written in the form:

E0e ¼
Es hð Þ þ Ep hð Þ � 2Hpp

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep hð Þ � Es hð Þ � 2Hpp

2

� �2

þH2
sp

s

;

E1e ¼ Ep hð Þ þ Hpp � Hxy;

E2e ¼
Es hð Þ þ Ep hð Þ � 2Hpp

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep hð Þ � Es hð Þ � 2Hpp

2

� �2

þH2
sp

s

;

E3e ¼ Ep hð Þ þ Hpp þ Hxy;

ð8Þ

where the matrix elements of the band anisotropy

Hsp ¼ 2p�hlp0=
ffiffiffi
3

p
mlR l2 � p2ð Þ

� 	
; Hpp ¼ �h2l2 ml � mtð Þ=

15mtmlR
2; and Hxy ¼ �h2l2 m0 � mtð Þ=5mtm0R2 have been

introduced.

The energy E3e of the third excited doublet turns out to

be strongly split off from the lower energies as is shown in

Fig. 2. In the following we do not take this level into

account because the two-level approximation, accepted in

Eq. 7, is explicitly insufficient to describe correctly the

upper electron states and their energies. The energies of the

three lower levels E0e, E1e, and E2e are also presented in

Fig. 2 as functions of the dot radius R. One can see that, the

level splitting due to the band anisotropy is great enough.

The energy of the splitting turns out to be of the same order

as the unperturbed energies Es and Ep. However, in spite of

such the strong splitting, the double degeneracy of all the

levels is conserved. In order to lift it, the symmetry of the

system must be violated. To this goal, one needs to intro-

duce nonzero matrix elements Va hð Þ in Eq. 7, which reflect

an asymmetry of the donor position inside the nanocrystal.

At the same time, one may neglect, apparently, the terms

Vab hð Þ and Vaa hð Þ in Eq. 7 because of their small magni-

tudes, see Fig. 1.

The presence of nonzero Va hð Þ hampers solving Eq. 7.

However, relative smallness of the off-diagonal Coulomb

interaction with respect to the energies Eje allows one to

apply a perturbation theory. It is important to emphasize

that only the off-diagonal matrix elements Va hð Þ are treated

as perturbation in this case, but not the Coulomb interac-

tion V r; hð Þ on the whole.

An introduction of an asymmetry in the system leads

to the total splitting of the energy levels. In particular,

the lowest level splits into two energies Ez
(±) equal to

E0e - Sz ± Wz. Generally speaking, it is now possible to

combine the results for all the three X-points and write

down the energies of all the six lowest levels originated

from the energy E0e in the following form:

Eð�Þ
a ¼ E0e � Sa � Wa: ð9Þ
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Fig. 1 Coulomb matrix elements versus dimensionless donor dis-

placement from the dot center. Lower solid line—Vss; Upper solid

line—Vpp; Long-dashed line—Vz for hx = hy = 0; Short-dashed line—

Vzz for hx = hy = 0; Dotted line—Vxy for hx = hy, hz = 0
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Fig. 2 Energies of the ‘‘isotropic’’ model (Va = 0 in Eq. 7) as

functions of the dot radius. From top to bottom: E3e—dots; E2e—short

dash; E1e—long dash; E0e—solid line. All the energies are counted

from the X-point energy
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Here

Sa ¼ V2
a hð Þ

E2e � E0e
þ

V2
b hð Þ þ V2

c hð Þ
� �

cos2k

2 E1e � E0eð Þ ð10Þ

is the second-order shift of the energy E0e, and the term Wa,

defining the splitting, is

Wa ¼ Vb hð ÞVc hð Þcos2k
E1e � E0e

: ð11Þ

This term leads to symmetric splitting of the energy E0e - Sa

into two levels. Indices a, b, c enumerate the spatial axes. In

Eqs. 10, 11 they do not coincide with each other. The

notation ‘‘Ea
(±)’’ implies the solution obtained for the X-point

located at a-direction in the k-space. At last, the angle k is

defined by the following relationships:

cos2k ¼ Ep hð Þ � Es hð Þ � 2Hppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep hð Þ � Es hð Þ � 2Hpp

� �2þ4H2
sp

q ;

sin2k ¼ 2Hspffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep hð Þ � Es hð Þ � 2Hpp

� �2þ4H2
sp

q :

ð12Þ

Notice that the level splitting appears only in the second

order in Va hð Þ: Contrary to this, wave functions,

corresponding to the energies Ea
(±), have the first-order

corrections in Va hð Þ :

Wð�Þ
a ¼ cosk

Aj i� A0j iffiffiffi
2

p sj i�sink
Aj i� A0j iffiffiffi

2
p paj i

�Va hð Þseck
E2e�E0e

Aj i� A0j iffiffiffi
2

p paj i

� cosk
E1e�E0e

Vb hð Þ�Vc hð Þffiffiffi
2

p Aj i� A0j iffiffiffi
2

p pbj i� pcj iffiffiffi
2

p : ð13Þ

Here, the capital letter A runs the values X, Y, Z and defines

the Bloch state of an X-point. It is important to note that

index A describes the Bloch function of the X-point

situated precisely at the ka-axis in the Brillouin zone, i.e., in

a certain sense, the small and big indices coincide.

The ground-level splitting is shown in Fig. 3. If the

impurity position-vector h has not directed to any sym-

metric axis of the lattice, the energy splitting leads to the

complete degeneracy removal except for the spin degen-

eracy. Conformably, the ground-state energy splits into the

six different levels as is seen in Fig. 3.

What energy level of the six ones written in the Eq. 9

is the lowest? It depends on the relationship between hx,

hy, and hz which define the off-diagonal s-p type matrix

elements Va hð Þ: For example, in case hx [ hy [ hz [ 0

(this is the case shown in Fig. 3) the energy E �ð Þ
z becomes

the lowest. Evidently, there are six different groups of

relationships between the components ha (each group

contains eight relationships), every one of which defines

new ground state from the set (13). Each of the 48

relationships describes the spherical sector in space of the

impurity position-vector within the quantum dot. In a

certain sense one may say that belonging of the vector h

to one of these sectors fixes one of the states (13) to be

the ground.

As is seen in the figure, the splitting of each the

twofold level E0e, corresponding to a certain X-point, is

sufficiently great except for the cases when the donor is

situated near the dot center or the interface. For inter-

mediate values of the ratio h/R, the splitting caused by the

system asymmetry achieves several tens (or, even, hun-

dred) of meV. At least for lithium, this is expected to be

considerably greater than the valley–orbit splitting. As has

been shown earlier [10, 11] the valley–orbit splitting in

quantum dots sharply decreases if h ? R, and equals zero

at the dot boundary. At the same time, at h ? 0, it has

some nonzero value. Therefore, the curves presented in

Fig. 3 should be slightly corrected at small h/R. However,

such a correction does not exceed, apparently, several

meV for 3 nm nanocrystal doped with Li, and may be

neglected.

Let us now discuss the modification of the ground

electron state due to the hidrogen-like donor. Because of

the donor existence inside the dot, the ground-state wave

function W �ð Þ
z acquires some first-order correction that can

be represented as the product of two factors. The first one is

the correction to the envelope-function

DF �ð Þ
z ¼� Vz hð Þ sec k

E2e � E0e
pzj i

� cosk
E1e � E0e

Vx hð Þ þ Vy hð Þffiffiffi
2

p pxj i þ py



 �
ffiffiffi
2

p ; ð14Þ

while the second factor is the Bloch function

Zj i � Z 0j ið Þ=
ffiffiffi
2

p
of the irreducible representation D20 : It is

convenient to introduce the unit vector n ¼ h=h along the
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Fig. 3 Fine structure of the energy spectrum at hx/h = 0.8,

hy/h = 0.5, hz/h = 0.33 with respect to the unperturbed sixfold

degenerate energy level E0e. Solid lines—Ez
(±); Dashed lines—Ey

(±);

Dots—Ex
(±); The ‘‘+’’-sign corresponds to the upper curves
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donor’s position-vector. Then the donor site can be defined

with nx, ny, nz, and h. To illustrate the role of donors in a

reconstruction of the electron wave function and, as a

consequence, in a redistribution of the electron density, we

choose nx = 0.8, ny = 0.5, nz = 0.33 and plot the envelope-

function correction DF �ð Þ
z as a function of the electron

position (i) at the radial axis r k h; and (ii) on the sphere

r = h, see Figs. 4 and 5, respectively.

Figure 4 represents the dependence of DF �ð Þ
z (dashed

and dotted lines) on the electron position at the axis drawn

through the donor and the dot center. In this case electron

position-vector r is strictly parallel or antiparallel to h. For

comparison, the zeroth-order envelope function of s-type

has been also plotted in the figure with solid line.

Since we direct the radial axis parallel to h, the donor is

always situated somewhere at the right half of this axis

within the range 0 \ h/R \ 1. We have calculated DF �ð Þ
z

for three different positions of the donor ion inside the dot.

When the donor is close to the dot center (h/R = 0.1), the

first-order correction is small enough, as was already

pointed out earlier. At h/R = 0.46, the correction becomes

the greatest. Further increase of h/R leads to the general

reduce of DF �ð Þ
z : Such the behavior of DF �ð Þ

z has the simple

explanation. The first-order correction DF �ð Þ
z is directly

proportional to the off-diagonal Coulomb matrix elements

of s-p type, see Eq. 14. Meanwhile, these matrix elements

rise from zero at h = 0 to their maximum taking place

exactly at h/R = 0.46. Then, Va decreases as h increases, as

it is shown in Fig. 1. Thus, the correction DF �ð Þ
z qualita-

tively follows, in fact, the dependence Va on h.

It is also seen in Fig. 4 that the maximum of all three

curves takes place approximately at r/R = 0.46 and does

not depend on h. The latter is a consequence of the ‘‘two-

level’’ approximation accepted in Eq. 7. If we take into

account not only the lowest s- and p-states, the depen-

dence of the first-order correction DF �ð Þ
z on h appears at

once. Nevertheless, such the rough approximation turns

out to be quite correct and sufficient to describe the

general trend in behavior of DF �ð Þ
z as a function of r. In

particular, DF �ð Þ
z is always positive when r k h; i.e., the

donor and electron are situated at the same half of the

axis. This means that the probability to find the electron

near the donor site rises, while on the other side relative

to the dot center the probability reduces. Thus, the elec-

tron-density distribution becomes asymmetric. It rises

along the vector h, and reduces along the opposite

direction.

We have also plotted in Fig. 5 DF �ð Þ
z as a function of the

angles h and u on the spherical surface r = h for the former

values of na. The angles h and u are introduced in the

standard form: ex = sinhcosu, ey = sinhsinu, and ez =

cosh, where ea is an a-component of the unit vector

e ¼ r=r: Because the envelope functions paj i and Coulomb

matrix elements Va hð Þ are directly proportional to ea and

na, respectively, the angle dependence of DF �ð Þ
z should be

sensitive to the donor position on the sphere. This is

completely confirmed by our calculations presented in the

figure. As is seen, maximal values of DF �ð Þ
z (light areas in

the figure) are located around the donor site marked with

the cross. However, it is also seen that the cross does not

fully coincide with the center of the brightest spot. The

nature of this discrepancy, apparently, may be explained by

the use of the ‘‘two-level’’ approximation as well.
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Fig. 4 The first-order corrections (dashed and dotted lines) to the

envelope function of the s-type (solid line) in arbitrary units.

nx = 0.8, ny = 0.5, nz = 0.33. e = n. R = 1.5 nm
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Fig. 5 Contour plot of the first-order correction DF �ð Þ
z at nx = 0.8,

ny = 0.5, nz = 0.33 for 3 nm quantum dot. The value of DF �ð Þ
z rises

from dark to light. The cross indicates the donor position

574 Nanoscale Res Lett (2007) 2:569–575

123



Conclusion

Let us now briefly describe the obtained results. First, we

have found analytical expressions for the electron energies

and wave functions in case of arbitrary donor position

inside the quantum dot. Note for comparison that more

general treatment [10, 11], taking into account dominant

role of the central-cell potential, permits of only numerical

calculations. Second, it has been shown that, the wave

functions in Li-doped nanocrystals have already no the

symmetry of tetrahedral group Td, or close to that, as it took

place for V-group donors in the bulk, or nanocrystals,

respectively, even in the case of asymmetric donor position

inside the nanocrystal [10, 11]. This is due to disappear-

ance of the short-range Coulomb field that symmetrizes the

Bloch functions according to the symmetry transformations

of the point group Td. Third, energy splitting for a

hydrogenlike lithium donor essentially differs from that for

V-group donors creating the central-cell field. Provided

that the valley–orbit interaction is taken into account, the

splitting occurs even for the case of central located donor

inside the dot. On the contrary, if we deal with the lithium

donor, the splitting is absent in case h = 0 as is seen in

Fig. 3. At last, fourth, the presence of a donor inside the

nanocrystal leads to the substantial relocation of the elec-

tron density (up to 10%, see Fig. 4) towards the donor.

This, in turn, leads to the reconstruction of the electron

wave functions and subsequent polarization of the electron

subsystem in the dot. Such the polarization, undoubtedly,

should influence the values of electron–photon matrix

elements and the transition probabilities on the whole.
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